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Abstract

We consider the second order nonlinear differential equation with an
unbounded right-hand side and two-point or nonlinear boundary con-
ditions on a compact interval. Using the method of a priori estimates
and the relation between the topological degree of the operators as-
sociated to the above boundary value problems and strict lower and
upper solutions, we get the mutiplicity results for the problems.

1 Introduction

In [11] we have studied the boundary value problems for the second order
differential equation

" = f(t,z,2"), (1)
with f continuous and bounded on J x R?, J = [a,b] C R, i.e.
AM € (0,00) : |f(t,z,y)| < M for all (t,z,y) € J x R*. (2)
We have considered the periodic conditions

z(a) = z(b),2'(a) = 2’ (b), (3)
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the Neumann conditions
z'(a) =0,2'(b) = 0, (4)
and the nonlinear conditions

g1 (x(a),2'(a)) = 0,2 (x(b), 2'(b)) = 0, (5)

where ¢, g» € C(R?) are increasing in the second argument and g is nonin-
creasing and g, nondecreasing in the first argument.

For the problems (1),(k), ke{3,4}, we have defined the associated opera-
tors L and N :

L:domL — C(J), x — 2", domL = {x € C*(J) : x fulfills (k)},

N :CU(T) = C(), x— —f(,2(:),2'())
and for the problem (1), (5) we have defined

L:C*J)—C(J) xR* z+— (2",0,0),

N:CYJ) = C(J) x R,

zr— (=f(,2(),2'()), 91 (2(a), 2’ (a)), g2 ((b), 2" (b)) -
The problems (1),(k), k€{3,4,5} can be written in the form of the operator
equation

(L+N)z=0. (6)

For more details see [4], [8], [10]. In [11] we have proven for the degree dj, of
the operator L + N the following results:

Theorem 1.1 Suppose k€{3,4,5}. Let (2) be fulfilled, (6) be the operator
equation corresponding to the problem (1),(k) and let oq,09 be strict lower
and upper solutions of (1), (k) with

o1(t) < oq(t) for all t € J.

Then
dL(L+ N? Ql) = ]-7

where
O ={reC'(J):01(t) <z <oyt), [2'(t)| < c for all t € J}

with ¢ > (2M +r + 1)(b — a) for ke {3,4}
andc > 2M+r+1)(b—a)+2(r+1)/(b—a) for k=5, r = |01 ||max + |02 ||max-
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Theorem 1.1 concerns the case of well ordered o1, 09. The case of 1,09
ordered by the opposite way is described in Theorem 1.2.

Theorem 1.2 Suppose k€{3,4,5}. Let (2) be fulfilled, (6) be the operator
equation corresponding to the problem (1),(k) and let oq,09 be strict lower
and upper solutions of (1),(k) satisfying

oa(t) < oy(t) for all t € J.

Then
dL(L + N? QQ) = _]-7

where
Oy ={x € CI(J) || max < A, ||a:'||maX < B,

Ity € J 1 0y(ty) < x(ty) < o1(ta)},

with B > 2(b— a)M, A > ||o1|lmax + [|02||max + 2(b — a)?M for ke{3,4},
and B > 2(b—a)M + |04 ||maxs A > ||01]|max + [|02]|max + (b — @) B for k=5.

Here, we extend the results of Theorems 1.1 and 1.2 onto differential
equations with an unbounded right-hand side f. In the whole paper we
suppose that ke {3, 4, 5}, that (6) is the operator equation corresponding
to the problem (1),(k) and that oy, 0y are strict lower and upper solutions of
(1), (k).

In the mathematical literature there are many existence results via lower
and upper solutions method. It should me mentioned the papers by H. B.
Thompson [14, 15], where the existence of solutions to the equation (1) with
fully nonlinear two point boundary conditions has been established and many
references and further information can be found. The boundary conditions
(3), (4) and (5) in our paper are a specification of those in [14, 15]. However,
thanks to their special properties we need only one-sided growth restrictions
for f instead of two-sided ones which are required in [14, 15]. Moreover, the
crucial assumption in [14, 15] is the existence of a lower solution o; and an
upper solution o, which are well ordered, i.e. o7 < 09. But we consider
also the opposite order o, < ;. Our theorems on multiplicity results from
Section 4 combine the both types of ordering of lower and upper solutions and
so they cannot be obtained by the approach presented in [14, 15]. For other
results concerning non-ordered or reverse ordered lower and upper solutions
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we refer to the papers [2, 5, 6, 9]. In the literature we can find multiplicity
results reached via proper modifications of the Leggett-Williams fixed point
theorem. In this way the existence of three positive solutions of autonomous
differential equation with the Dirichlet boundary conditons has been proved
in [1]. Tt should be interesting to apply this method on the nonautonomous
differential equation (1) with the boundary conditions (3), (4) or (5) and to
compare obtained results with ours in Section 4.

