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Abstract

The paper provides an existence principle for the Sturm–Liouville
boundary value problem with state–dependent impulses

z′′(t) = f(t, z(t), z′(t)) for a.e. t ∈ [0, T ] ⊂ R,
z(0)− az′(0) = c1, z(T ) + bz′(T ) = c2,

z(τi+)− z(τi) = Ji(τi, z(τi)), z′(τi+)− z′(τi−) =Mi(τi, z(τi)),

where the points τ1, . . . , τp depend on z through the equations

τi = γ(z(τi)), i = 1, . . . , p, p ∈ N.

Provided a, b ∈ [0,∞), cj ∈ R, j = 1, 2, and the data functions f , Ji,
Mi, i = 1, . . . , p, are bounded, transversality conditions for barriers γi,
i = 1, . . . , p, which yield the solvability of the problem, are delivered.
An application to the problem with unbounded data functions is demon-
strated.
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1 Introduction

Impulsive differential equations have attracted lots of interest due to their im-
portant applications in many areas such as aircraft control, drug administration,
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and theshold theory in biology [4, 13, 18]. In practical ecological systems, the
control measures are taken only when the amount of species reaches a thresh-
old value, rather than the usual impulsive fixed–time control strategy. Studies
of real life problems with such state–dependent impulsive effects were made in
[8, 11, 14, 15, 19, 20].

A very particular case of state–dependent impulses are impulses at fixed mo-
ments. This is the case that the moments, where impulses act in state variable,
are known. The theory of these impulsive problems is widely developed and
presents direct analogies with the methods and results for problems without
impulses. Important texts in this area are [2, 3, 12, 17, 21].

A different situation arises, when the impulses appear in evolutionary tra-
jectories fulfilling a predetermined relation between state and time variables.
This case, which is represented by state–dependent impulses, is studied here.
In particular, we investigate the solvability of boundary value problems with
state–depending impulses. Such problems can be found for example in differen-
tial population models, where the densities of populations are subject to given
conditions at the beginning and the end of the studied time interval and the
impulses, caused by harvesting or fishering, act at the moments depending on
the threshold values of the densities. The main reason that such problems are
developed substantionally less than those with impulses at fixed moments is that
new difficulties appear when examining state–dependent impulses. To demon-
strate it, we compare these two types of impulses in the Dirichlet problem and
show some fundamental differences between them.

1.1 Dirichlet problem with impulses at fixed moments

For T ∈ (0,∞) and A, B ∈ R, consider the Dirichlet problem

u′′(t) = f(t, u(t), u′(t)), for a.e. t ∈ [0, T ], (1)

u(0) = A, u(T ) = B. (2)

Let a finite number of points 0 = t0 < t1 < . . . < tp < tp+1 = T , p ∈ N, be
given. We investigate the existence of a solution u of problem (1), (2) subject
to some impulse conditions at the moments t1, . . . , tp.

For example, we choose impulse functions Ji, Mi, i = 1, . . . , p, and define
impulse conditions as{

u(ti+)− u(ti) = Ji(u(ti)),
u′(ti+)− u′(ti−) =Mi(u(ti)),

i = 1, . . . , p. (3)

We use the notation limt→a+ z(t) = z(a+), limt→a− z(t) = z(a−). The impul-
sive problem (1)–(3) can be transformed to a fixed point problem in a suitable
functional space as follows. Consider a set X of functions u : [0, T ]→ R defined
by

u(t) =


u[0](t) if t ∈ [0, t1],
u[1](t) if t ∈ (t1, t2],
· · ·
u[p](t) if t ∈ (tp, T ],
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where u[i] ∈ C1([ti, ti+1]), i = 1, . . . , p. Then X with the norm ‖u‖∞ + ‖u′‖∞,
where ‖u‖∞ = sup esst∈[0,T ] |u(t)|, becomes a Banach space. It is known (see
e.g. [16]) that a solution of problem (1)–(3) can be found as a fixed point of an
operator F : X → X which is given by

Fu(t) =

∫ T

0

G(t, s)f(s, u(s), u′(s)) ds+A+ (B −A)
t

T

+

p∑
i=1

∂G

∂s
(t, ti)Ji(u(ti)) +

p∑
i=1

G(t, ti)Mi(u(ti)).

(4)

Here G is the Green function of the problem u′′(t) = 0, u(0) = u(T ) = 0. If
f fulfils the Carathéodory conditions on [0, T ] × R2 and Ji, Mi, i = 1, . . . , p,
are continuous on R, then F is completely continuous. Therefore, having the
Banach space X and the operator F defined by (4), we can use similar conditions
and arguments as for problem (1), (2) without impulses to get a fixed point of
F in X.

