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Abstract
In this paper we investigate the analytical properties of systems of linear ordinary
differential equations (ODEs) with unsmooth nonintegrable inhomogeneities and a
time singularity of the first kind. We are especially interested in specifying the
structure of general linear two-point boundary conditions guaranteeing existence
and uniqueness of solutions which are continuous on a closed interval including the
singular point. Moreover, we study the convergence behavior of collocation schemes
applied to solving the problem numerically. Our theoretical results are supported by
numerical experiments.
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1 Introduction
Singular boundary value problems (BVPs) arise in numerous applications in natural sci-
ences and engineering and therefore, since many years, they have been in focus of exten-
sive investigations. An important class of linear singular problems takes the form of the
following BVP:

y′(t) =
M
t

y(t) + f (t), t ∈ (, ], By() + By() = β , ()

where y is a n-dimensional real function, M is a n × n matrix and f is a n-dimensional
function which is at least continuous, f ∈ C[, ]. We are mainly interested to find under
which circumstances the above problem has a solution y ∈ C[, ]. B and B are constant
matrices and it turns out that they are subject to certain restrictions for a problem with a
unique continuous solution. We say that BVP () has a time singularity of the first kind at
t = .

Problems of type (), where f may depend in addition on the space variable y and may
have a space singularity at y = , have been studied in [–]. The analytical properties of
() have been discussed in [, ], where the attention was focused on the existence and
uniqueness of solutions and their smoothness. Especially, the structure of the boundary
conditions which are necessary and sufficient for () to have a unique continuous solution
on [, ] was of special interest. Our aim is to generalize these analytical results to the
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problem

y′(t) =
M
t

y(t) +
f (t)

t
, t ∈ (, ], By() + By() = β , ()

where f ∈ C[, ] but f (t)/t may not be integrable on [, ]. While for the BVP () and
its applications, comprehensive literature is available, this is not the case for problem ().
The BVPs of type () arise in the modeling of the avalanche run up [] and occur when the
regular ODE system u′(x) = Mu(x) + g(x), posed on the semi-infinite interval x ∈ [,∞), is
transformed by x = – ln t to a finite domain t ∈ (, ]. Moreover, we refer to papers [–],
where the solvability of similar linear singular problems is discussed. Interesting results
for linear BVPs with time singularities in weight-spaces have been provided in [–].
Although this framework is close to what we are aiming at here, it is not quite complete.
So, in a way our results are closing the existing gaps.

Note that the more general equation

y′(t) =
M(t)

t
y(t) +

f (t)
t

, t ∈ (, T], ()

with a variable coefficient matrix M(t) was investigated in [], where the existence of a
unique continuous solution y of () has been studied. The main results of [] are formu-
lated in [, Theorem .] and [, Theorem .]. In Theorem ., f and M are assumed
to be continuous and all eigenvalues of M() to have negative real parts. In Theorem .
smoothness of higher derivatives of y up to order m ≥  has been specified. It turns out
that for M, f ∈ Cm there exists a unique solution y ∈ Cm provided that all real parts of the
eigenvalues of M() are smaller than m and different from natural numbers.

The current paper completes the results of [] for the constant matrix M. In contrast
to [], where only particular solutions without boundary conditions are considered, in
this paper general structure of linear two-point boundary conditions is in focus. Explicit
solution representations and the form of necessary boundary conditions are provided in
Theorems , , and  for the eigenvalues of M with negative real parts, positive real parts,
and the eigenvalues zero, respectively.

To compute the numerical solution of () polynomial collocation was proposed in [,
]. This was motivated by its advantageous convergence properties for (), while in the
presence of a singularity other high order methods show order reductions and become
inefficient []. Consequently, for singular BVPs [, ], we have implemented two open
domain Matlab codes based on collocation. The code sbvp solves explicit first order
ODEs [], while bvpsuite can be applied to arbitrary order problems also in implicit
formulation and to differential algebraic equations []. Over recent years, both codes
were applied to simulate singular BVPs important for applications and proved to work de-
pendably and efficiently. This was our motivation to also propose and analyze polynomial
collocation for the approximation of the initial value problems ().

The paper is organized as follows: In Section , we collect the preliminary results and in-
troduce the necessary notation. Further notation can be found in Table . In Sections ,
, and , three case studies are carried out, the case of only negative real parts of the
eigenvalues of M, positive real parts of the eigenvalues of M, and zero eigenvalues of M,
respectively. These results are summarized and compared with the case of smooth inho-
mogeneity in Section . Finally, the three case studies are used to formulate the respective
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results for the general initial value problems, terminal value problems, and BVPs in Sec-
tion . We show convergence orders for the collocation scheme in the context of general
initial value problems in Section  and illustrate the theoretical findings by experiments
carried out using the Matlab codebvpsuite in Section . In Section , we recapitulate
the most important results of the study.

2 Preliminaries
We are interested in analyzing the BVP

y′(t) =
M
t

y(t) +
f (t)

t
, t ∈ (, ], y ∈ C[, ], By() + By() = β , ()

where M ∈ R
n×n, B, B ∈ R

m×n, β ∈ R
m, and f ∈ C[, ]. Note that in general m ≤ n be-

cause the requirement y ∈ C[, ] results in n – m additional conditions solution y has to
satisfy [].

Before discussing BVP (), we first consider the easier problem consisting of the ODE
system

y′(t) =
M
t

y(t) +
f (t)

t
, t ∈ (, ], ()

subject to initial/terminal conditions. This means that we deal with the initial value prob-
lem (IVP),

y′(t) =
M
t

y(t) +
f (t)

t
, t ∈ (, ], y ∈ C[, ], By() = β , ()

where B ∈R
m×n, β ∈R

m, and m ≤ n, or with the terminal value problem (TVP),

y′(t) =
M
t

y(t) +
f (t)

t
, t ∈ (, ], y ∈ C[, ], By() = β , ()

where B ∈ R
n×n, β ∈ R

n, respectively. Particular attention is paid to the structure of ini-
tial/terminal and boundary conditions which are necessary and sufficient for the existence
of a unique continuous solution on the closed interval [, ]. It turns out that the form of
such conditions depends on the spectral properties of the coefficient matrix M. Therefore,
we distinguish between three cases, where all eigenvalues of M have negative real parts,
positive real parts, or are zero.

In the first step, we construct the general solution of (). We denote by J ∈ C
n×n the

Jordan canonical form of M and let E ∈ C
n×n be the associated matrix of the gener-

alized eigenvectors of M. Thus, M = EJE–. Moreover, let us introduce new variables,
v(t) := E–y(t) and g(t) := E–f (t), then we can decouple the system () and obtain

v′(t) =
J
t

v(t) +
g(t)

t
. ()

By the variation of constant, any general solution of the linear equation () is a complex-
valued function of the form

v(t) = �(t)d + �(t)
∫ t


�–(s)

g(s)
s

ds = tJ d + tJ
∫ t


s–J–Ig(s) ds, t ∈ (, ],
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where d ∈C
n is an arbitrary vector and

�(t) = tJ := exp
(
J ln(t)

)
=

∞∑
j=

J j(ln t)j

j!

is the fundamental solution matrix satisfying

�′(t) =
J
t
�(t), �() = I, t ∈ (, ];

see [, Chapter IV]. In the case that the matrix J consists of l Jordan boxes, J, J, . . . , Jl , the
fundamental solution matrix has the form of the block diagonal matrix, tJ = diag(tJ , tJ ,
. . . , tJl ), where

Jk =

⎛
⎜⎜⎜⎜⎜⎝

λk 
. . . . . .

. . . 
λk

⎞
⎟⎟⎟⎟⎟⎠

, k = , . . . , l,

and

tJk = tλk

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

 ln t (ln t)

 . . . (ln t)nk –

(nk –)!

  ln t . . . (ln t)nk –

(nk –)!


. . . 

. . .
...

...
. . . . . . ln t

 . . . . . .  

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, t ∈ (, ]. ()

Here λk = σk + iρk ∈ C is an eigenvalue of M and dim J + dim J + · · · + dim Jl = n. The
general solution of () is then given by

y(t) = tMc + tM
∫ t


s–M–I f (s) ds, t ∈ (, ],

where c = Ed ∈C
n and tM = EtJ E– ∈C

n×n. Also,

(
tM)′ = MtM–I , t ∈ (, ],

and

t–M =
(


t

)M

⇒ (
t–M)′ = –Mt–M–I , t ∈ (, ]. ()

From the structure of the matrix tJk in (), it is obvious that the solution contribution re-
lated to the kth Jordan box may become unbounded for t = . Apparently, the asymptotic
behavior of the solution depends on the sign of the real part σk of the associated eigen-
value λk . Therefore, we have to distinguish between three cases, σk < , λk = , and σk > .
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We assume that M has no purely imaginary eigenvalues to exclude solutions of the form
tiρ = cos(ρ ln t) + i sin(ρ ln t).

We complete the preliminaries by two technical remarks, which will be frequently used
in the following analysis.

Since the paper is considerably long, we tried to keep the presentation as condensed as
possible and refer the reader to [] for technical details.

Remark  The main focus of our investigations is on correctly posed initial/terminal
conditions which guarantee the existence of continuously differentiable solutions of (),
y ∈ C[, ]. Since logarithm terms occur in the matrix (), the relation

lim
t→+

tα(ln t)k = , ∀α ∈R
+,∀k ∈N, ()

is essential when discussing the smoothness of y.

Remark  By integrating () we obtain

M
∫ 

t
s–M–I ds = –s–M|t = t–M – I, t ∈ (, ]. ()

Moreover, if M has only eigenvalues with negative real parts, then lims→+ s–M =  due to
Remark , and therefore

∫ 


s–M–I ds = (–M)–. ()

3 Eigenvalues of M with negative real parts
In this section, we consider system (), such that all eigenvalues of M have negative real
parts. It turns out that in this case, it is necessary to prescribe initial conditions of a certain
structure to guarantee that the solution is continuous on [, ]. Moreover, this continuous
solution of the associated IVP () is shown to be unique and its form is provided in The-
orem . In the proof of this theorem, we require the following lemmas.

Lemma  Let γ ≥  and let the n × n matrix J be of the form

J =

⎛
⎜⎜⎜⎜⎜⎝

λ 
. . . . . .

. . . 
λ

⎞
⎟⎟⎟⎟⎟⎠

, λ = σ + iρ, ()

where σ ≤ . For σ = , we assume λ =  and γ > . Then, for t ∈ (, ],

∫ t



∣∣s–J ∣∣sγ – ds =
n–∑
j=

j∑
k=

tγ –σ (– ln t)k

k!(γ – σ )j+–k , ()
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and, in particular,

∫ 



∣∣s–J ∣∣sγ – ds =
n–∑
j=


(γ – σ )j+ .