2 Nagumo-Knobloch-Schmitt conditions

Using the method of a priori estimates we can replace the conditon (2) in The-
orem 1.1 by the Nagumo-Knobloch-Schmitt condition with bounding func-

tions @1, s :

o1, 02 € CHUK) = @i(t, 04(t)) < 0i(t), palt, 04(t)) > (1),

f(ta €, @1(t, 1‘) < 89018(;@) + 39016(;,117) @1(t, l‘),

f(t @, oty x) > 22200 4 DT, (1, ),
for i € {1,2} and for all (t,z) € K = J X [01(t), 0a(t)].
Theorem 2.1 Let (7) be fulfilled and let
o1(t) < oq(t) for all t € J.

Further suppose that for k=3

(9i(b,2) = @i, ))(~1)" > 0, (8)
for k=4 _
(¢i(b, ) — 0i())(=1)" > 0, (9)
and for k=5 .
g2(x, i(b, 7)) (=1)" >0, (10)
with i = 1,2, x € [o1(t), 02(1)].
Then

dL(L+N793) = 17



where

Q3 = {xcCJ):a.(t) <2(t) < oq(t),
o1(t,x) < 2'(t) < oa(t,x) on K}.

Proof. Put

o(t,x) = x for o1(t) <z < oy(t) ,

oi(t) for < o(t)

{ oa(t) for x> oy(t)

Y for Qol(tv 1‘) < Y < SOQ(tv 1‘) )

pa(t,z) for y > @ot,x)
p(t,z,y) =
Y1 (ta :U)

=

or y < p(t, )

and consider the auxiliary equation
' = (¢, x, 1), (11)

We can see that f* satisfies (2) with M > max{|f(¢,z,y)| : (t,z,y) €
J x [01(t), 09(t)] X [p1(t, ), pao(t, )]} and 01,0, are strict lower and upper
solutions for the problem (11),(k), ke {3, 4, 5}. Let us define the set

Q={reC*J):01(t) <a < 0y(t),|2'(t)] < cforallt e},

where
c>(2M +r+1)(b— a) for ke {3,4} and
c>@2M +r+1)(b—a)+2(r+1)/(b—a) for k=5,
r = [|o1]lmax + [|o2][max-
Further, for ke{3,4} we put
N*:CY(J) = C(J),x— —f*(2(),2'("))
for k=5 we put
N*:CY(J) = C(J) x R?,
x> (=", 2(-),2'(), g1(x(a), 2'(a)), g2(x(b), 2()))-
Then, by Theorem 1.1,

dr(L+ N*,Q) =1. (12)

Let us prove that for any solution u of the problem (11),(k), ke {3, 4, 5}
the implication u € Q@ = u € Q3 holds. Put 25(t) = u'(¢) — p2(t,u) and
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21(t) = p1(t,u) — u'(t) and suppose that there exists i € {1,2} and t, € J
such that
max{z;(t) : t € J} = z(ty) > 0.

Then z/(ty) < 0 for ¢ty € [a,b). On the other hand, by (7), zi(t;) > 0, a
contradiction. Now, suppose that ¢, = b. For k=3, we have u'(b) = u/(a) and,
by (8), (¢i(b, u(b)) — pi(a, u(a)))(=1)" > 0, thus 2,(b) = u'(b) — 2 (b, u(b)) <
u'(a) = @a(a,u(a)) = z(a), and z1(b) = @i(b, u(b)) — u'(b) < pi(a,ufa)) -
u'(a) < zi1(a). So z/(b) = zi(a) and we can put ty = a. For k=4 we have
u'(a) = v/(b) = 0 and of(a) > 0, o1(b) < 0, gi(a) <0, gh(b) > 0, thus, by
(9), w1(b,u(b)) < di(b) <0, wa(b,u(b)) > o4(b) > 0 and 25(b) < 0, 2(b) <0,
which is a contradiction. For k=5, according to (10), we have go(u(b),u'(b)) >
92(u(b)7 (102(b7u(b)) >0if i = 27 and g?(“(b)vul(b)) < 92(u(b)7 wl(bau(b)) <0
if 2 = 1. In the both cases we get a contradiction. Therefore

o1(t,u(t)) < u'(t) < pa(t,u(t)) on K
and thus u € Q3. By the excision property of the degree we get from (12)
dp(L + N*,Q3) =1
and since N = N* on {23, Theorem 2.1 is proved.
For the constant functions oy, 09, 1, 2 Theorem 2.1 implies