1.2 Dirichlet problem with state–dependent impulses

Consider problem (1),(2) and choose a finite number of functions

0 < γ1(x) < γ2(x) < . . . < γp(x) < T for |x| ≤ K, (5)

where K ∈ (0,∞). Functions γi will be called barriers here. We investigate the
existence of a solution of problem (1), (2) subject to the impulse conditions{

u(τi+)− u(τi) = Ji(u(τi)),
u′(τi+)− u′(τi−) =Mi(u(τi)),

i = 1, . . . , p, (6)

where the points τ1, . . . , τp ∈ (0, T ) depend on u through the equations

τi = γi(u(τi)), i = 1, . . . , p. (7)

Hence, τi are intersection points of graphs of u with the barriers γi, i = 1, . . . , p.

1.3 Main differences between impulses at fixed moments
and state–dependent impulses

We see that condition (3) contains p points t1, . . . , tp which are given before
and which are common for all solutions of problem (1)–(3). In contrast to that,
conditions (6) and (7) yield the following inconveniences.
(i) Number of points τi given by (7). There are continuous functions u and
barriers γ such that the equation

τ = γ(u(τ))

has infinitely many solutions τu. On Figure 1 we see infinitely many intersection
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Figure 1: Infinitely many intersection points.

points τu of u with γ, which form an interval [τ1, τ2]. In this case P : u 7→ τu is
a multivalued map.

(ii) Points τi need not depend on u continuously. Consider functions in
C([0, T ]) having just one intersection point with γ. Figure 2 shows functions
u and v which are close to each other while their intersection points τu and τv
are not. In this case an operator P : u 7→ τu can be defined on the set of such
functions, but P is not continuous.

(iii) Beating of solutions. There are functions f , γ, J , M and constants A,
A1 such that a solution u of equation (1) satisfying conditions u(0) = A, u′(0) = A1,

u(τ+)− u(τ) = J(u(τ)),
u′(τ+)− u′(τ−) =M(u(τ)), τ = γ(u(τ)),

(8)

has a sequence of intersection points {τn}∞n=1 with the barrier γ such that

lim
n→∞

τn = τ∗ ∈ (0, T ).

Hence, such a solution cannot be extended to T . This phenomenon, which
is called beating, is presented on Figure 3. Here, u is a solution of equation
u′′(t) = 0 for t ∈ [0, T ] and satisfies conditions (8), where

A ∈ (−1, 0), A1 = 0, M≡ 0

and
J(x) = −x2 − x, γ(x) = x+ 4 for |x| < 3.
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Figure 2: Intersection point τu does not depend on u continuously.
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Figure 3: Beating of solution u.
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We see that γ fulfils (5) with K = 3 provided T > 7. Then u is subject to
an impulse effect at infinitely many moments τn, and limn→∞ τn = τ∗ = 4,
limn→∞ u(τn) = 0. Such solution cannot be extended to T .

(iv) Fredholm property. A linear homogeneous problem corresponding to
the impulse problem (1)–(3) has the form

u′′(t) = 0, u(0) = 0, u(T ) = 0, (9)

because for Ji = Mi = 0, i = 1, . . . , p, the impulses in (3) disappear. Since
(9) has only the trivial solution, the Green function of (9) exists. It is clear
that for continuous and bounded functions f , Ji, Mi, i = 1, . . . , p, and any A,
B ∈ R, the operator F from (4) has at least one fixed point, and hence problem
(1)–(3) is solvable. The same is true if the continuity of f is replaced by the
Carathéodory conditions. This Fredholm property of problem (1)–(3) cannot
be extended without some additional requirement to problem (1), (2), (6), (7).
To demonstrate it, consider for simplicity

f ≡ 0, A = −1, B = 0, p = 1, J1(x) ≡ 1, M1(x) ≡ 1,
T ≥ 10, K = 4, γ1(x) = 5 + x for |x| ≤ 4,

that is problem (1), (2), (6), (7) can be written as u′′(t) = 0, u(0) = −1, u(T ) = 0,
u(τ+)− u(τ) = 1, u′(τ+)− u′(τ−) = 1,
τ = 5 + u(τ) for τ ∈ [1, 9].

(10)

Note that (9) is again a linear homogenous problem corresponding to (10). We
observe that although f , J1 and M1 in (10) are continuous and bounded func-
tions, problem (10) is not solvable. It is obvious, because functions satisfying
the equation u′′(t) = 0 on [0, T ] and the condition u(0) = −1 form the set
{ct− 1 : c ∈ R}.

• Let c ∈ (−∞,−3)∪ (5/9,∞). Then the function ct−1 has no intersection
point with γ1 in [1, 9]. But since cT − 1 6= 0, this function cannot be a
solution of problem (10).