Proof Due to the form of J , the norm of s–J for s ∈ (, ] is

∣∣s–J ∣∣ =
∣∣s–λ

∣∣ n–∑
j=

| ln s|j
j!

= s–σ

n–∑
j=

(– ln s)j

j!
. ()

By repeated integration by parts, we obtain

∫ (– ln s)j

j!
sγ –σ– ds =

sγ –σ

γ – σ

(– ln s)j

j!
+

∫ sγ –σ–

γ – σ

(– ln s)j–

(j – )!
ds

=
j∑

k=

sγ –σ (– ln s)k

k!(γ – σ )j+–k .

Therefore, due to (),

∫ t



∣∣s–J ∣∣sγ – ds =
∫ t



n–∑
j=

(– ln s)j

j!
sγ –σ– ds =

n–∑
j=

j∑
k=

tγ –σ (– ln t)k

k!(γ – σ )j+–k .

Clearly, for t = ,

∫ 



∣∣s–J ∣∣sγ – ds =
n–∑
j=


(γ – σ )j+ ,

which completes the proof. �

Lemma  Assume that all eigenvalues of the matrix M have negative real parts. Then

lim
t→+

∫ t



∣∣s–M–I∣∣ds = . ()

Proof Let λk = σk + iρk , k = , . . . , l, be eigenvalues of the matrix M and Jk , k = , . . . , l,
the associated Jordan boxes of M. Then s–M = Es–J E–, where s–J = diag(s–J , s–J , . . . , s–Jl ).
Therefore,

lim
t→+

∫ t



∣∣s–M–I∣∣ds ≤ |E|∣∣E–∣∣ lim
t→+

∫ t



∣∣s–J ∣∣s– ds.

The result follows from () and () with γ = . �

Theorem  Let us assume that all eigenvalues of M have negative real parts. Then for
every f ∈ C[, ] system () has a unique solution y ∈ C[, ]. This solution has the form

y(t) =
∫ 


s–M–I f (ts) ds, t ∈ [, ],

http://www.boundaryvalueproblems.com/content/2014/1/183
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and satisfies the initial condition My() = –f (). This condition is necessary and sufficient
for y to be continuous on [, ]. Moreover, if f ∈ Cr[, ], r ≥ , then y ∈ Cr[, ] satisfies

∣∣y(k)(t)
∣∣ ≤ const.

∥∥f (k)∥∥, t ∈ [, ], (kI – M)y(k)() = f (k)(), k = , . . . , r.

Proof The general solution of system () can be split into two parts

y(t) = tMc + tM
∫ t


s–M–I f (s) ds

= tM
(

c –
∫ 


s–M–I f (s) ds

)
+ tM

∫ t


s–M–I f (s) ds

=: yh(t) + yp(t), t ∈ (, ]. ()

First, we show that yp ∈ C[, ]. Change of variable, u = s/t, yields

yp(t) =
∫ 


u–M–I f (ut) du, t ∈ (, ].

Let us now introduce the functions,

zm(t) :=
∫ 


m

s–M–I f (st) ds, m ∈N, ()

z∞(t) :=
∫ 


s–M–I f (st) ds. ()

Then, by (),

lim
m→∞

∣∣z∞(t) – zm(t)
∣∣ = lim

m→∞

∣∣∣∣
∫ 

m


s–M–I f (st) ds

∣∣∣∣ ≤ ‖f ‖ lim
m→∞

∫ 
m



∣∣s–M–I∣∣ds = .

Clearly zm(t) ∈ C[, ], for m ∈ N, and hence z∞ is continuous as the uniform limit of
continuous functions. Consequently, yp(t) ∈ C[, ].

Since all real parts of eigenvalues are negative, yh is not continuous at t =  and it is
obvious that y ∈ C[, ] if and only if

c̃ := c –
∫ 


s–M–I f (s) ds = .

Thus the unique continuous solution satisfying () has the form

y(t) =
∫ 


s–M–I f (st) ds, t ∈ [, ], ()

and the estimate

∣∣y(t)
∣∣ ≤ const.‖f ‖, t ∈ [, ],

holds due to Lemma . This solution is uniquely determined by c̃ =  and there are no
additional conditions to be imposed. Note that c̃ =  is equivalent to the condition My() =
–f () which follows from () and ().

http://www.boundaryvalueproblems.com/content/2014/1/183
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We now examine the smoothness of y. Let f ∈ C[, ]. For the first derivative y′, we have
from ()

y′(t) =
∫ 


s–Mf ′(ts) ds,

∣∣y′(t)
∣∣ ≤ const.

∥∥f ′∥∥, t ∈ [, ],

due to Lemma . Clearly, if f ∈ Cr[, ], then

y(r)(t) =
∫ 


s(r–)I–Mf (r)(ts) ds,

∣∣y(r)(t)
∣∣ ≤ const.

∥∥f (r)∥∥, t ∈ [, ]

and by () the results follow. �

Theorem  shows that if all eigenvalues of M have negative real parts, then there exists a
unique continuous solution y of IVP () for B = M, β = –f (), and m = n. Clearly, B has
to be nonsingular. Note that for this spectrum of M a terminal problem () cannot be set
up in a reasonable way.

4 Eigenvalues of M with positive real parts
In this section we deal with system () whose matrix M has eigenvalues with positive real
parts. It turns out that in this case there exists a unique continuous solution of problem
(). Its smoothness depends not only on the smoothness of f but also on the size of real
parts of the eigenvalues of M. Before stating the main result of this section formulated in
Theorem , we show the following two lemmas.

Lemma  Let γ ≥  and let the n × n matrix J be of the form (), where σ > . Then for
t ∈ [, ] the function

u(t) =
∫ 

t

∣∣∣∣
(

t
s

)J ∣∣∣∣sγ – ds,

satisfies the following inequalities:

(i) u(t) ≤ const.tγ , γ < σ , ()

(ii) u(t) ≤ const.tσ

n–∑
j=

(– ln t)j+

j!
, γ = σ , ()

(iii) u(t) ≤ const.tσ

n–∑
j=

(– ln t)j

j!
, γ > σ . ()

Proof We discuss separately the cases γ < σ , γ = σ , and γ > σ . Note that according to ()
and ()

∫ 

t

∣∣∣∣
(

t
s

)J ∣∣∣∣sγ – ds =
∫ 

t

(
t
s

)σ n–∑
j=

(– ln( t
s ))j

j!
sγ – ds

holds.

http://www.boundaryvalueproblems.com/content/2014/1/183
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(i) First, let γ < σ . Then there exists a constant ε >  such that σ = γ + ε. The term

(
t
s

)ε n–∑
j=

(– ln( t
s ))j

j!

is bounded on [, ] due to () and hence

∫ 

t

∣∣∣∣
(

t
s

)J ∣∣∣∣sγ – ds ≤ const.tγ +ε

∫ 

t
s–ε– ds = const.tγ .

(ii) For γ = σ the function u can be estimated by

∫ 

t

∣∣∣∣
(

t
s

)J ∣∣∣∣sγ – ds ≤ tσ

n–∑
j=

(– ln t)j

j!

∫ 

t
s– ds ≤ const.tσ

n–∑
j=

(– ln t)j+

j!
.

(iii) Finally, for γ > σ , we have

∫ 

t

∣∣∣∣
(

t
s

)J ∣∣∣∣sγ – ds ≤ tσ

n–∑
j=

(– ln t)j

j!

∫ 

t
s–σ+γ – ds ≤ const.tσ

n–∑
j=

(– ln t)j

j!
.

�

Lemma  Let γ ≥  and let all eigenvalues of M have positive real parts. Then the function

u(t) =
∫ 

t

∣∣∣∣
(

t
s

)M∣∣∣∣sγ – ds, t ∈ [, ],

is bounded on [, ] and limt→+ u(t) =  for γ > .

Proof Let all eigenvalues of M have positive real parts. Then

u(t) =
∫ 

t

∣∣∣∣
(

t
s

)M∣∣∣∣sγ – ds ≤ |E|∣∣E–∣∣
∫ 

t

∣∣∣∣
(

t
s

)J ∣∣∣∣sγ – ds.

Estimates () to () and property () imply u(t) ≤ const.tσ for t ∈ [, ], where σ =
min{γ , σ

 } ≥ . This means that u is bounded in [, ]. If γ > , then σ >  and the result
follows. �

Theorem  Let us assume that all eigenvalues of M have positive real parts. Then for every
f ∈ C[, ] and every constant vector c, there exists a unique solution y ∈ C[, ] of (). This
solution has the form

y(t) =

{
tMc + tM ∫ t

 s–M–I f (s) ds, t ∈ (, ],
–M–f (), t = .

()

If the matrix B ∈ R
n×n in () is nonsingular, then for any β ∈ R

n there exists a unique
solution of TVP (). This solution is given by () with c = B–

 β .
Let f ∈ Cr+[, ]. Then the following statements hold:
(i) y ∈ Cr[, ] ∩ Cr+(, ] for  ≤ r < σ+ ≤ r + ,

http://www.boundaryvalueproblems.com/content/2014/1/183
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(ii) y ∈ Cr+[, ] ∩ Cr+(, ] for σ+ > r + .
Moreover, higher derivatives of y satisfy for t ∈ [, ]

(i) |y(k)(t)| ≤ const.(tσ+–k( + | ln(t)|nmax–) + ‖f (k)‖) for k = , , . . . , r,
(ii) |y(k)(t)| ≤ const.(tσ+–k( + | ln(t)|nmax–) + ‖f (k)‖) for k = , , . . . , r + ,

where σ+ is the smallest positive real part of the eigenvalues of M and nmax is the dimension
of the largest Jordan box in J .

Proof The general solution of () can be written in the following form:

y(t) = tMc + tM
∫ t


s–M–I f (s) ds = tMc +

∫ t



(
t
s

)M f (s)
s

ds =: yh(t) + yp(t). ()

Since all eigenvalues have positive real parts, it follows from () that yh(t) = tMc is contin-
uous on [, ].

Now, we show that limt→ yp(t) exists and therefore y ∈ C[, ]. Using the integration
formula () we obtain

∫ t



(
t
s

)M f ()
s

ds = M–(tM – I
)
f (),

and hence

–M–f () =
∫ t



(
t
s

)M f ()
s

ds – M–tMf ().