Corollary 2.2 Suppose that there exist real numbers ry < ro, ¢y < 0 < co,
such that
f(ta T, 0) < 07 f(tar270) > 07 (13)
f(ta xr, Cl) < 07 f(ta xr, 62) > 07 (14)
for all (t,z) € J X [ry,ra).
If k=5 we suppose moreover that for x € [ry, 3]

g2 (z,¢)(=1)" > 0,i=1,2, (15)
g1(r1,0) >0, gi1(r2,0) <0, (16)
g2(r1,0) <0, go(r2,0) > 0.
Then
drp(L+ N,Qy) =1,
where

QU={zecC'(J)):r <x(t) <ry,c <a'(t) <cy,Vte J})



Now, let us consider the special case of bounding functions depending on

t only:

for all (

61, B, € C'(J): Bi(t) < ol(t), Ba(t) > oi(t),
f(tz, B1(t) < Bi(1), f(t, 2, B2(t)) > By(t),

t,x
max{oy(t) : t € J} + [ y(8)dt, v(t) =max{[B(t)], |B(t)]}.

Theorem 2.3 Let (17) be fulfilled and let

oa(t) < oy(t) for all t € J.

Further suppose that for k=3

for k=4

and for k=5

(Bi(b) — Bi(a))(—1)" > 0,

(B:(b) — (b)) (=1)" >0,

g2(w, B;(0)) (=1)" > 0,

with i € {1,2}, x € [sq, s1]-

Then

where

Qs
for all t
Jt,

Proof. Put

dL(L + N, Q5) - —]_,

{x e C'(J) : sy < x(t) < s1, Bu(t) < 2'(t) < Bolt)
J7
J 2 o9(ty) < x(ty) < o1(ts)}-

m m |

(17)

) € J X [s9,51], where s, =min{oy(t) : t € J} — [Py(t)dt, s =

(19)

(20)



f*(t,a:,y) = f(ta p(a:),ﬁ(t,y)),
and consider the equation (11). We can see that f* satisfies (2) with M >
max{|f(t,z,y)| : (t,z,y) € J X [s2,51] X [B1(t), B2(t)]} and oy, 09 are strict
lower and upper solutions for the problem (11),(k), ke {3, 4, 5}. Let us
define the set

Q = {ze0(J): [[#]lmax < A, |#'[lmax < B,
dt, € J:oo(ty) < z(ty) <oi(ts)}
with B = 2(b - a)M + ||7||maxa A= ||01||max + ||02||max + (b - a)B for k:?’a 4
and B = 2(b— a)M + [[7]lmax + |o3][max; A = [|01[lmax + [|o2]lmax + (b — a) B
for k=5.
Further we define the operator N* like in the proof of Theorem 2.1 and using

Theorem 1.2 we get

We can follow the proof of Theorem 2.1 and using (17) - (20), we prove for
any solution u of (11),(k), ke {3, 4, 5}
ue Q= 3i(t) <u'(t) < faft), forall t € J.
Integrating the last inequality we get
sy < u(t) < sy, forall t € J,

i.e. u € (25. By the excision property of the degree we get

dp(L+ N*,Q5) = —1
and since N = N* on {25, Theorem 2.3 is proved.

Corollary 2.4 Suppose that there exist real numbers vy > ro, ¢p < 0 < co,
such that (13) and(14) are satisfied for all (t,x) € J X [ro + ¢1(b—a),ry +
c2(b—a)]. If k=5, we suppose that (15), (16) are satisfied for x € [ro+c1(b—
Cl), r+ 02(b — a)]
Then

dL(L + N, QG) == —]_,

where
Qs={recC'{J)):ry+c(b—a)<zt)<r +cb—a),
c <z'(t) <e,Vte T
A, € J:re <x(ty) <ri}



Example. Suppose fi, fo, f3 € C(J), k,m € N. The function

f(taxa y) = fl(t)x2k+l + f2(t)y2m+1 + f3(t)

satisfies the conditions of Corollary 2.2, if fi, fo > 0 on .J, and it satisfies
the conditions of Corollary 2.4, if f; < 0, fo > 0 on J and either m > k or
m =k, fo(t) > || fillmax (b — a)** for all t € J.