• Let c ∈ [0, 5/9]. Then there is a unique intersection point τ1 ∈ [4, 9] of the
function ct − 1 with γ1 and there is no intersection point of the function
(1 + c)t− τ1 with γ1 in (τ1, 9]. We see that the piece–wise linear function

u(t) =

{
ct− 1 if t ∈ [0, τ1],
(1 + c)t− τ1 if t ∈ (τ1, T ]

is subject to the impulse conditions of (10) but it does not vanish at T
and so it cannot be a solution of problem (10).

• Let c ∈ [−3, 0). Then we argue similarly and find that there are at most
four points in [1, 9] at which the impulses occur. Denote the largest of them
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Figure 4: Solution u for c = −3.

by τ∗. If we construct a piece–wise linear function u which is subject to
the impulse conditions of (10), we get u(τ∗+) = τ∗ − 4 and u′(t) ≥ 1 for
t ∈ [τ∗, T ]. Consequently u does not vanish at T and cannot be a solution
of (10). See Figure 4 for c = −3.

Difficulties (i) – (iv) cause that if we search a transformation of problem
(1), (2), (6), (7) to a fixed point problem of a suitable operator F in some
functional space, a choice of this space is not a simple matter. Moreover, to
define an operator F we cannot use a formula analogical to (4) substituing the
intersection points τi instead of the given points ti. It is because τi need not
depend on u continuously and consequently F defined by (4) with τi instead of
ti need not be continuous.

This is the reason that almost all existence results for boundary value prob-
lems with state–dependent impulses have been reached for periodic problems.
It is known that n–th order periodic problems can be transformed to fixed point
problems of corresponding Poincaré maps in Rn. Hence, the above difficulties

7



with the construction of a functional space and an operator have been cleared in
the periodic case. See e.g. [1, 5, 6, 9]. Other types of boundary value problems
with state–dependent impulses have been studied very rarely. We managed to
find only two papers. In the first one [10], the authors investigated the second
order Sturm–Liouville problem through initial problems for multivalued maps.
Their result is applicable to a quite special equation (1) where f(t, x, y) van-
ishes on given regions in dependence on the values of y. The second paper [7]
deals with the first order differential inclusion subject to nonlinear boundary
conditions.

Our main objective is to derive a general existence principle which will serve
as a tool in the investigation of solvability of boundary value problems with
state–dependent impulses. To this aim we have delivered an approach which
is substantially different from both citied papers and from papers dealing with
impulses at fixed moments. We search neither a fixed point of multivalued
map nor a fixed point of an operator in some space of discontinuous functions.
Instead, considering p barrier functions, we work in the (p + 1)–th Cartesian
power of the space C1([0, T ]). In more details, we define a convenient subset
Ω ⊂ (C1([0, T ]))p+1. Then, to a given boundary value problem, we determine
conditions for the barriers enabling to construct a completely continuous oper-
ator F : Ω→ Ω having a fixed point in Ω. A solution of the impulsive problem
under consideration is then created from this fixed point. Here, this is done for
the Sturm–Liouville boundary value problem, but we can proceed similarly in
the case of other regular (and also singular) problems.

Our paper is organized as follows: In Section 2, we formulate the Sturm–
Liouville BVP with state–dependent impulses and provide the transversality
conditions for barriers γi. These conditions ensure unique transverse intersection
of graphs of solutions with barriers. In Section 3 we prove the existence of a fixed
point of an appropriate fixed point problem. Using this we state the existence
principle for our BVP. Section 4 contains the existence result for the Sturm–
Liouville BVP with state–dependent impulses and unbounded data functions f ,
Ji, Mi, i = 1, . . . , p, whose proof is based on the existence principle of Section
3.

2 Transversality conditions

Let T ∈ (0,∞), p ∈ N. We investigate the following second order Sturm–
Liouville boundary value problem on the interval [0, T ], T > 0, subject to p
state–dependent impulses

z′′(t) = f(t, z(t), z′(t)) for a.e. t ∈ [0, T ], (11)

z(0)− az′(0) = c1, z(T ) + bz′(T ) = c2, (12) z(τi+)− z(τi) = Ji(τi, z(τi)),
z′(τi+)− z′(τi−) =Mi(τi, z(τi)),
τi = γi(z(τi)), i = 1, . . . , p,

(13)
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where

a, b ∈ [0,∞), c1, c2 ∈ R, f ∈ Car([0, T ]× R2),
Ji,Mi ∈ C([0, T ]× R), γi ∈ C(D), D ⊂ R, i = 1, . . . , p.

(14)

Definition 1 A function z : [0, T ]→ R is a solution of problem (11)–(13), if for
each i ∈ {1, . . . , p} there exists a unique τi ∈ (0, T ) such that γi(z(τi)) = τi, 0 =
τ0 < τ1 < . . . < τp < τp+1 = T , the restrictions z|[τ0,τ1], z|(τi,τi+1], i = 1, . . . , p,
have absolutely continuous derivatives, z satisfies (11) for a.e. t ∈ [0, T ] and
fulfils conditions (12) and (13).