Therefore

∫ t



(
t
s

)M f (s)
s

ds – (–M)–f () =
∫ t



(
t
s

)M f (s) – f ()
s

ds + M–tMf (). ()

Since f ∈ C[, ], there exists M ∈ (,∞) such that

∣∣∣∣ f (s) – f ()
s

∣∣∣∣ ≤ M, s ∈ [, ]. ()

Equation () together with () yield

∣∣∣∣
∫ t



(
t
s

)M f (s)
s

ds – (–M)–f ()
∣∣∣∣ ≤ M

∫ 

t

∣∣∣∣
(

t
s

)M∣∣∣∣ds +
∣∣(–M)–tMf ()

∣∣.

Since all eigenvalues of M have positive real parts, () implies

lim
t→+

∣∣(–M)–tMf ()
∣∣ = .

Moreover, by Lemma  with γ = 

lim
t→+

∣∣∣∣
∫ t



(
t
s

)M f (s)
s

ds – (–M)–f ()
∣∣∣∣ = 

follows. Thus, limt→+ yp(t) = (–M)–f () and y ∈ C[, ].

http://www.boundaryvalueproblems.com/content/2014/1/183
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It is clear from () that the solution y of () becomes unique if we specify the constant
vector c ∈ R

n. Note that at t = , y() satisfies n linearly independent conditions My() =
–f () for any c ∈ R

n. Therefore, we have to specify c via the terminal conditions given in
(). Let β ∈ R

n and let B ∈R
n×n be nonsingular, then it follows from By() = Bc = β that

the unique solution of TVP () is given by (), where c = B–
 β .

We now provide the estimate for y. To this aim, we utilize Lemma  with γ =  and the
inequality

∣∣tM∣∣ =
∣∣EtJ E–∣∣ ≤ const.

∣∣tJ ∣∣ ≤ const.tσ+
(
 +

∣∣ln(t)
∣∣nmax–). ()

Hence, according to ()

∣∣y(t)
∣∣ ≤ ∣∣tMB–

 β
∣∣ +

∣∣∣∣
∫ t



(
t
s

)M

s–f (s) ds
∣∣∣∣

≤ const.tσ+
(
 +

∣∣ln(t)
∣∣nmax–)∣∣B–

 β
∣∣ + const.‖f ‖.

In order to discuss the smoothness of y, we first study the general solution of the homo-
geneous problem yh. Since σ+ is positive, there always exists a constant l ∈ N = N ∪ {}
such that  ≤ l < σ+ ≤ l + . Then we have

y′
h(t) =

(
tMc

)′ = MtM–Ic,

y(k)
h (t) =

(
tMc

)(k) = M(M – I) · · · (M – (k – )I
)
tM–kIc, k = , . . . , l,

and it is easily seen that yh ∈ Cl[, ] ∩ C∞(, ]. The estimates for higher derivatives of yh

follow from ().
We now turn to the smoothness of the particular solution of the inhomogeneous prob-

lem yp. We integrate by parts

yp(t) = tM
∫ t


s–M–I f (s) ds

= tM
(

(–M)–t–Mf (t) – (–M)–If () – (–M)–
∫ t


s–Mf ′(s) ds

)

= (M)–
(

tMf () – f (t) + tM
∫ t


s–Mf ′(s) ds

)
.

Note that tM and M– are commutative if tM and M are commutative, since tMM– =
(Mt–M)–. The latter property will be shown in Lemma .

We differentiate the above equation and obtain

y′
p(t) = (M)–

(
MtM–I f () – f ′(t) + MtM–I

∫ t


s–Mf ′(s) ds + tMt–Mf ′(t)

)

= tM–I f () + tM–I
∫ t


s–Mf ′(s) ds.
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Let f ∈ C[, ] and σ+ > , then we argue as at the beginning of the proof (in context of
y and σ+ > ) and conclude that yp ∈ C[, ]. Moreover, the following estimate holds:

∣∣y′
p(t)

∣∣ ≤ ∣∣f ()
∣∣const.tσ+–( +

∣∣ln(t)
∣∣nmax–) +

∥∥f ′∥∥t–
∣∣∣∣
∫ t



(
t
s

)M

ds
∣∣∣∣

≤ ∣∣f ()
∣∣const.tσ+–( +

∣∣ln(t)
∣∣nmax–) +

∥∥f ′∥∥t–const.t

≤ const.
(
tσ+–( +

∣∣ln(t)
∣∣nmax–) +

∥∥f ′∥∥)
, t ∈ [, ].

Similarly, if f ∈ Cr+[, ] and σ+ > r + , then yp ∈ Cr+[, ] and the following estimate
holds:

∣∣y(r+)
p (t)

∣∣ ≤ const.
(
tσ+–r–( +

∣∣ln(t)
∣∣nmax–) +

∥∥f (r+)∥∥)
, t ∈ [, ].

It follows from () that if f ∈ Cr+[, ], then yp ∈ Cr+(, ]. Consequently, we have yp ∈
Cr[, ]∩Cr+(, ] for r < σ+ ≤ r +  and yp ∈ Cr+[, ]∩Cr+(, ] for σ+ > r + . The above
smoothness results and estimates for yp and yh complete the proof. �

We recapitulate the case when all eigenvalues of M have positive real parts: For any
f ∈ C[, ] and any vector β ∈ R

n there exists a unique continuous solution y of TVP ()
if and only if the matrix B ∈R

n×n is nonsingular. Each continuous solution y of () satisfies
the initial condition My() = –f () independently on c ∈ R

n from (). Consequently, in
this case there exists no IVP with a unique solution.

Remark  A continuous solution to () exists also in the case when f is not continuously
differentiable in [, ]. However, in this case, we need some more structure in f close to
the singularity. Let us assume that f (t) = O(tαh(t)) as t → , for some constant α >  and
a function h ∈ C[, δ], δ > . Then the solution of () is still continuous on [, ]. For the
proof see [].

5 Eigenvalues λ = 0
Finally, we consider the case when all eigenvalues of the matrix M are zero. We begin with
the scalar equation () which for M = λ =  immediately reduces to

y′(t) =
f (t)

t
, ()

and show that additional structure in the function f is necessary to guarantee that the
solution y is continuous on [, ]. To see this, assume that f is a constant function, f (t) ≡ .
Then any solution y of () has the following form:

y(t) = y() +
∫ t




s

ds = y() + ln t, t ∈ (, ]

and, clearly, y is not continuous at t = . Motivated by the scalar case, we require the
inhomogeneity f to satisfy additional conditions providing the continuity of the associated
solution. Before formulating the main result of this section we show the following lemma.
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Lemma  Let us assume that all eigenvalues of the matrix M are zero. Then for α > 

lim
t→+

∫ t



∣∣s–M∣∣sα– ds = . ()

Proof Let Jk , k = , . . . , l, be the Jordan boxes of M. Then we can write s–M = Es–J E–, s–J =
diag(s–J , . . . , s–Jl ), and thus

lim
t→+

∫ t



∣∣s–M∣∣sα– ds ≤ |E|∣∣E–∣∣
∫ t



∣∣s–J ∣∣sα– ds.

Applying () and () we obtain (). �

To obtain results for zero eigenvalues a projection matrix R onto the eigenspace of M
and the matrix R̃ consisting of the linearly independent columns of R are required. For
respective notation, see Table .

Theorem  Let all eigenvalues of the matrix M be zero and m = dim X(e)
 . Moreover, let us

assume that there exist a constant α >  and a function h ∈ C[, δ], δ >  such that

f (t) = O
(
tαh(t)

)
for t → . ()

Then for any B ∈ R
m×n such that the matrix BR̃ ∈ R

m×m is nonsingular and for any
f ∈ C[, ] and β ∈ R

m, there exists a unique solution y ∈ C[, ] of IVP (). This solution
has the form

y(t) = R̃(BR̃)–β +
∫ 


s–Ms–f (st) ds, t ∈ (, ],

and satisfies the initial condition My() = , which is necessary and sufficient for y ∈ C[, ].
Moreover,

∣∣y(t)
∣∣ ≤ ∣∣R̃(BR̃)–β

∣∣ + const.
(‖f ‖ + tα‖h‖δ

)
, t ∈ [, ],

and if α ≥ r + , f ∈ Cr[, ], and h ∈ Cr[, δ], then y ∈ Cr+[, ] and the following estimates
hold for any k = , . . . , r + :

∣∣y(k)∣∣ ≤ const.
k–∑
j=

(
tα–)(k––j)∥∥h(j)∥∥

δ
, t ∈ [, δ),

∣∣y(k)∣∣ ≤ const.
k–∑
j=

((
tα–)(k––j)∥∥h(j)∥∥

δ
+

(
t–)(k––j)∥∥f (j)∥∥)

, t ∈ [δ, ].

()

Proof We split the general solution of () into two parts y(t) = yh(t) + yp(t) as defined in
(). To prove that yp ∈ C[, ], we again use the functions zm with m ∈N and z∞ specified
in () and (). Due to (), (), and (), we obtain

lim
m→∞

∣∣z∞(t) – zm(t)
∣∣ ≤ ‖h‖δtα lim

m→∞

∫ 
m



∣∣s–M∣∣sα– ds = . ()
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Therefore, yp = z∞ ∈ C[, ] and yp() =  since f () =  due to ().
We now examine the continuity of

yh(t) = tM
(

c +
∫ 


s–Ms–f (s) ds

)
=: tMη,

cf. (). The fundamental solution matrix is given by tM = EtJ E–, where tJ has the form
tJ = diag(tJ , . . . , tJl ) and

E =
(
v, h()

 , h()
 , . . . , h(n–)

 , v, h()
 , . . . , h(n–)

 , . . . , vl, h()
l , . . . , h(nl–)

l
)
,

where for k = , . . . , l, vk are the eigenvectors of M, h()
k , . . . , h(nk –)

k are the associated prin-
cipal vectors, and nk are the dimensions of the Jordan boxes Jk . Clearly, because of the
logarithmic terms occurring in tJ , see (), yh is not continuous at t =  in general. Only
when the contributions including the logarithmic terms vanish, yh becomes continuous
on [, ]. It is clear from () that the only bounded contributions to yh are linear combina-
tions of the eigenvectors of M. Consequently, any linear combination of principal vectors
has to vanish. This is the case when ηi = , ∀i �= , n + , n + n + , . . . ,

∑l
k= nk +  and

arbitrary ηi for all i = , n + , n + n + , . . . ,
∑l

k= nk + . Thus, yh is continuous on [, ]
if and only if it is a constant linear combination of the eigenvectors of M. In other words,
by setting yh(t) := η, we have

y(t) ∈ C[, ] ⇔ My() = Mη =  ⇔ η ∈ Ker M.