3 One-sided growth conditions

Other type of conditions which can be used instead of (2) in Theorem 1.1 and
Theorem 1.2 are one-sided growth conditions which were used by Kiguradze
[7] in some existence theorems.

1. The one-sided Bernstein-Nagumo condition:

Jw € C(R,), w positive, /000 % = oo and
[tz y) <w(yl) - 1+ yl) (21)

Y(t,x) € J x [o1(t), 02(t)] x R.

2. The one-sided linear growth condition:

day,ae € (0,00),p € C(J x R), non-negative and non-decreasing

in the second argument such that

ftz,y) < ailz| + aslyl + p(t, 2] + |y]) (22)
V(t,z,y) € J x R?,
where
ar(b—a)® +ay(b—a) <1 (23)
and

1 /b
lim — [ p(t,2)dt = 0.

Z2—=00 2z Jq

Note. Let us remember that if f satisfies (22) it satisfies (21) as well.

First, we will prove lemmas on a priori estimates for solutions of the

problems (1),(k), ke {3,4,5}.



Lemma 3.1 Suppose
o1(t) < o9(t) forallt e J.
Let (21) be satisfied. If k=5, suppose moreover

lim g1(r2,y) > 0, lim go(rs,y) <0, (24)

Yy—>00

ry = min{o(t) : t € J}, 1o = maz{os(t) : t € J}.
Then there exists p* € (0,00) such that for any solution u of the problem
(1),(k), the implication

o1(t) < u(t) < o9(t) on J = ||t||max < 1 (25)
is valid.
Proof. Let u be a solution of (1),(k) and let
o1(t) < u(t) < oy(t) for all ¢t € J. (26)

Let us put 7 = ||o1||max + ||02||lmax, © = max{|u/(t)|:t € J}. The condition
(21) implies that

u' < w(lu' ()1 + (1)), VE € . (27)

1. Let k=3. Then we can find ty € (a,b) such that u'(ty) = 0. From (21) it
follows that there exist py, u* € (1,00), uy < p*, such that

pro vod
/I—S:K>2r,/ B S Ko (28)
1

w(s) 1 w(s)
(a) Suppose that there exists t; € (o, b] such that
max{u'(t) : t € [to,b]} =u'(t1) =1 > 1.
Then we can find oy € (g, 1) such that
u'(ag) =1 and u'(t) > 1Vt € (ay, t4].

Integrating (27) from a4 to t; we get

t1 " t1
/ bt 2/ J ()t

o %1 w(u’(t)) aq
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thus

ca ds ) )
/ < 2r, which gives ¢; < p;.
1

w(s)
Therefore u'(t) < py for all ¢ € [ty, ], u'(a) < pi. Further suppose that there
exists ty € [a,tp) such that

max{u'(t) : t € [a,to]} = u'(t2) = ca > .
Then we can find sy € [a,t2) such that
u' () = pq and u'(t) > py for all t € (o, ta).

Integrating (27) from ay to t we get

¢ ds L
/ —— < K + 2r, which gives ¢y < p*.
1

w(s)

Thus we have proven
u'(t) < p* for all t € J. (29)

(b) Now, we will estimate «’ from below. Suppose that there exists t3 €
[a,to) such that

min{u'(t) : t € [a,to]} = u'(t3) = —e3 < —1.

If we put v'(t) = —u'(t), we can prove like in (a) that ez < pq, i.e. v/'(t) > —py
on [a, to],u'(b) > —py. Supposing that

mln{u'(t) 1t e [to, b]} = U,,(t4) = —C4 < —U1,

we can also use for v/ = —u' the same argument like in (a) and get ¢4 < p*,
ie.
—p* < d(t) forall t € J. (30)
2. Let k=4. From (21) it follows that there exists u* € (1,00) such that
v d
/ s o (31)
1 w(s)