Here, we denote by C(J) the set of all continuous functions on the interval
J , C1(J) the set of all functions having continuous derivatives on the interval
J and L1(J) the set of all Lebesgue integrable functions on J . For a compact
interval J we consider the linear spaces C(J) and C1(J) equipped with the
norms

‖x‖∞ = max
t∈J
|x(t)| and ‖x‖∗ = ‖x‖∞ + ‖x′‖∞,

respectively. In the paper we work with the linear space

X =
(
C1([0, T ])

)p+1

equipped with the norm

‖(u1, . . . , up+1)‖ =

p+1∑
i=1

‖ui‖∗ for (u1, . . . , up+1) ∈ X.

It is well–known that the mentioned normed spaces are Banach spaces. Recall
that for A ⊂ R, a function f : [a, b] × A → R satisfies the Carathéodory
conditions on [a, b]×A (we write f ∈ Car([a, b]×A)) if

• f(·, x) : [a, b]→ R is measurable for all x ∈ A,

• f(t, ·) : A → R is continuous for a.e. t ∈ [a, b],

• for each compact set S ⊂ A there exists a function mS ∈ L1([a, b]) such
that |f(t, x)| ≤ mS(t) for a.e. t ∈ [a, b] and each x ∈ S.

We assume that the data functions f , Ji, Mi are bounded, that is there exist m ∈ L1([0, T ]), Ai, Bi ∈ (0,∞) such that
|f(t, x, y)| ≤ m(t) for a.e. t ∈ [0, T ] and all x, y ∈ R,
|Ji(t, x)| ≤ Bi, |Mi(t, x)| ≤ Ai for all t ∈ [0, T ], x ∈ R, i = 1, . . . , p.

(15)

In our approach we will exploit the Green function of the linear homogenous
BVP

z′′(t) = 0, t ∈ [0, T ], (16)

z(0)− az′(0) = 0, z(T ) + bz′(T ) = 0.
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which has the form

G(t, s) =

{
g(t, s) for 0 ≤ t ≤ s ≤ T,
g(s, t) for 0 ≤ s ≤ t ≤ T, (17)

where

g(t, s) =
(a+ t)(b+ T − s)

T + a+ b
, t, s ∈ [0, T ]. (18)

Further put

g1(t) =
b+ T − t
T + a+ b

, g2(t) =
−a− t
T + a+ b

, t ∈ [0, T ] (19)

and denote a solution of problem (16), (12) by `. Evidently, there exist positive
constants C0, C1, C2, L, L1 such that for s, t ∈ [0, T ] it holds

|g(t, s)| ≤ C0, |gi(t)| ≤ C1, |g′i(t)| ≤ C2, i = 1, 2, (20)

|`(t)| ≤ L, |`′(t)| ≤ L1. (21)

Finally denote{
M =

∫ T
0
m(t) dt, K = C0M + L+ C0

∑p
i=1Ai + C1

∑p
i=1Bi,

K1 = C1M + L1 + C1

∑p
i=1Ai + C2

∑p
i=1Bi.

(22)

Now, we are ready to state the following transversality conditions:

0 < γ1(x) < . . . < γp(x) < T, γi ∈ C1([−K,K]), |γ′i(x)| < 1

K1
, (23)

x ∈ [−K,K], i = 1, . . . , p, and
for each i ∈ {1, . . . , p}
either Ji(t, x) = 0 t ∈ [0, T ], x ∈ [−K,K], or
γ′i(x) ≥ 0 and Ji(t, x) ≤ 0, t ∈ [0, T ], x ∈ [−K,K], or
γ′i(x) ≤ 0 and Ji(t, x) ≥ 0, t ∈ [0, T ], x ∈ [−K,K].

(24)

Define a set B by

B = {u ∈ C1([0, T ]) : ‖u‖∞ < K, ‖u′‖∞ < K1}. (25)

The next lemma states that functions of B have a unique trasverse intersec-
tion with each barrier.

Lemma 2 Let u ∈ B, i ∈ {1, . . . , p} and let γi satisfy (23). Then there exists
a unique τi ∈ (0, T ) such that

γi(u(τi)) = τi. (26)
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Proof. Let us take an arbitrary u ∈ B and i ∈ {1, . . . , p}. Obviously, the
constant τi is a solution of the equation

γi(u(t)) = t,

i.e. τi is a root of the function

σ(t) = γi(u(t))− t, t ∈ [0, T ].

According to (23) and (25), we get σ(0) = γi(u(0)) > 0, σ(T ) = γi(u(T ))−T < 0
and

σ′(t) = γ′i(u(t))u′(t)− 1 ≤ |γ′i(u(t))||u′(t)| − 1 <
1

K1
K1 − 1 = 0, t ∈ (0, T ).