Consequently, My() =  is necessary and sufficient for the solution

y(t) = η +
∫ 


s–M–I f (ts) ds, t ∈ [, ] ()

to be continuous on [, ].
Note that the regularity requirement My() =  contains n – l linearly independent con-

ditions and can be equivalently expressed by Hy() = , y() = Ry() or y() ∈ Ker M. The
remaining l free constants have to be uniquely specified by appropriately prescribed ini-
tial conditions. Let us consider the initial conditions specified in (), where B ∈ R

m×n

and β ∈ R
m. Since yp() =  and yh() = η, the initial condition By() = β is equivalent

to Bη = β . Due to the fact that η ∈ Im R, there exists a unique l-dimensional vector d,
l = dim X(e)

 , such that η = R̃d, where R̃ is the n × l matrix containing the linearly indepen-
dent columns of R. Clearly, the problem is uniquely solvable if and only if m = l = dim X(e)



and the m × m matrix BR̃ is nonsingular. Hence,

Bη = β ⇔ BR̃d = β ⇒ d = (BR̃)–β ⇒ η = R̃(BR̃)–β ,

and the solution y has the form

y(t) = R̃(BR̃)–β +
∫ 


s–Ms–f (st) ds, t ∈ [, ].
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This solution is bounded by

∣∣y(t)
∣∣ ≤ ∣∣R̃(BR̃)–β

∣∣ + const.
(
tα‖h‖δ + ‖f ‖), t ∈ [, ],

due to () and

∣∣yp(t)
∣∣ =

∣∣∣∣
∫ 

δ

s–Ms–f (ts) ds
∣∣∣∣ +

∣∣∣∣
∫ δ


s–Ms–f (ts) ds

∣∣∣∣

≤ const.‖f ‖ + const.tα‖h‖δ

∫ δ



∣∣s–M∣∣sα– ds, t ∈ [, ]

≤ const.
(‖f ‖ + tα‖h‖δ

)
, t ∈ [, ].

In order to derive the following form of the first derivative, we substitute the solution given
by () into () and use the property Mη = , then

y′(t) =
M
t

∫ 


s–M–I f (st) ds +

f (t)
t

, t ∈ (, ].

If α ≥ , then the first derivative is bounded by

∣∣y′(t)
∣∣ ≤ const.

|M|
t

tα

∣∣∣∣
∫ 


s–Msα–h(st) ds

∣∣∣∣ + const.
tα|h(t)|

t

≤ const.tα–‖h‖δ , t ∈ [, δ),
∣∣y′(t)

∣∣ ≤ const.
|M|

t
tα

∣∣∣∣
∫ δ


s–Msα–h(st) ds

∣∣∣∣ +
|M|

t

∣∣∣∣
∫ 

δ

s–Ms–f (st) ds
∣∣∣∣ +

|f (t)|
t

≤ const.tα–‖h‖δ + const.t–‖f ‖, t ∈ [δ, ].

Analogously, for f ∈ Cr[, ], h ∈ Cr[, δ], α ≥ r + , we have the following bounds for the
higher derivatives:

∣∣y(r+)∣∣ ≤ const.
r∑

k=

(
tα–)(r–k)∥∥h(k)∥∥

δ
, t ∈ [, δ),

∣∣y(r+)∣∣ ≤ const.
r∑

k=

((
tα–)(r–k)∥∥h(k)∥∥

δ
+

(
t–)(r–k)∥∥f (k)∥∥)

, t ∈ [δ, ].

The above estimates imply y ∈ Cr+[, ]. �

Remark  Note that a purely polynomial inhomogeneity of the form

f (t) =
(
tα , . . . , tαn

)�,

where αi ∈ N, for i = , . . . , n, yields y ∈ C∞[, ]. For the proof see [].

In Theorem , we described the unique solvability of IVP () in case when all eigen-
values of M are zero. The dimension of the corresponding eigenspace X(e)

 was m < n and
it turned out that the following regularity requirement My() =  has to be satisfied. If
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m = n, then M =  and the regularity condition holds. In this case we can also investigate
the unique solvability of TVP (). We address this question in the next lemma.

Lemma  Consider system () with the matrix M = . Let f ∈ C[, ] and assume that
() is satisfied. Then, for any vector β ∈ R

n and a nonsingular matrix B ∈ R
n×n, there

exists a unique solution of (),

y(t) = B–
 β +

∫ t



f (s)
s

ds,

bounded by

∣∣y(t)
∣∣ ≤ ∣∣B–

 β
∣∣ + const.

(‖f ‖ + tα‖h‖δ

)
.

Moreover, if f ∈ Cr[, ], h ∈ Cr[, δ], and α ≥ r + , then y ∈ Cr+[, ] and the estimates
() hold.

Proof For M =  the system () reduces to y′(t) = f (t)/t, and its solution is y(t) = y() +∫ t
 f (s)/s ds. To show that y ∈ C[, ], we follow the arguments given in the proof of Theo-

rem . The terminal condition By() = β yields y() = B–
 β . Moreover,

∣∣y(t)
∣∣ ≤ ∣∣B–

 β
∣∣ +

∫ δ



f (s)
s

ds +
∫ t

δ

f (s)
s

ds

≤ ∣∣B–
 β

∣∣ + ‖f ‖∣∣ln(δ)
∣∣ + const.‖h‖δ

∫ t

δ

sα– ds

≤ ∣∣B–
 β

∣∣ + const.
(‖f ‖ + ‖h‖δ

)
.

Estimates for the higher derivatives of y follow in an analogous manner. �

6 Differences between linear systems with smooth and unsmooth
inhomogeneity

Before discussing the case of an arbitrary spectrum of M which enables to consider more
general IVPs, TVPs, and BVPs, we summarize here the results from the previous sections
and point out the differences when compared to the framework given in [, ], where
linear systems with smooth inhomogeneity,

y′(t) =
M
t

y(t) + f (t), t ∈ (, ], ()

were studied.

6.1 Eigenvalues with negative real parts
Let us consider the ODE system () and assume that all eigenvalues of M have negative
real parts. Then, according to [, ], y ∈ C[, ] if and only if y() = . Therefore, the
following IVP has a unique solution:

y′(t) =
M
t

y(t) + f (t), y() = .
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Moreover, y ∈ Cr+[, ] if f ∈ Cr[, ], r ≥ .
According to Theorem , ODE system () has a solution y ∈ C[, ] if and only if My() =

–f (). Consequently, the IVP specified below has a unique solution,

y′(t) =
M
t

y(t) +
f (t)

t
, My() = –f ().

Here y ∈ Cr[, ] if f ∈ Cr[, ], r ≥ .
The conditions y() =  and My() = –f () are necessary and sufficient for the solution

y to be continuous, y ∈ C[, ], in case of the system () and (), respectively.

6.2 Eigenvalues with positive real parts
For this spectrum of M both, for system () and for (), we have to specify the boundary
conditions at t =  and solve a TVP. In particular, the TVP

y′(t) =
M
t

y(t) + f (t), By() = β , ()

where B ∈R
n×n is nonsingular and β ∈ R

n, has a unique solution y ∈ C[, ]. This solution
satisfies y() = . If f ∈ Cr[, ] and σ+ > r + , then y ∈ Cr+[, ], cf. []. In contrast to
system (), we need extra smoothness of the function f to obtain a unique continuous
solution of the TVP

y′(t) =
M
t

y(t) +
f (t)

t
, By() = β ,

where B ∈R
n×n is nonsingular and β ∈R

n. Theorem  states that y ∈ C[, ] if f ∈ C[, ].
Additionally, if f ∈ Cr+[, ] and σ+ > r + , then y ∈ Cr+[, ], r ≥ .

6.3 Eigenvalues λ = 0
Let all eigenvalues of M be zero. Consider the IVP associated with () which takes the
form

y′(t) =
M
t

y(t) + f (t), My() = , By() = β ,

where the m × m matrix BR̃ is nonsingular, β ∈ R
m, and m = dim X(e)

 . The initial condi-
tion My() =  is necessary and sufficient for the solution to by continuous. The remain-
ing m conditions necessary for its uniqueness are specified by By() = β . For f ∈ Cr[, ],
r ≥ , y ∈ Cr+[, ]; see [, ].

In case of the unsmooth inhomogeneity in (), f has to satisfy an additional requirement,

f (t) = O
(
tαh(t)

)
as t → ,α > , h ∈ C[, δ], δ > ,

to enable a continuous solution of the following IVP:

y′(t) =
M
t

y(t) +
f (t)

t
, My() = , By() = β ,

where the m × m matrix BR̃ is nonsingular, β ∈R
m, and m = dim X(e)

 .
Finally, if f ∈ Cr[, ], h ∈ Cr[, δ], and α ≥ r + , then y ∈ Cr+[, ].
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7 General IVPs, TVPs, and BVPs
In this section we study general IVPs, TVPs, and BVPs. For notation see Table . All
projections were constructed using the eigenbasis of M.

First, we discuss general IVPs () and TVPs (), where all conditions which are necessary
and sufficient to specify a unique solutions y ∈ C[, ] are posed at only one point, either
at t =  or at t = . According to the results derived above, restrictions on the spectrum of
M need to be made.

A. For IVP () we assume that the matrix M has only eigenvalues with nonpositive
real parts and if σ = , then λ = .

A. For TVP () we assume that the matrix M has only eigenvalues with nonnegative
real parts and if σ = , then λ = . Additionally, if zero is an eigenvalue of M, then
the associated invariant subspace is assumed to be the eigenspace of M.

Results formulated below without proofs are simple consequences of Theorems , , ,
and Lemma .

Lemma  Let us assume that f ∈ C[, ], Sf ∈ C[, ], and Zf satisfies condition ().
(i) Assume A. to hold. Let y be a continuous solution of IVP (). Then

MNy() = –Nf (), Hy() = .

(ii) Assume A. to hold. Let y be a continuous solution of TVP (). Then

MSy() = –Sf ().

In both cases

My() = M(S + N)y() = –f ().

The statement of Lemma  means that the conditions which are necessary for the so-
lution of IVP () to be continuous are equivalent to

rank M = rank H + rank N = rank Q = n – rank R

initial conditions, which the solution y has to satisfy. In case of TVP (), where A. holds,
any solution of () is continuous on [, ] and no regularity conditions have to be pre-
scribed.

From Theorems  and  we obtain the following result for a general IVP ().