Now, we can use the same considerations like for the periodic problem (1),(3),
but instead of proving the estimate on [ty,b] and then on [a, ], in the step
(a), and on [a,ts] and then on [tg, b],in the step (b), we can put t; = a, in
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the step (a), and get (29) and then put ¢, = b, in the step (b), and get (30).
3. Let k=5. Then (24) guarantees the existence of v € (1,00) such that for
any solution x of (1),(5) satisfying (26)

2'(a) <, 2’ (b) > —. (32)

Otherwise, we could find a sequence of solutions {z,}° of (1),(5) satisfying
(26) with z] (a) — oo or z!,(b) — —oo for n — co. So, there exists ny € N
such that gi(xp,(a),z), (a)) > 0 or go(z,,(b),z), (b)) < 0, a contradiction.

b no Y no

Further, from (21) it follows that there exists u* € (v, 00) such that

mod 7 d
/ g [T (33)
1

w(s) 1 w(s)

Then we can argue like for k=4 and using (33) we get (29), in the step (a),
and (30), in the step (b).

Lemma 3.2 Letry,ro € R,ry < ry and let (22) be satisfied. If k=5, suppose
moreover

Jim g1 (z,y) >0, lim_g(w,y) <0, (34)

uniformly for x € R,.
Then there exists v* € (0,00) such that for any solution u of the problem
(1),(k), the implication

b, € J 1 < u(ty) <re = ||t||max < V" (35)
is valid.

Proof . Let z be a solution of (1),(k), ke{3,4,5} and let there exist at, € J
such that 1 < u(t;) < re. Let us put r = |ri|+|re|, p =max{|z'(t)| : t € J}.
The condition (22) implies that

2" (t) < ar|z(t)] + ao|2'(t)| + p(t, |z| + |2]) Vt € J. (36)
1. Let k=3. We have |z(t)] < pu(b—a) +r for all ¢ € J and we can find
to € (a,b) such that z'(ty) = 0.
(a) Integrating (36) from ¢q to t € (to, b], we get

z'(t) < A(p, to, b) Vt € [to, b] and 2'(a) < A(p, to, ), (37)
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where
A(p,to, ) = ar[pu(b—a) +r](b—to) + azu(b — ty) +
/ p(s, (b —a+1)+r)ds.

to

Integrating (36) from a to t € (a, tp] and using (37), we get
2'(t) < Au, to,b) + A(u, a,ty) = A(p, a,b) Vit € [a, ty].

Thus
2'(t) < A(p, a,b) for all t € J. (38)

(b) Now, let us integrate (36) from ¢ € [a,ty) to ty :
—a'(t) < A(p, a,to) Vt € [a,to] and — z'(b) < A(u, a.ty). (39)
Finally, using (39) and integrating (36) from ¢ € [ty,b) to b, we have
—2'(t) < A(p, a,to) + A(p, to, b) = A(p, a,b) Vt € {to,b].

Therefore
—2'(t) < A(p,a,b) for all t € J. (40)
(38) and (40) give
p< A, a,b). (41)
2. Let k=4. Then we can put t; = a, in the step (a), and ¢, = b, in the step
(b), and get (41).
3. Let k=5. We can show like in the proof of Lemma 3.1, part 3, that (32)

is valid for any solution x of (1),(5). For proving the estimation of the first
derivatives of the solutions we can argue like for k=4 and get

1<y + A, a,b). (42)
Let us show that there exists v* € (0, 00) such that
max{|z'(t)|: t € J} =p < v*

for any solution z of the problem (1),(k), ke{3,4,5}. Suppose that such con-
stant v* does not exist. Then we can find a sequence of solutions {z,}°
of the problem (1),(k) and the associated sequence of {u,}$° such that
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lim, o0 i, = 00. If ke{3,4}, we get, according to (41), pun, < A(fin,a,d),
i.e.

1
1 < —A(n,a,b) = ay(b—a)?® +ay(b—a)+
1 1 b
—alr(b—a)+u—/ p(s, pn(L+b—a)+r)ds

and if k=5, we get from (42)

1 1
1< —y 4+ —A(tn, a,b).
fn

n

Provided p, — oo we get for k={3,4,5}
1< ay(b—a)®+ag(b—a),

which contradicts (23). So, the implication (35) is valid and Lemma 3.2 is
proved.

Theorem 3.3 Let (21) be fulfilled and let
o1(t) < oq(t) for all t € J.