(27)
Therefore σ is strictly decreasing on [0, T ] and hence it has exactly one root in
(0, T ). �

Due to Lemma 2 we can define functionals Pi : B → (0, T ) by

Piu = τi,

where τi fulfils (26) for i = 1, . . . , p. Now, we will prove their continuity.

Lemma 3 Let i ∈ {1, . . . , p} and let γi satisfy (23). Then the functional Pi is
continuous on B.

Proof. Let us consider un, u ∈ B for n ∈ N such that un → u in C1([0, T ]).
Choose i ∈ {1, . . . , p} and denote

σn(t) = γi(un(t))− t, σ(t) = γi(u(t))− t, for t ∈ [0, T ], n ∈ N.

By Lemma 2, σn(τni ) = 0 and σ(τi) = 0, where τni = Piun and τi = Piu,
respectively. According to (23) we get σn, σ ∈ C1([0, T ]) for n ∈ N and

σn → σ in C([0, T ]). (28)

We will prove that limn→∞ τni = τi. Let us take an arbitrary ε > 0. Since
σ(τi) = 0 and σ′(τi) < 0 (cf. (27)), we can find ξ ∈ (τi− ε, τi) and η ∈ (τi, τi+ ε)
such that

σ(ξ) > 0 and σ(η) < 0.

From (28) it follows the existence of n0 ∈ N such that

σn(ξ) > 0 and σn(η) < 0

for each n ≥ n0. By Lemma 2 and the continuity of σn it follows that τni ∈
(ξ, η) ⊂ (τi − ε, τi + ε) for n ≥ n0. �
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3 Existence principle

In this section, in order to obtain the existence principle to problem (11)–(13),
we assume that conditions (14), (15), (23) and (24) with K and K1 by (22) are
fulfilled. Having the set B of (25), we construct a fixed point problem in the set
Ω, where

Ω = Bp+1 ⊂ X. (29)

For this purpose we define a functional fu as follows. Let Pi, i = 1, . . . , p,
be the functionals of Lemma 3. We set for a.e. t ∈ [0, T ] and for each u =
(u1, . . . , up+1) ∈ Ω

fu(t) =


f(t, u1(t), u′1(t)) for a.e. t ∈ [0,P1u1],

f(t, u2(t), u′2(t)) for a.e. t ∈ (P1u1,P2u2],

· · ·
f(t, up+1(t), u′p+1(t)) for a.e. t ∈ (Ppup, T ].

(30)

Note that for each ui ∈ B the point Piui ∈ (0, T ) is uniquely determined. Now,
we can define an operator F : Ω → X by F(u1, . . . , up+1) = (x1, . . . , xp+1),
where

xj(t) =

∫ T

0

G(t, s)fu(s) ds+ `(t)

+
∑
j≤i≤p

[
−g(t,Piui)Mi(Piui, ui(Piui)) + g2(t)Ji(Piui, ui(Piui))

]
+
∑

1≤i<j

[
−g(Piui, t)Mi(Piui, ui(Piui)) + g1(t)Ji(Piui, ui(Piui))

] (31)

for t ∈ [0, T ], j = 1, . . . , p+ 1. Here, G, g1 and g2 are from (17), (18) and (19)
and ` is a solution of problem (16), (12).

Lemma 4 The operator F has a fixed point in Ω.

Proof. According to (14) and (30), the operatorH : Ω→ C1([0, T ]), (Hu)(t) =∫ T
0
G(t, s)fu(s) ds is compact on Ω. Since Ji, Mi are continuous on [0, T ] × R

for i = 1, . . . , p and Pi, i = 1, . . . , p, are continuous on B due to Lemma 3,
we get by the Lebesgue dominated convergence theorem and the Arzelà–Ascoli
theorem that F is compact on Ω. By (15), (20), (21), (22) and (30), we get
from (31)

|xj(t)| ≤ C0M + L+ C0

p∑
i=1

Ai + C1

p∑
i=1

Bi = K for t ∈ [0, T ],
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j = 1, . . . , p+ 1. Differentiating (31), we get

x′j(t) =

∫ T

0

∂G

∂t
(t, s)fu(s) ds+ `′(t)

+
∑
j≤i≤p

[
−g1(Piui)Mi(Piui, ui(Piui)) + g′2(t)Ji(Piui, ui(Piui))

]
+
∑

1≤i<j

[
−g2(Piui)Mi(Piui, ui(Piui)) + g′1(t)Ji(Piui, ui(Piui))

] (32)

for t ∈ [0, T ], j = 1, . . . , p+ 1. This yields similarly as before

|x′j(t)| ≤ C1M + L1 + C1

p∑
i=1

Ai + C2

p∑
i=1

Bi = K1 for t ∈ [0, T ],

j = 1, . . . , p+1. Therefore xj ∈ B for j = 1, . . . , p+1, and so (x1, . . . , xp+1) ∈ Ω.
Consequently F(Ω) ⊂ Ω and the Schauder fixed point theorem yields a fixed
point in Ω. �

The main result of this section is contained in the next theorem.