Theorem  Let us assume that A. holds, the m × m matrix BR̃ is nonsingular, and
β ∈R

m. Then, for every f ∈ C[, ] such that Zf satisfies (), there exists a unique solution
y ∈ C[, ] of IVP (),

y(t) = R̃(BR̃)–β +
∫ 


s–Ms–f (st) ds.

This solution is bounded by

∣∣y(t)
∣∣ ≤ const.

(
tα‖h‖δ + ‖f ‖) +

∣∣R̃(BR̃)–β
∣∣.
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Let Nf ∈ Cr+[, ] and Zf ∈ Cr[, ] satisfy condition () with α ≥ r + . Then y ∈
Cr+[, ].

The analogous result for a general TVP () follows from Theorems  and .

Theorem  Let us assume that A. holds, B ∈R
n×n is nonsingular, and β ∈R

n. Then, for
every f ∈ C[, ] such that Rf satisfies () and Sf ∈ C[, ], there exists a unique solution
y ∈ C[, ] of TVP (),

y(t) = tMB–
 β + tM

∫ t


s–Ms–f (s) ds, t ∈ (, ].

This solution satisfies My() = –f () and is bounded by

∣∣y(t)
∣∣ ≤ const.

(
 + tσ+

(
 +

∣∣ln(t)
∣∣nmax–))∣∣B–

 β
∣∣ + const.

(‖f ‖ + tα‖h‖δ

)
.

Let r < σ+ ≤ r + , Sf ∈ Cr+[, ], and Zf ∈ Cr+[, ] satisfy condition () with α ≥ r,
then y ∈ Cr[, ]. For σ+ > r + , Sf ∈ Cr+[, ], and Zf ∈ Cr[, ] satisfying condition ()
with α ≥ r + , we have y ∈ Cr+[, ]. Here σ+ denotes the smallest positive real part of the
eigenvalues of M and nmax is the dimension of the largest Jordan box of M.

Next, we consider the linear BVP of the form

y′(t) =
M
t

y(t) +
f (t)

t
, t ∈ (, ], y ∈ C[, ], By() + By() = β , ()

where the matrix M may have an arbitrary spectrum, B, B ∈ R
m×n, m ≤ n, β ∈ R

m, and
f ∈ C[, ]. It is clear from the previous considerations that the form of the boundary con-
ditions which guarantee the existence of a unique continuous solution of () will depend
on the spectral properties of the coefficient matrix M.

Before proceeding with the analysis, we show the following two auxiliary results. For
proofs see [].

Lemma  Let R be a projection onto the eigenspace associated with eigenvalues λ = .
Then

tMR = R, t ∈ [, ].

Lemma  The projection matrices S, Z, and N commute with the matrices tM and M.

To specify the boundary conditions which guarantee the unique solvability of BVP ()
the following lemma is required.

Lemma  Consider the following BVP:

y′(t) =
M
t

y(t) +
f (t)

t
, t ∈ (, ],

Hy() = , MNy() = –Nf (), Sy() = Sγ , Ry() = Rγ .

http://www.boundaryvalueproblems.com/content/2014/1/183


Burkotová et al. Boundary Value Problems 2014, 2014:183 Page 20 of 34
http://www.boundaryvalueproblems.com/content/2014/1/183

Then, for every f ∈ C[, ], such that Zf satisfies () and Sf ∈ C[, ], and for any constant
vector γ , there exists a unique continuous solution of the form

y(t) = tMPγ + tMS
∫ t


s–M–I f (s) ds + (Q + R)

∫ 


s–M–I f (st) ds.

Proof According to the previous results, the contributions to the solution y depend on the
signs of the eigenvalues of M. For the eigenvalues with negative real parts the contribution
has the form

y–(t) = N
∫ 


s–M–I f (st) ds, t ∈ [, ].

For the eigenvalues with positive real parts the contribution is given by

y+(t) = tMSγ + tMS
∫ t


s–M–I f (s) ds, t ∈ (, ],

and can be continuously extended to t = . Finally, for the eigenvalues λ = , we have

y(t) = Rγ + Z
∫ 


s–M–I f (st) ds, t ∈ [, ].

The solution y is the sum of all contributions, y(t) = (N + S + Z)y(t). Therefore, we obtain

y(t) = Rγ + tMSγ + (N + R + H)
∫ 


s–M–I f (st) ds + tMS

∫ t


s–M–I f (s) ds

= tMPγ + tMS
∫ t


s–M–I f (s) ds + (Q + R)

∫ 


s–M–I f (st) ds.

We now evaluate y at the boundaries to show that the above boundary conditions are
satisfied. According to (), Zf () =  holds. This yields

(R + H)y() = Zy() = Rγ + Z
∫ 


s–M–I f () ds = Rγ +

∫ 


s–M–I dsZf () = Rγ .

Therefore, Hy() =  and Ry() = Rγ . Moreover,

Sy(t) = tMSγ + tMS
∫ t


s–M–I f (s) ds ⇒ Sy() = Sγ .

Finally, we show that MNy() = –Nf (). First note that

MNy() = NM
∫ 


s–M–I dsf ().

According to (),

M
∫ 

t
s–M–I ds = t–M – I
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for t ∈ (, ]. Taking into account () and letting t → +, we obtain

NM
∫ 


s–M–I ds = lim

t→+
Nt–M – N = –N ,

since the matrix Nt–M consists only of Jordan boxes corresponding to eigenvalues with
negative real parts. Therefore, MNy() = –Nf (). �

We now turn to the general boundary conditions specified in (). For the investigation
of these general boundary conditions, we have to rewrite the representation of the solution
y, especially the term y,

y(t) = Rγ + Z
∫ 


s–M–I f (st) ds = Rγ + ZtM

∫ t


s–M–I f (s) ds

= Rγ + tMR
∫ t


s–M–I f (s) ds + tMH

∫ t


s–M–I f (s) ds

= Rγ̃ + tMR
∫ t


s–M–I f (s) ds + tMH

∫ t


s–M–I f (s) ds,

where γ̃ := γ +
∫ 

 s–M–I f (s) ds.

Remark  Note that the function

tMH
∫ t


s–M–I f (s) ds = tMHt–M

∫ 


s–M–I f (st) ds,

is continuous on [, ]. In order to see this, we again use functions zm and z∞ given by ()
and (). Due to (), (), (), and (), we have

lim
m→∞

∣∣(ln t)kz∞(t) – (ln t)kzm(t)
∣∣ ≤ ‖h‖δ

∥∥tα(ln t)k∥∥ lim
m→∞

∫ 
m



∣∣s–M∣∣sα– ds = 

for k ∈ N. Since each entry of the matrix tMHt–M is a sum of terms const.(ln t)k , k ∈ N,
the function

tMHt–M
∫ 


s–M–I f (st) ds = tMHt–Mz∞

is continuous on [, ].

Consequently, the general continuous solution of the ODE system given in () can be
represented as

y(t) = tMPγ + tMP
∫ t


s–M–I f (s) ds + tMQ

∫ t


s–M–I f (s) ds, ()

and it satisfies the following boundary conditions:

Hy() = , MNy() = –Nf (), Py() = Pγ .
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In the following lemma, we use the superposition principle to rewrite the solution ()
of () in a way convenient to discus the boundary conditions specified in ().

Lemma  Let us assume that the inhomogeneity f ∈ C[, ] is given in such a way that Zf
satisfies () and Sf ∈ C[, ]. Let the n × m matrix P̃ be a matrix consisting of the linearly
independent columns of P. Then the general continuous solution of () has the form

y(t) = ỹ(t) + Y (t)α, t ∈ [, ], ()

where α is a constant m-dimensional vector, ỹ is the unique solution of

ỹ′(y) =
M
t

ỹ(t) +
f (t)

t
, t ∈ [, ],

Hỹ() = , MNỹ() = –Nf (), Pỹ() = ,

and Y (t) is the unique continuous fundamental solution matrix satisfying

Y ′(t) =
M
t

Y (t), t ∈ [, ], Y () = P̃.

The case of the general boundary conditions () is covered by the following lemma.

Lemma  Let f ∈ C[, ] be given in such a way that Zf satisfies () and Sf ∈ C[, ].
Then there exists a unique solution y ∈ C[, ] of BVP () if and only if the m × m matrix

BR̃ + BP̃

is nonsingular. Here B, B ∈R
m×n, β ∈R

m, and m = rank P.

Proof We use () and () to calculate y() and y(). Since Hy() =  and limt→ tMS = ,
we first deduce

y() = (H + P + N)y() = (P + N)
(
ỹ() + Y ()α

)
= (P + N)ỹ() + PY ()α

= (P + N)ỹ() + (R + S)Y ()α = (P + N)ỹ() + R̃α.

Moreover, from P̃y() =  and MS = S, we have

y() = (Q + P)y() = (Q + P)
(
ỹ() + Y ()α

)
= Qỹ() +

(
QY () + P̃

)
α

= Qỹ() + P̃α.

Finally, we substitute y() and y() into the boundary condition and obtain

By() + By() = B
(
(P + N)ỹ() + R̃α

)
+ B

(
Qỹ() + P̃α

)
= β .

Thus,

(BR̃ + BP̃)α = β – B
(
Pỹ() + Nỹ()

)
– BQỹ(),
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and the unknown vector α can be uniquely determined if the m × m matrix

BR̃ + BP̃

is nonsingular. This completes the proof. �

The following theorem, stated without proof, is a consequence of the above results.

Theorem  Consider BVP (), where the inhomogeneity f is given in such a way such
that f ∈ C[, ], Zf satisfies (), and Sf ∈ C[, ]. Moreover, let B, B ∈ R

m×n, β ∈ R
m,

and m = rank P. Let us assume that the m × m matrix BR̃ + BP̃ is nonsingular. Then
BVP () has a unique continuous solution y ∈ C[, ]. This solution satisfies two initial
conditions,

Hy() = , MNy() = –Nf (),

which are necessary and sufficient for y ∈ C[, ].

8 Collocation method
In this section we propose and analyze the polynomial collocation [], for the numerical
treatment of IVP, cf. (),

y′(t) =
M
t

y(t) +
f (t)

t
, t ∈ (, ], y ∈ C[, ], By() = β ,

which we assume to be uniquely solvable. Here the matrix M has only eigenvalues with
nonpositive real parts, and if σ = , then λ = . Moreover, B ∈ R

m×n, β ∈ R
m, where

rank R = m ≤ n. For the numerical treatment, we have to augment the m initial conditions
specified by By() = β by the n – m linearly independent initial conditions singled out
from the set

Hy() = , MNy() = –Nf ().