If k=5, suppose moreover (24).
Then there ezists r* € (0,00) such that

dr(L+ N,Qg) =1,
where

Qs ={z € C () :01(t) <z(t) < oz(t) YVt € J, [|2]|max < 7}

Proof. Let p* be the constant from Lemma 3.1. Put
7= [101]lmax + [|02]lmax, 7° = 4+ max{p", [|o7 [ max, 107 llmax}

1 for 0<s<¢o

X(s,d)){ 2—s/p for p<s<20 ,
0 for s> 2¢
Fta,y) = x(lel + lyl, 7)) [t 2, y),
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and define for ke{3,4}
N*:CHT) = C(J), x> —f*(-,2(-),2'()),
and for k=5
N* . CYJ)—= C(J) x R,
z o (=f(,2(),2(), g1(x(a), 2" (a)), g2(2(b), '(h))).
The differential equation
" = f*(t,x,2") (43)

has also 01,09 as its strict lower and upper solutions and the function f*
satisfies (2) with M = 1+max{|f*(t,z,y)| : t € J, |z|+ |y| < 2r*}. Therefore,
by Theorem 1.1,

dr(L+ N*,Q) =1, (44)

where
Q={xeC'J):01(t) <xz(t) < oxt), |2 (t)] < cVt e J}
with
2(r+1)
bh—
We can see that f* fulfils (21) and thus, by Lemma 3.1, the implication (25)

is valid. It means that any solution u € € of the problem (43),(k) belongs to
Qg. Thus, by the excision property of the degree

dL(L + N*, QG) = ]_,

c=02M+r+1)(b—a)+ + .

and since N* = N on {25 Theorem 3.3 is proved.
Theorem 3.4 Let (22) be fulfilled and let
oa(t) < oy(t) for all t € J.

If k=5, suppose moreover (34).
Then there exists r* € (0,00) such that

dL(L + N? Q?) = _]-7
where

Q= {2 € CT) : [[@llmax + |2 lmax <77,
dt, € J:oa(ty) <z(ty) < oi(ty)}
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Proof. Let v* be the constant from Lemma 3.2. Put 7y =min{oy(t) : t €
J}, ro =max{o(t) : t € J}, r* = v*(1+b—a)+ |r1]|+|r2|+|0] ||max+ || 05| max-
Now, we can follow the proof of Theorem 3.3, define f* and N* in the same
way and, using Theorem 1.2, we get (44), where

Q = {z€C'(J): [#llmax < A, [l] < B,
dt, € J:oo(ty) < z(ty) <oi(ts)}s

with B = 2(b—a)M + r*, A = [|01||max + ||02||max + 2(b — a)? M.
We can see that f* fulfills (22) and thus, using Lemma 3.2, we can finish
the proof similarly like that of Theorem 3.3.

4 Multiplicity results

Let us suppose that o1, 09 and o3 are strict lower, upper and lower solutions of
(1),(k), ke{3,4,5}. Using Theorem 2.1 and Theorem 2.3 we get the following
multiplicity result:

Theorem 4.1 Suppose that
O'l(t) < O'Z(t) < Ug(t) fOT‘ allt € J (45)

and that (17) and, according to k, the condition (18) or (19) or (20) are
fulfilled for all (t,x) € J X [01(t), s3], where s3 = mazx {o3(t) : t € J} +
Ja (t)dt.

Then (1),(k) has at least two different solutions u, v satisfying

o1(t) < u(t) < o9(t), o1 (t) < v(t) for allt € J,
oo(ty) < v(ty) < o3(ty,) for at, € J. (46)

Proof. Since (17)-(20) is the special case of (7)-(10), the existence of a
solution u lying between o, and o5 follows from Theorem 2.1. The existence
of the second solution v satisfying (46) follows from Theorem 2.3. The in-
equality oy < v on J can be proven in the same way like for u in the proof
of Theorem 2.1.

Similarly, by means of Theorem 3.3 and Theorem 3.4 and the fact that
(22) and (34) are the special cases of (21) and (24), we get:
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Theorem 4.2 Let us suppose that (45) and (22) are fulfilled and, for k=5,
suppose moreover (34). Then the assertion of Theorem 4.1 is valid.

Now, let us consider the dual situation, where o3 is an upper solution of

(1), (k).
Theorem 4.3 Suppose that
o3(t) < o1(t) < o9(t) forallt € J (47)

and that (17) and, according to k, the condition (18) or (19) or (20) are
fulfilled for all (t,x) € J x [bs,02(t)], where by = min {o3(t) : t € J} —
Jo ()t

Then (1),(k) has at least two different solutions u, v satisfying
o1(t) < u(t) < o9(t), v(t) < o9(t) for allt € J,
o3(ty) < v(ty) < oi(ty) for at, € J.