Theorem 5 (Existence principle for problem (11)–(13).) Let assumptions (14),
(15), (23) and (24) with K and K1 by (22) be fulfilled. Then there exists a so-
lution z of problem (11)–(13) such that

sup
t∈[0,T ]

|z(t)| ≤ K, sup
t∈[0,T ]

|z′(t)| ≤ K1.

Proof. By Lemma 4, there exists u = (u1, . . . , up+1) ∈ Ω, which is a fixed
point of the operator F defined in (31). This means that

uj(t) =

∫ T

0

G(t, s)fu(s) ds+ `(t)

+
∑
j≤i≤p

[
−g(t,Piui)Mi(Piui, ui(Piui)) + g2(t)Ji(Piui, ui(Piui))

]
+
∑

1≤i<j

[
−g(Piui, t)Mi(Piui, ui(Piui)) + g1(t)Ji(Piui, ui(Piui))

] (33)

for t ∈ [0, T ], j = 1, . . . , p+ 1 and

u′j(t) =

∫ T

0

∂G

∂t
(t, s)fu(s) ds+ `′(t)

+
∑
j≤i≤p

[
−g1(Piui)Mi(Piui, ui(Piui)) + g′2(t)Ji(Piui, ui(Piui))

]
+
∑

1≤i<j

[
−g2(Piui)Mi(Piui, ui(Piui)) + g′1(t)Ji(Piui, ui(Piui))

] (34)
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for t ∈ [0, T ], j = 1, . . . , p+ 1. Now, for t ∈ [0, T ] define a function z by

z(t) =


u1(t) t ∈ [0,P1u1],

u2(t) t ∈ (P1u1,P2u2],

· · ·
up+1(t) t ∈ (Ppup, T ],

(35)

and denote
Pjuj = τj , j = 1, . . . , p, τ0 = 0, τp+1 = T. (36)

Having in mind that ` fulfils (12), we get due to (17)–(19), (33) and (34),

z(0)− az′(0) = u1(0)− au′1(0) =

∫ T

0

(
G(0, s)− a∂G

∂t
(0, s)

)
fu(s) ds

+ `(0)− a`′(0) +
∑

1≤i≤p

[−(g(0, τi)− ag1(τi))Mi(τi, ui(τi))

+ (g2(0)− ag′2(0))Ji(τi, ui(τi))] = c1,

z(T ) + bz′(T ) = up+1(T ) + bu′p+1(T ) =

∫ T

0

(
G(T, s) + b

∂G

∂t
(T, s)

)
fu(s) ds

+ `(T ) + b`′(T ) +
∑

1≤i<p+1

[−(g(τi, T ) + bg2(τi))Mi(τi, ui(τi))

+ (g1(T ) + bg′1(T ))Ji(τi, ui(τi))] = c2.

We have proved that z fulfils (12). By Lemma 2, τj is a unique point in (0, T )
satisfying

τj = γj(uj(τj)), j = 1, . . . , p.

Choose j ∈ {1, . . . , p}. In view of (33) and (35) we get

z(τj+)− z(τj) = uj+1(τj)− uj(τj) = (g1(τj)− g2(τj))Jj(τj , uj(τj))

= Jj(τj , uj(τj)) = Jj(τj , z(τj)),

and (34), (35) provide

z′(τj+)− z′(τj−) = u′j+1(τj)− u′j(τj) = −(g2(τj)− g1(τj))Mj(τj , uj(τj))

=Mj(τj , uj(τj)) =Mj(τj , z(τj)).

We see that z satisfies (13). The first condition in (23) yields 0 < τ1 < τ2 <
. . . < τp < T . Further we get from (30), (34), (35) and (36)

z′′(t) = u′′j (t) = fu(t) = f(t, uj(t), u
′
j(t)) = f(t, z(t), z′(t))

for a.e. t ∈ (τj−1, τj), j = 1, . . . , p + 1. We get that z is a solution of equation
(11). Finally, we will show that τj , j = 1, . . . , p, are unique solutions of equations

τj = γj(z(τj)), j = 1, . . . , p. (37)
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For this purpose it suffices to prove

t 6= γj(uj+1(t)), t ∈ (τj , T ], j = 1, . . . , p. (38)

Choose j ∈ {1, . . . , p}. By Lemma 4 and (29), uj+1 ∈ B (see (25)) and hence
‖uj+1‖∞ ≤ K. According to assumption (24) there are three possibilities:
(i) Assume that the first condition in (24) is satisfied. Then Jj(τj , x) = 0 for
x ∈ [−K,K] and we get by (13) and (35)

uj+1(τj)− uj(τj) = z(τj+)− z(τj) = 0.