Consequently, we have to solve the initial value problem,

y′(t) =
M
t

y(t) +
f (t)

t
, By() = β , Hy() = , MNy() = –Nf (). ()

We first discretize the analytical problem (). The interval of integration [, ] is parti-
tioned by an equidistant mesh �,

� := { = t < t < · · · < tI– < tI = , tj = jh, j = , . . . , I = /h},

and in each subinterval [tj, tj+], we introduce k collocation nodes tjl := tj + ulh, j = , . . . , I –
, l = , . . . , k, where  < u < u < · · · < uk ≤ . The computational grid including the mesh
points and the collocation points is shown in Figure .

By Pk,h we denote the class of piecewise polynomial function of degree less or equal
to k on each subinterval [tj, tj+]. We approximate the analytical solution y by a piecewise
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t . . . tj

. . . tjl . . .

tj+ . . . tI︸ ︷︷ ︸
h

Figure 1 The computational grid.

polynomial function p ∈ Pk,h ∩ C[, ], p(t) := pj(t), t ∈ [tj, tj+], j = , . . . , I – , such that p
satisfies ODE system () at the collocation points,

p′(tjl) –
M
tjl

p(tjl) =
f (tjl)

tjl
, l = , . . . , k, j = , . . . , I – , ()

together with the continuity relations,

pj–(tj) = pj(tj), j = , . . . , I – , ()

and p satisfies the initial conditions

Bp() = γ , Hp() = , MNp() = –Nf (). ()

Note that rank B + rank H + rank N = n. Since in each subinterval [tj, tj+] p(t) = pj(t) is a
polynomial of degree smaller or equal to k, the total number of unknowns, the coefficients
in the ansatz function p, is (k + )In. On the other hand, the system () consists of kIn
equations, () provides (I – )n, and () n conditions, which together add up to (k + )In.
This means that the collocation scheme (), (), and () is closed.

The collocation applied to solve () was studied in [], where in particular, unique
solvability of the collocation scheme and the convergence properties have been shown.
For the reader’s convenience, we recapitulate in the next theorem an important auxiliary
result from [] required in the subsequent investigations. Note that since the analytical
problem () has a unique solution, its value y() is known. Therefore, in Theorem .
[], a slightly simpler problem is considered, where instead of the initial conditions the
correct value of y() := δ is prescribed.

Theorem  (Theorem . in []) Let us consider the collocation scheme,

p′(tjl) –
M
tjl

p(tjl) = Mμ
cjl

tβ

jl

, l = , . . . , k, j = , . . . I – , p() = δ, ()

where μ,β = , , and p ∈Pk,h ∩C[, ]. Then problem () has a unique solution, provided
that h is sufficiently small. This solution satisfies

∣∣p(t)
∣∣ ≤ const.

(|δ| +
∣∣ln(h)

∣∣d|Mδ| +
∣∣ln(h)

∣∣(β(d–μ))+ C
)
, t ∈ [, ],

where C = max≤j≤I– max≤l≤k |cjl|, d is the dimension of the largest Jordan box of M asso-
ciated to the eigenvalue λ =  and

(x)+ =

{
x, x ≥ ,
, x < .
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We are now in the position to formulate the convergence result for the collocation
method.

Theorem  Let us consider the initial value problem

y′(t) –
M
t

y(t) =
f (t)

t
, y() = δ,

where Hδ =  and MNδ = –Nf (). Let us assume that the function f satisfies Nf ∈
Ck+[, ], Zf = O(tαz(t)), with α ≥ k + , Zf ∈ Ck[, ], and z ∈ Ck[, ]. Let the function
p ∈Pk,h ∩ C[, ] satisfy the collocation scheme

p′(tjl) –
M
tjl

p(tjl) =
f (tjl)

tjl
, l = , . . . k, j = , . . . , I – , p() = δ.

Then

∣∣p(t) – y(t)
∣∣ ≤ const.hk , t ∈ [, ].

Proof The idea of the proof is to introduce an error function e ∈ Pk,h ∩ C[, ] and inves-
tigate how it is related to the global error p – y of the scheme. Let e be defined as follows:

e′(tjl) := y′(tjl) – p′(tjl), l = , . . . , k, j = , . . . , I – , e() := .

Since on each subinterval [tj, tj+] the function e′(t) is a polynomial of degree less or equal
to k –  it is uniquely determined by its values at k distinct points in this interval,

e′(t) =
k∑

i=

li

(
t – tj

h

)
y′(tji) – p′(t), t ∈ [tj, tj+],

where li(t) = w(t)/((t – ui)w′(ui)), i = , . . . , k, w(t) = (t – u)(t – u) · · · (t – uk). Since y ∈
Ck+[, ] the interpolation error is O(hk) and, hence,

e′(t) = y′(t) – p′(t) + O
(
hk).

By integration in [, t], we obtain e(t) = y(t) – p(t) + O(hkt), which means that e differs from
y – p by O(hk) terms. Moreover, we see that e satisfies the following collocation scheme:

e′(tjl) –
M
tjl

e(tjl) = y′(tjl) –
M
tjl

y(tjl) –
(

p′(tjl) –
M
tjl

p(tjl)
)

–
M
tjl

O
(
tjlhk)

=
f (tjl)

tjl
–

f (tjl)
tjl

–
M
tjl

O
(
tjlhk) = O

(
hk), e() = .

According to Theorem , we conclude that e(t) = O(hk) which together with e(t) = y(t) –
p(t) + O(hk) yields |p(t) – y(t)| ≤ const.hk . �

The especially attractive property of the collocation is the so-called superconvergence.
For regular ODEs and certain choices of the collocation points (Gaussian, Lobatto, Radau),
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the convergence order in the mesh points can be considerably higher than k, provided that
the solution y is sufficiently smooth. For the Gaussian points the superconvergence order
is O(hk). Since already for problem () counterexamples show that the superconvergence
does not hold [], we do not expect it for the problem at hand either. However, the so-
called small superconvergence uniform in t can be shown; see the next theorem. The main
prerequisite for the proof is the property

∫ 


w(s) ds = , ()

which holds for an appropriate choice of the collocation points.

Theorem  Let Nf ∈ Ck+[, ], Zf ∈ Ck+[, ], and Zf = O(tαz(t)), where α ≥ k +  and
z ∈ Ck+[, ]. If () holds, then the estimate for the global error given in Theorem  can
be replaced by

∣∣p(t) – y(t)
∣∣ ≤ const.hk+∣∣ln(h)

∣∣(d–)+ .

Proof Consider again the error function e defined in Theorem . Due to the smoothness
assumptions made for the problem data y ∈ Ck+[, ] follows. Therefore,

e′(t) =
k∑

i=

li

(
t – tj

h

)
y′(tji) – p′(t)

= y′(t) – p′(t) +
hk

k!
w

(
t – tj

h

)
y(k+)(tj) + O

(
hk+), t ∈ [tj, tj+].

We integrate e′ on [, ] and use () to obtain

e(t) = y(t) – p(t) +
j–∑
i=

hk

k!
y(k+)(ti)

∫ ti+

ti

w
(

s – ti

h

)
ds

+
hk

k!
y(k+)(tj)

∫ t

tj

w
(

s – tj

h

)
ds + O

(
thk+) = y(t) – p(t) + O

(
hk+).

This implies

e′(tjl) –
M
tjl

e(tjl) = y′(tjl) –
M
tjl

y(tjl) –
(

p′(tjl) –
M
tjl

p(tjl)
)

–
M
tjl

O
(
hk+)

= –
M
tjl

O
(
hk+), e() = .

According to Theorem  we have |e(t)| ≤ const.(| ln(h)|(d–)+ hk+), and finally |p(t)–y(t)| ≤
const.(| ln(h)|(d–)+ hk+). �

9 Numerical experiments
In order to illustrate the theoretical results derived in the previous section, we have con-
structed model problems and run the collocation code bvpsuite on coherently refined
meshes to compare the empirically estimated convergence orders of the scheme with the
theoretically predicted ones.
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9.1 General IVP with smooth solution
We first deal with a linear system of ODEs,

y′(t) =

t

⎛
⎜⎝

–  –
–  –
–  –

⎞
⎟⎠ y(t) +

f (t)
t

, t ∈ (, ], ()

subject to initial conditions

By() =
(

 – 
)

y() = ,

(
–  –
–  

)
y() =

(



)
. ()

Here

f (t) =

⎛
⎜⎝

t exp(t) +  exp(t) + sin(t) cos(t) + t cos(t) – t sin(t)
t exp(t) +  exp(t) +  sin(t) cos(t) + t cos(t) – t sin(t) + t

t exp(t) +  exp(t) + t cos(t) – t sin(t) + t

⎞
⎟⎠ .

The matrix M has a double eigenvalue λ = λ = –, and a single eigenvalue λ = . The
IVP (), () satisfies the assumptions of Theorem  and the exact solution y has the
form

y(t) =

⎛
⎜⎝

exp(t) + sin(t) cos(t)
 exp(t) +  sin(t) cos(t) + t

 exp(t) + sin(t) cos(t) + t

⎞
⎟⎠ .