Theorem 4.4 Let us suppose that (47) and (22) are fulfilled and, for k=5,
suppose moreover (34). Then the assertion of Theorem 4.3 is valid.

For constant lower and upper solutions we can generalize the theorems
from [12], concerning the multiplicity results of the Ambrosetti-Prodi type
for the periodic problem.

Theorem 4.5 Suppose k€{3,4}. Letn € N,n > 2, ¢1,¢9,81,71,....,Tns1 € R
be such that

e <To < .o < Tpit, (48)
c1 <0< e,
(51— f(t,7:,0))(=1)" >0 for all t € J, i € {1,...,n}, (49)
and
flt,xe1) <0, f(t,z,09) >0 (50)

for all (t,z)e J x [ri,r*], where

Fni1t+maz{|ci|, ca} (b —a)  for n even.

. { Tral for n odd (51)
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Then there ezist s9, 53 € (—00,51), s3 < S9, such that the problem
2"+ f(t,x,2') = s, (k) (52)

has:
(i) at least n different solutions u;, i = 1,..,n, satisfying

ry < ui(t) <r* forallt e Jyie{l,..,n}; (53)

(i1) at least “* (%) solutions satisfying (53) for s = sy and n odd (even);
(7ii) provided s3 < so at least one solution satysfying (53) for s € [s3, S2);

(iv) no solution satifying (53) for s < ss.

Proof. Let j € {1,...,n+1}. The condition (49) implies that there exists
sy < s1 such that for j odd (even) r; is a strict lower (upper) solution to (52)
for s € (sq,s1]. Therefore, using Theorem 4.1 we get (i). For s = s at least
one of the strict upper solutions r; of the problem (52) becames nonstrict
and so two solutions of this problem can identify. In the case where all the
upper solutions became nonstrict for s = s, all neighbour pairs of solutions
of (52) can be identical. Thus (ii) is true. Suppose that z is a solution of
(52) satysfying (53). Put m <min{f(¢t,z,y): (t,z,y) € J x[r1,r*] X [e1, c2]}.
Then, integrating the equation (52) from a to b, we get m < s. Thus for
s < m the problem (52) has no solution satisfying (53). Suppose that for
some s* € (m,s;) the problem (52) has a solution u*. Then there exists a
solution of (52) for all s € [s*, 5], because u* is an upper solution and r; a
lower solution of (52) for s € [s*, 1], and u*(t) > r; on J. So, we can put
s3 = inf{s : s < s1, (52) has a solution satisfying (53)}. Then s3 € (m, sa].
If s3 < s9, we consider a sequence {o,} C (s3,52) converging to s3 and the
corresponding sequence of solutions {u,} of the problems {(52), s=0,}. This
sequence is equi-bounded and equi-continuous in C''(.J) and by the Arzela-
Ascoli theorem, we can choose a subsequence converging in the space C'(.J)
to a solution of (52) for s = s3. Thus (iii) and (iv) are valid.

Similarly we can prove:

Theorem 4.6 If we change the inequality (49) in Theorem 4.5 onto the
opposite one, i.e.

(51— f(t,r,0))(=1)" <0 forallt € J, i € {1,...,n},
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and suppose that (50) is fulfilled for oll (t,z) € J X [s*,r*], where r* is given
by (51) and s* = r; — (b — a)maz{|c1], c2}, then the assertions (i)-(iv) of
Theorem 4.5 remain valid.

Using one-sided growth conditions and Theorems 3.3, 3.4, 4.2 and 4.4, we
get:

Theorem 4.7 Suppose k€{3,4[}. Letn € N,n > 2 be odd and let $1,71,...,Tp41 €
R satisfy (48) and (49). Further, let (21) be fulfilled.
Then there exists v > rpi1 such that (i)-(iv) of Theorem 4.5 are valid.

Theorem 4.8 Suppose k€{3,4}. Letne€ N,n > 2 be even and let 51,71, ..., "1 €
R satisfy (48) and (49). Further let (22) be fulfilled.
Then there exists v* > rpi1 such that (i)-(iv) of Theorem 4.5 are valid.

Close results concerning the existence of two or three solutions of the
periodic problem can be found also in [3] and [13].
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