Hence τj is a solution of the equation

t = γj(uj+1(t)). (39)

By Lemma 2, equation (39) has a unique solution in (0, T ), which implies (38).
(ii) Assume that the second condition in (24) is satisfied. Then γ′j(x) ≥ 0 and
Jj(τj , x) ≤ 0 for x ∈ [−K,K]. Put σ(t) = γj(uj+1(t)) − t for t ∈ [0, T ]. It
follows from (13) and (35) that

uj+1(τj)− uj(τj) = z(τj+)− z(τj) = Jj(τj , z(τj)) ≤ 0

and
σ(τj) = γj(uj+1(τj))− τj ≤ γj(uj(τj))− τj = 0

due to (37). The second condition in (23) gives

σ′(t) = γ′j(uj+1(t))u′j+1(t)− 1 <
1

K1
K1 − 1 = 0

for t ∈ (τj , T ). So, (38) is valid.
(iii) The third condtion in (24) is dual to the second one, so the proof is similar.
�

4 Unbounded data functions

Assume that condition (15) fails, that is at least one of the data functions f ,
Ji,Mi, i = 1, . . . , p, in problem (11)–(13) is unbounded. Then the constants K
and K1, which are needed in the transversality conditions (23) and (24), cannot
be obtained by (22). The next lemma gives constants K and K1 which will
serve as a priori estimates of solutions of problem (11)–(13) and which can be
used in (23) and (24), provided f(t, ·, ·), Ji(t, ·) and Mi(t, ·), i = 1, . . . , p, have
at most sublinear growth in large values of their space variables (see Theorem
7).

Lemma 6 (A priori estimates) Consider condition (12), where a, b ∈ [0,∞),
c1, c2 ∈ R. Let C0, C1, C2 and L, L1 be constants satisfying (20) and (21),

respectively. For D = [0,∞) × [0,∞), assume that f̃ ∈ Car([0, T ] × D) is
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nondecreasing in its second and third variable for a.e. t ∈ [0, T ], and J̃i, M̃i ∈
C[0,∞) are nondecreasing for i = 1, . . . , p. Finally let

lim
x→∞

∫ T
0
f̃(t, x, x) dt+ J̃i(x) + M̃i(x)

x
= 0, i = 1, . . . , p. (40)

Then there exists K∗ > 0 such that each K1 ∈ (K∗,∞) satisfies

K1 > C1

∫ T

0

f̃(t,K,K1) dt+ L1 + C1

p∑
i=1

M̃i(K) + C2

p∑
i=1

J̃i(K), (41)

where K > K1 is a solution of the equation

K = αK1 + |c1|+
p∑
i=1

J̃i(K) (42)

and
α = max{a+ (p+ 1)T, 1}. (43)

Proof. First, we will show that for each K1 > 0 equation (42) has at least one
solution K > K1. Choose K1 > 0. We see that the function

Φ(K) = αK1 + |c1|+
p∑
i=1

J̃i(K)

is continuous on [0,∞) and Φ(K1) − K1 > 0. On the other hand, since
limK→∞ Φ(K)/K = 0 due to (40), it holds Φ(K) −K < 0 for large K. Hence
there exists at least one K > K1 such that Φ(K)−K = 0.
Now, assume on the contrary, that for any K1 ∈ (0,∞) it holds

K1 ≤ C1

∫ T

0

f̃(t,K,K) dt+ L1 + C1

p∑
i=1

M̃i(K) + C2

p∑
i=1

J̃i(K), (44)

where K > K1 is a solution of (42). Then (42)–(44) give

1 =
αK1 + |c1|+

∑p
i=1 J̃i(K)

K
≤ α

[
C1

K

∫ T

0

f̃(t,K,K) dt

+
L1

K
+ C1

p∑
i=1

M̃i(K)

K
+ C2

p∑
i=1

J̃i(K)

K

]
+
|c1|
K

+

p∑
i=1

J̃i(K)

K
.

Letting K1 → ∞ we get K → ∞ and, due to (40), the contradiction 1 ≤ 0
follows. �

We are ready to formulate the main result of this section.
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Theorem 7 Let (14) hold and let us assume that there exist functions f̃ , J̃i,

M̃i, i = 1, . . . , p, satisfying conditions of Lemma 6 and such that

|f(t, x, y)| ≤ f̃(t, |x|, |y|) for a.e. t ∈ [0, T ] and all x, y ∈ R, (45)

|Ji(t, x)| ≤ J̃i(|x|), |Mi(t, x)| ≤ M̃i(|x|) for t ∈ [0, T ], x ∈ R, i = 1, . . . , p.
(46)

Finally assume that C1, C2, L1 are constants from Lemma 6 and that (23), (24)
hold with K and K1 from Lemma 6. Then problem (11)–(13) has a solution z
such that

sup
t∈[0,T ]

|z(t)| ≤ K, sup
t∈[0,T ]

|z′(t)| ≤ K1.