We see that y ∈ C∞[, ], cf. Remark .
In Tables  to , we illustrate the convergence behavior for the collocation executed with

equidistant and Gaussian collocation points. The number of the collocation points k was
chosen to vary from  to . However, in the simulations shown here, we report only on
the values  to  since the results for  to  are very similar. The maximal global error is
computed either in the mesh points,

‖Yh – Y‖∞ := max
≤j≤I

∣∣p(tj) – y(tj)
∣∣,

Table 1 IVP (47), (48): Convergence of the collocation scheme, k = 1

h Equidistant points Gaussian points

Uniform Mesh Uniform

‖Yh – Y‖∞ c p ‖Yh – Y‖∞ c p ‖Yh – Y‖∞ c p

1/2 1.4e–01 – – 9.2e–02 – – 1.4e–01 – –
1/4 3.5e–02 2.1e+00 1.96 2.3e–02 3.7e–01 2.01 3.5e–02 2.1e+00 1.96
1/8 9.0e–03 2.2e+00 1.98 5.8e–03 3.7e–01 2.00 9.0e–03 2.2e+00 1.98
1/16 2.3e–03 2.2e+00 1.99 1.4e–03 3.7e–01 2.00 2.3e–03 2.2e+00 1.99
1/32 5.7e–04 2.3e+00 2.00 3.6e–04 3.7e–01 2.00 5.7e–04 2.3e+00 2.00
1/64 1.4e–04 2.3e+00 2.00 9.0e–05 3.7e–01 2.00 1.4e–04 2.3e+00 2.00
1/128 3.6e–05 2.3e+00 2.00 2.2e–05 3.7e–01 2.00 3.6e–05 2.3e+00 2.00
1/256 8.9e–06 2.3e+00 2.00 5.6e–06 3.7e–01 2.00 8.9e–06 2.3e+00 2.00
1/512 2.2e–06 2.3e+00 2.00 1.4e–06 3.7e–01 2.00 2.2e–06 2.3e+00 2.00
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Table 2 IVP (47), (48): Convergence of the collocation scheme, k = 2

h Equidistant points Gaussian points

Uniform Mesh Uniform

‖Yh – Y‖∞ c p ‖Yh – Y‖∞ c p ‖Yh – Y‖∞ c p

1/2 3.7e–03 – – 3.7e–03 – – 7.8e–03 – –
1/4 5.1e–04 6.4e–01 2.87 1.6e–04 8.4e–02 4.50 1.2e–03 3.6e+00 2.73
1/8 6.6e–05 8.1e–01 2.96 8.1e–06 6.7e–02 4.34 1.5e–04 6.4e+00 2.93
1/16 8.3e–06 8.8e–01 2.99 4.4e–07 5.1e–02 4.21 2.0e–05 7.6e+00 2.98
1/32 1.0e–06 9.0e–01 3.00 2.5e–08 4.0e–02 4.12 2.5e–06 8.1e+00 2.99
1/64 1.3e–07 9.1e–01 3.00 1.5e–09 3.3e–02 4.06 3.1e–07 8.4e+00 3.00
1/128 1.6e–08 9.2e–01 3.00 9.3e–11 2.9e–02 4.03 3.8e–08 8.5e+00 3.00
1/256 2.0e–09 9.2e–01 3.00 5.7e–12 2.7e–02 4.02 4.8e–09 8.5e+00 3.00
1/512 2.6e–10 9.2e–01 3.00 3.5e–13 2.8e–02 4.03 6.0e–10 8.5e+00 3.00

Table 3 IVP (47), (48): Convergence of the collocation scheme, k = 3

h Equidistant points Gaussian points

Uniform Mesh Uniform

‖Yh – Y‖∞ c p ‖Yh – Y‖∞ c p ‖Yh – Y‖∞ c p

1/2 2.0e–04 – – 3.6e–05 – –– 3.5e–04 – –
1/4 7.4e–06 3.8e+00 4.75 5.1e–07 2.6e–03 6.15 1.3e–05 2.8e+02 4.73
1/8 3.0e–07 2.7e+00 4.63 7.6e–09 2.3e–03 6.07 5.4e–07 1.8e+02 4.61
1/16 1.4e–08 1.5e+00 4.46 1.2e–10 2.1e–03 6.03 2.5e–08 9.1e+01 4.44
1/32 6.9e–10 8.0e–01 4.30 1.8e–12 2.1e–03 6.02 1.3e–09 4.2e+01 4.29
1/64 3.8e–11 4.4e–01 4.18 2.0e–14 8.9e–03 6.44 7.1e–11 2.1e+01 4.17
1/128 2.2e–12 2.8e–01 4.10 3.4e–14 1.0e–15 –0.72 4.2e–12 1.3e+01 4.09
1/256 1.3e–13 2.0e–01 4.04 1.1e–14 1.1e–10 1.66 2.5e–13 8.5e+00 4.03
1/512 7.1e–15 8.0e–01 4.24 2.0e–14 5.9e–17 –0.94 1.6e–14 8.7e+00 4.03

Table 4 IVP (47), (48): Convergence of the collocation scheme, k = 4

h Equidistant points Gaussian points

Uniform Mesh Uniform

‖Yh – Y‖∞ c p ‖Yh – Y‖∞ c p ‖Yh – Y‖∞ c p

1/2 2.7e–05 – – 6.9e–07 – – 2.6e–05 – –
1/4 9.1e–07 2.2e+00 4.91 5.8e–09 8.2e–05 6.90 8.6e–07 3.7e+02 4.90
1/8 2.9e–08 2.7e+00 4.98 4.7e–11 8.7e–05 6.95 2.7e–08 5.0e+02 4.98
1/16 9.0e–10 2.9e+00 5.00 3.7e–13 9.3e–05 6.97 8.6e–10 5.4e+02 5.00
1/32 2.8e–11 2.9e+00 5.00 6.2e–15 4.7e–06 5.90 2.7e–11 5.6e+02 5.00
1/64 8.8e–13 3.1e+00 5.01 1.5e–14 7.4e–17 –1.28 8.4e–13 5.8e+02 5.01
1/128 3.1e–14 1.2e+00 4.84 8.9e–15 3.6e–13 0.77 2.4e–14 1.1e+03 5.10
1/256 2.7e–15 2.4e–04 3.52 7.1e–15 4.2e–14 0.32 3.1e–15 1.3e–04 2.97
1/512 1.3e–15 3.4e–12 1.00 1.3e–14 4.7e–17 –0.91 3.6e–15 6.4e–16 –0.19

or ‘uniformly’ in t, ‖Yh – Y‖∞ := max≤i≤. |p(τi) – y(τi)|, τi = ih, h = –. The esti-
mated order of convergence p and the error constant c are estimated using two consecutive
meshes with the step sizes h and h/.

Since ‖Yh – Y‖ ≈ chp for h → , we have

‖Yh – Y‖∞ = chp, ‖Yh/ – Y‖∞ = c
(

h


)p

⇒ p = ln

( ‖Yh – Y‖∞
‖Yh/ – Y‖∞

)


ln()
.

Having p, we calculate the error constant from c = ‖Yh/ – Y‖∞/( h
 )p.

According to the experiments, the empirical convergence orders very well reflect the
theoretical findings. For Gaussian points, we observe the small superconvergence order
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Table 5 IVP (49): Convergence of the collocation scheme, k = 4

h Equidistant points Gaussian points

Uniform Mesh Uniform

‖Yh – Y‖∞ c p ‖Yh – Y‖∞ c p ‖Yh – Y‖∞ c p

1/2 3.2e–03 – – 6.2e–04 – – 1.2e–03 – –
1/4 1.1e–03 1.0e–01 1.49 2.2e–04 1.7e–03 1.50 4.4e–04 1.9e–01 1.50
1/8 4.1e–04 1.0e–01 1.50 7.7e–05 1.7e–03 1.50 1.6e–04 1.9e–01 1.50
1/16 1.4e–04 1.0e–01 1.50 2.7e–05 1.7e–03 1.50 5.5e–05 1.9e–01 1.50
1/32 5.1e–05 1.0e–01 1.50 9.6e–06 1.7e–03 1.50 1.9e–05 1.9e–01 1.50
1/64 1.8e–05 1.0e–01 1.50 3.4e–06 1.7e–03 1.50 2.4e–04 3.6e–15 –3.65
1/128 8.0e–05 7.4e–11 –2.15 1.2e–06 1.7e–03 1.50 4.9e–03 3.4e–17 –4.34
1/356 7.9e–04 4.0e–14 –3.31 4.3e–07 1.7e–03 1.50 1.0e–01 2.1e–17 –4.40
1/512 2.5e–02 2.5e–19 –4.99 1.5e–07 1.7e–03 1.50 4.8e–01 1.5e–09 –2.20

k +  uniformly in t. The superconvergence order k in the mesh points does not hold in
general; see the case k = . For uniformly spaced equidistant collocation points we again
observe the order k + , which for this model is slightly better than we can show theoreti-
cally.

9.2 General IVP with ‘unsmooth’ solution
Next, we discuss an IVP whose solution is less smooth than in the previous model. The
problem reads

y′(t) =
M
t

y(t) +
f (t)

t
, (  )y() =




,

(
–  
 – 

)
y() =

(



)
, ()

where

M =

⎛
⎜⎝

–  
– – 
 – 

⎞
⎟⎠ , f (t) =

⎛
⎜⎝

exp(t)
exp(t) + t

t + 
 t 

 sin(t) + t 
 cos(t)

⎞
⎟⎠ .

The eigenvalues of M are λ = –, λ = –, and λ = ; and the initial conditions are de-
signed in such a way that IVP () satisfies the assumptions of Theorem . The analytical
solution y ∈ C[, ] is given by

y(t) =

⎛
⎜⎝

t–( –  exp(t) + t exp(t) – t exp(t) + t exp(t))
t–( –  exp(t) + t exp(t) – t exp(t) + t exp(t)) + t


t
 +

√
t sin(t)

⎞
⎟⎠ .

The related numerical results are listed for k =  in Table . As expected, we observe an
order reduction down to ., not only for k = , but also for all other values of k.

9.3 General TVP with small positive eigenvalues
The case of the matrix M having eigenvalues with positive real parts has not been inves-
tigated yet, since the related theory is particularly tedious and involved, cf. []. However,
some interesting numerical simulations are already available and, therefore, the results of
these experiments are briefly discussed here to complete the picture.
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We first consider the following model problem:

y′(t) =
M
t

y(t) +
f (t)

t
, By() =

⎛
⎜⎝

 – 
  
 – 

⎞
⎟⎠ y() =

⎛
⎜⎝

–



⎞
⎟⎠ , ()

where

M =

⎛
⎜⎝

. – 
–  –

–.  –

⎞
⎟⎠ , f (t) =

⎛
⎜⎝

 – t

 + t ln(t)
 + t ln(t) + t

⎞
⎟⎠ .

The eigenvalues of M are λ = ., λ = , and λ = ; and the solution y ∈ C[, ] of ()
is

y(t) =

⎛
⎜⎝


√

t – t – 


√
t –  + t + t ln(t) – t


√

t + t +  + t + t ln(t)

⎞
⎟⎠ .

In Tables  and , we again see the order reduction down to ., due to the fact that the
first derivative y′ is unbounded for t → . Moreover, we see that the problem is hard to
solve and the convergence is very slow. For h ≈  · – the level of the global error is only
‖Yh – Y‖∞ ≈ –. In [] the convergence order of the collocation scheme for TVPs of the

Table 6 TVP (50): Convergence of the collocation scheme, k = 2

h Equidistant points Gaussian points

Uniform Mesh Uniform

‖Yh – Y‖∞ c p ‖Yh – Y‖∞ c p ‖Yh – Y‖∞ c p

1/2 2.2e+00 – – 1.7e+00 – – 1.7e+00 – –
1/4 1.5e+00 5.4e+00 0.51 1.2e+00 2.4e+00 0.51 1.2e+00 5.4e+00 0.51
1/8 1.1e+00 5.3e+00 0.50 8.5e–01 2.4e+00 0.50 8.5e–01 5.3e+00 0.50
1/16 7.5e–01 5.3e+00 0.50 6.0e–01 2.4e+00 0.50 6.0e–01 5.2e+00 0.50
1/32 5.3e–01 5.2e+00 0.50 4.2e–01 2.4e+00 0.50 4.2e–01 5.2e+00 0.50
1/64 3.8e–01 5.2e+00 0.50 3.0e–01 2.4e+00 0.50 3.0e–01 5.2e+00 0.50
1/128 2.7e–01 5.2e+00 0.50 2.1e–01 2.4e+00 0.50 2.1e–01 5.2e+00 0.50
1/256 1.9e–01 5.2e+00 0.50 1.5e–01 2.4e+00 0.50 1.5e–01 5.2e+00 0.50
1/512 1.3e–01 5.2e+00 0.50 1.1e–01 2.4e+00 0.50 1.1e–01 5.2e+00 0.50

Table 7 TVP (50): Convergence of the collocation scheme, k = 3

h Equidistant points Gaussian points

Uniform Mesh Uniform

‖Yh – Y‖∞ c p ‖Yh – Y‖∞ c p ‖Yh – Y‖∞ c p

1/2 1.7e+00 – – 1.2e+00 – – 1.2e+00 – –
1/4 1.2e+00 4.7e+00 0.50 8.6e–01 1.7e+00 0.50 8.6e–01 5.2e+00 0.50
1/8 8.3e–01 4.7e+00 0.50 6.1e–01 1.7e+00 0.50 6.1e–01 5.1e+00 0.50
1/16 5.8e–01 4.7e+00 0.50 4.3e–01 1.7e+00 0.50 4.3e–01 5.1e+00 0.50
1/32 4.1e–01 4.7e+00 0.50 3.0e–01 1.7e+00 0.50 3.0e–01 5.1e+00 0.50
1/64 2.9e–01 4.7e+00 0.50 2.1e–01 1.7e+00 0.50 2.1e–01 5.1e+00 0.50
1/128 2.1e–01 4.7e+00 0.50 1.5e–01 1.7e+00 0.50 1.5e–01 5.1e+00 0.50
1/256 1.5e–01 4.7e+00 0.50 1.1e–01 1.7e+00 0.50 1.1e–01 5.1e+00 0.50
1/512 1.0e–01 4.7e+00 0.50 7.6e–02 1.7e+00 0.50 7.6e–02 5.1e+00 0.50
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type (), where all eigenvalues of M have positive real parts, has been specified. Provided
that the Jordan box associated with the eigenvalue whose real part is σ+ is diagonal, the
uniform stage convergence order was shown to be min{σ+, k}. This result suggests that
also in the case of the model () the convergence order will drop down to ., cf. Tables 
and .

The remedy for this lack of smoothness due to the small size of the positive eigenvalues
of M is to make a change of the independent variable [], t = τμ, for some μ > . Then
ỹ(τ ) := y(τμ) satisfies the transformed ODE system

ỹ′(τ ) =
M̃
τ

ỹ(τ ) +
f̃ (τ )
τ

, τ ∈ (, ], ()

where M̃ = μM and f̃ (τ ) = μf (τμ). The eigenvalues of the matrix M̃ become λ̃ = μλ and
therefore, the solution ỹ of the transformed equation is smoother than the solution y of
the original one. For instance, if f ∈ Cr+[, ] and σ+ ≤ r + , then we can choose μ such
that μσ+ > r + . Consequently, by Theorem (ii), ỹ(τ ) = y(τμ) ∈ Cr+[, ]. One can also
interpret the above smoothing in terms of the mesh adaptation - solving the ODE system
() on an equidistant mesh, means solving the original ODE system on a mesh which is
adequately refined close to the singularity, where the solution y and its derivatives rapidly
change. Consequently, we solve () subject to terminal conditions given in (), where,
for μ = ,

M̃ =

⎛
⎜⎝

 – 
–  –
–  –

⎞
⎟⎠ , f̃ (τ ) =

⎛
⎜⎝

 – τ 

 + τ  ln(τ )
 + τ  ln(τ ) + τ 

⎞
⎟⎠ .

While the eigenvalues of M are λ = ., λ = , and λ = , the eigenvalues of M̃ become
λ̃ = , λ̃ = , and λ̃ = . The solution of the transformed problem reads

ỹ(τ ) =

⎛
⎜⎝

τ  – τ  – 
– + τ  + τ  + τ  ln τ  – τ 

 + τ  + τ  + τ  ln τ  + τ 

⎞
⎟⎠ .

Tables  and  show the desired effect. For k =  and equidistant collocation points, we
observe the O(hk) behavior of the global error uniformly in t, as was the case for a smooth

Table 8 Transformed TVP (50): Convergence of the collocation scheme, k = 2

h Equidistant points Gaussian points

Uniform Mesh Uniform

‖Yh – Y‖∞ c p ‖Yh – Y‖∞ c p ‖Yh – Y‖∞ c p

1/2 5.4e+00 – – 2.1e+00 – – 1.9e+00 – –
1/4 2.3e+00 5.2e+01 1.26 2.3e–01 1.8e+01 3.17 2.2e–01 2.2e+03 3.14
1/8 6.8e–01 1.7e+02 1.73 1.7e–02 4.2e+01 3.76 1.6e–02 1.3e+04 3.74
1/16 1.8e–01 3.1e+02 1.93 1.1e–03 6.1e+01 3.94 1.1e–03 2.6e+04 3.93
1/32 4.5e–02 3.8e+02 1.98 7.0e–05 6.9e+01 3.98 6.8e–05 3.3e+04 3.98
1/64 1.1e–02 4.1e+02 2.00 4.4e–06 7.2e+01 4.00 4.3e–06 3.5e+04 4.00
1/128 2.8e–03 4.2e+02 2.00 2.7e–07 7.3e+01 4.00 2.7e–07 3.6e+04 4.00
1/256 7.1e–04 4.2e+02 2.00 1.7e–08 7.3e+01 4.00 1.7e–08 3.6e+04 4.00
1/512 1.8e–04 4.2e+02 2.00 1.1e–09 7.4e+01 4.00 1.0e–09 3.6e+04 4.00
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Table 9 Transformed TVP (50): Convergence of the collocation scheme, k = 3

h Equidistant points Gaussian points

Uniform Mesh Uniform

‖Yh – Y‖∞ c p ‖Yh – Y‖∞ c p ‖Yh – Y‖∞ c p

1/2 2.2e+00 – – 1.5e–01 – – 1.5e–01 – –
1/4 2.8e–01 1.1e+03 2.98 3.7e–03 5.7e+00 5.29 4.1e–03 4.5e+05 5.18
1/8 2.1e–02 8.2e+03 3.71 8.3e–05 7.5e+00 5.49 8.3e–05 2.1e+06 5.62
1/16 1.4e–03 1.7e+04 3.93 5.2e–06 3.4e–01 4.00 5.2e–06 2.1e+03 4.00
1/32 8.8e–05 2.2e+04 3.98 3.3e–07 3.4e–01 4.00 3.3e–07 2.1e+03 4.00
1/64 5.5e–06 2.3e+04 4.00 2.0e–08 3.4e–01 4.00 2.0e–08 2.1e+03 4.00
1/128 3.5e–07 2.4e+04 4.00 1.3e–09 3.4e–01 4.00 1.3e–09 2.1e+03 4.00
1/256 2.2e–08 2.4e+04 4.00 8.0e–11 3.3e–01 3.99 8.0e–11 2.0e+03 3.99
1/512 1.4e–09 2.4e+04 4.00 7.0e–12 2.2e–02 3.50 7.0e–12 4.6e+01 3.50

Table 10 Notation

R
n n-dimensional vector space of real-valued vectors

C
n n-dimensional vector space of complex-valued vectors

|x| := max1≤i≤n |xi| maximum norm for a vector x ∈ C
n

C[0, 1] space of continuous real vector-valued functions on [0, 1]
Cp[0, 1] space of p-times continuously differentiable real vector-valued functions on [0, 1]
‖y‖ := maxt∈[0,1] |y(t)| maximum norm for a function y ∈ C[0, 1]
‖y‖δ := maxt∈[0,δ] |y(t)| norm restricted to the interval [0,δ], δ > 0
|A| := max1≤i≤m

∑n
j=1 |aij| induced operator norm for a matrix A ∈ C

m×n

X+ invariant subspace associated with the eigenvalues with positive real parts
X (e)0 space spanned by eigenvectors associated with eigenvalues λ = 0
X– invariant subspace associated with the eigenvalues with negative real parts
X (h)0 space spanned by principal eigenvectors associated with the eigenvalue λ = 0
S orthogonal projection onto X+
R orthogonal projection onto X (e)0
P := R + S projection onto X+ ⊕ X (e)0
Q := I – P projection onto X– ⊕ X (h)0
Z := R + H orthogonal projection onto X (e)0 ⊕ X (h)0
N orthogonal projection onto X–
H orthogonal projection onto X (h)0

IVP. For the Gaussian points we see the superconvergence O(hk), both in the mesh points
and uniformly in t, which is better than expected. However, this very fast convergence for
the Gaussian points is put into the right perspective by the data for k =  in Table . Here
only the expected order O(hk+) uniformly in t can be observed.

The above experiments in context of the TVPs suggest the following working hypothesis:
The polynomial collocation shows the same convergence behavior for the TVPs and IVPs,
provided that their solutions are appropriately smooth. This hypothesis may become a
subject of further studies.

10 Conclusions
In this paper, we investigated the analytical properties of the singular BVP

y′(t) =
M
t

y(t) +
f (t)

t
, t ∈ (, ], y ∈ C[, ], By() + By() = β .

It turns out that the structure of the initial/terminal/boundary conditions to guarantee
that the problem has a unique solution which is at least continuous on [, ] depends on
the spectral properties of the matrix M.
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In context of an IVP with appropriately smooth solution, polynomial collocation method
executed with k arbitrary collocation points retains its classical stage order O(hk) uni-
formly in t. For Gaussian points the so-called small superconvergence order O(hk+) can
also be shown to hold uniformly in t. In general, the superconvergence order O(hk) in the
mesh points cannot be expected to hold.

Our next task is to generalize the results discussed in the present article to the linear
case with a variable coefficient matrix M(t) and to the nonlinear case, cf. [].
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