Proof. Consider the set B given by (25) with K1 and K from Lemma 6. It
is obvious that Lemma 2 and Lemma 3 are valid. Therefore if we introduce Ω
by (29), we can define the operator F : Ω→ X by (31). Arguing as in the first
part of the proof of Lemma 4, we get that F is compact on Ω.
Choose (u1, . . . , up+1) ∈ Ω. Then ‖ui‖∞ ≤ K, ‖u′i‖∞ ≤ K1 for i = 1, . . . , p+ 1.
Using (45) and (46), we deduce from (32)

|x′j(t)| ≤ C1

∫ T

0

f̃(t,K,K1) dt+ L1 + C1

p∑
i=1

M̃i(K) + C2

p∑
i=1

J̃i(K)

for t ∈ [0, T ], j = 1, . . . , p+ 1, and by virtue of (41) we get

‖x′j‖∞ < K1, j = 1, . . . , p+ 1. (47)

Arguing as in the proof of Theorem 5, we deduce from (31) that

x1(0)− ax′1(0) = c1. (48)

In addition, (47) yields

ρ := max{‖x′j‖∞ : j = 1, . . . , p+ 1} < K1. (49)

Consequently, by (48) and (49),

|x1(t)| ≤ (a+ T )ρ+ |c1|, t ∈ [0, T ]. (50)

Further, (31) gives
x2(τ1) = x1(τ1) + J1(τ1, u1(τ1)),

and, due to (46), (49) and (50),

|x2(t)| ≤ (a+ 2T )ρ+ |c1|+ J̃1(K), t ∈ [0, T ].

Similarly we derive

|xj+1(t)| ≤ (a+ (j + 1)T )ρ+ |c1|+
j∑
i=1

J̃i(K), t ∈ [0, T ], j = 1, . . . , p. (51)
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According to (42), (43), (49) and (51), we get

‖xj‖∞ ≤ K, j = 1, . . . , p+ 1. (52)

The estimates (47) and (52) imply that (x1, . . . , xp+1) ∈ Ω. Consequently
F(Ω) ⊂ Ω and the Schauder fixed point theorem yields a fixed point (u1, . . . , up+1) ∈
Ω. To get a solution z of problem (11)–(13) we can repeat the proof of Theorem
5. �

Example 8 Choose for simplicity T = p = a = b = c1 = c2 = 1 and consider
functions {

f(t, x, y) = sin(4t)( 3
√
x+ 3
√
y), J1(t, x) = t

√
|x|,

M1(t, x) = t2 3
√
x, t ∈ [0, 1], x, y ∈ R. (53)

Then conditions (45) and (46) are satisfied for{
f̃(t, x, y) = | sin(4t)|( 3

√
|x|+ 3

√
|y|), J̃1(x) =

√
|x|,

M̃1(x) = 3
√
|x|, t ∈ [0, 1], x, y ∈ R.

Since

lim
x→∞

∫ 1

0
| sin(4t)|( 3

√
|x|+ 3

√
|y|) dt+

√
|x|+ 3

√
|x|

x
= 0,

functions f̃ , J̃1 and M̃1 fulfil (40). Further, the solution ` of problem (16), (12)
has here the form `(t) ≡ 1 and C0 = 4/3, C1 = 2/3, C2 = 1/3 are constants of
(20). By Lemma 6, there exist K1 > 0 and K > K1 satisfying (41) and (42)
with α = 3. Moreover from (42) we get that K > 1 and consequently from (41)
we obtain K1 > 1. Let us put

γ(x) =
1

K1

(
1

2
− x2 sgnx

3K2

)
for x ∈ R. (54)

Then

γ′(x) = − 2|x|
3K2K1

for x ∈ R,

and we can easily check that 0 < γ(x) < 1, −1/K1 < γ′(x) ≤ 0, J1(t, x) ≥ 0 for
t ∈ [0, 1], x ∈ [−K,K]. Therefore (23) and (24) are valid. Choose for example
K1 = 5. Then there exists K ∈ (20.5, 20.6) which is a solution of the equation

K −
√
K − 16 = 0, (55)

and which fulfils the inequality

5 >
2

3

∫ 1

0

| sin(4t)|( 3
√
K +

3
√

5) dt+
2

3
3
√
K +

1

3

√
K.

By Theorem 7, problem (11)–(13) with the data functions given by (53) and
(54), where K1 = 5 and K ≈ 20.531 is a solution of equation (55), has a solution
z such that

sup
t∈[0,T ]

|z(t)| < 20.6, sup
t∈[0,T ]

|z′(t)| ≤ 5.
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