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Abstract

The paper deals with the singular nonlinear problem

u′′(t) + f(t, u(t), u′(t)) = 0,

u(0) = 0, u′(T ) = ψ(u(T )),

where f ∈ Car((0, T )×D), D = (0,∞)×R. We prove the existence of a
positive solution on (0, T ] to this problem under the assumption that the
function f(t, x, y) is nonnegative and can have time singularities at t = 0,
t = T and space singularity at x = 0. The proof is based on the Schauder
fixed point theorem and on the method of a priori estimates.
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1 Introduction

We will study a singular boundary value problem with nonlinear boundary
conditions

u′′(t) + f(t, u(t), u′(t)) = 0 for a. e. t ∈ [0, T ], (1)

u(0) = 0, u′(T ) = ψ(u(T )), (2)

where f satisfies the Carathéodory conditions on (0, T ) × D, [0, T ] ⊂ R, D =
(0,∞)×R. The function f(t, x, y) is allowed to have time singularities at t = 0,
t = T and space singularity at x = 0, the function ψ is continuous on [0,∞).
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For a given interval [a, b] ⊂ R assume that L1[a, b] denotes the set of all
measurable functions defined a. e. on [a, b] which are Lebesgue integrable on
[a, b], equipped with the norm

‖u‖1 =
∫ b

a
|u(t)|dt for each u ∈ L1[a, b];

C0[a, b] (or C1[a, b]) denotes the set of all functions which are continuous (or
have continuous first derivatives) on [a, b], with the norm ‖u‖∞ = max{|u(t)|
t ∈ [a, b]} (or ‖u‖C1[a,b] = ‖u‖∞ + ‖u′‖∞); AC1[a, b] denotes the set of all func-
tions which have absolutely continuous first derivatives on [a, b]. We say that
f : [a, b]×D → R, D ⊂ R2 satisfies the Carathéodory conditions on [a, b]×D if f
has the following properties: (i) for each (x, y) ∈ D the function f(·, x, y) is mea-
surable on [a, b]; (ii) for almost each t ∈ [a, b] the function f(t, ·, ·) is continuous
on D; (iii) for each compact set K ⊂ D there exists a function mK(t) ∈ L1[a, b]
such that |f(t, x, y)| ≤ mK(t) for a. e. t ∈ [a, b] and all (x, y) ∈ K. For the
set of functions satisfying the Carathéodory conditions on [a, b] × D we write
Car([a, b]×D). By f ∈ Car((0, T )×D) we mean that f ∈ Car([a, b]×D) for
each [a, b] ⊂ (0, T ) and f 6∈ Car([0, T ]×D).

Singular problems have been studied by many authors (see [1] – [6] and
references therein). For instance a similar problem is considered in [3], where
the right–hand side function is continuous and it is allowed to change its sign.
Moreover, the singularity of f is possible in space variable x. In this work,
we consider the function f , which is non–negative and can have both time and
space singularities. Here, we found effective necessary conditions for solvability
of the problem (1), (2). The arguments are based on the ideas of the paper [5],
where the non–linear singular problem with mixed boundary conditions

u′′ + f(t, u, u′) = 0, u′(0) = 0, u(T ) = 0

is investigated.

Definition 1 Let f ∈ Car((0, T ) × D), where D = (0,∞) × R. We say that
f has a time singularity at t = 0 and/or at t = T , if there exists (x1, y1) ∈ D
and/or (x2, y2) ∈ D such that∫ ε

0
|f(t, x1, y1)| dt =∞ and/or

∫ T

T−ε
|f(t, x2, y2)| dt =∞

for each sufficiently small ε > 0. The point t = 0 and/or t = T will be called
a singular point of f .
We say that f has a space singularity at x = 0 if

lim sup
x→0+

|f(t, x, y)| =∞ for a. e. t ∈ [0, T ] and for some y ∈ R.

Here, we will treat with following definition of the solution of the prob-
lem (1), (2).

Definition 2 By a solution of the problem (1), (2) we understand a function
u ∈ AC1[0, T ] satisfying the differential equation (1) and the boundary condi-
tions (2).
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2 Regular problem, lower and upper function

In order to prove the main result we need the existence theorem for regular
boundary value problems. Let us consider a problem

u′′ + h(t, u, u′) = 0, g1(u(0), u′(0)) = 0, g2(u(T ), u′(T )) = 0, (3)

where h ∈ Car([0, T ]× R2), g1, g2 : R2 → R are continuous functions.

Definition 3 A function u ∈ AC1[0, T ] which satisfies the differential equation
in (3) a. e. in [0, T ] and fulfils the boundary conditions in (3) is called a solution
of the problem (3).

In the existence theorem the concept of upper and lower function will be needed.

Definition 4 A function σ ∈ AC1[0, T ] is called a lower function of the problem
(3) if

σ′′(t) + h(t, σ(t), σ′(t)) ≥ 0 for a. e. t ∈ [0, T ]

and
g1(σ(0), σ′(0)) ≥ 0, g2(σ(T ), σ′(T )) ≥ 0.

If these inequalities are reversed, the function σ is called an upper function
of the problem (3).

For σ1, σ2 ∈ AC1[0, T ] such that σ1 ≤ σ2 on [0, T ] we can define a function
γ : [0, T ]× R→ R by

γ(t, x) = max{σ1(t),min{x, σ2(t)}} for each t ∈ [0, T ], x ∈ R. (4)

Now, we introduce the following result [7, Lemma 2]. It is fundamental in the
proof of Lemma 6.

Lemma 5 For u ∈ C1[0, T ] the two following properties hold:

a) d
dtγ(t, u(t)) exists for a. e. t ∈ [0, T ].

b) If um ∈ C1[0, T ] and um → u in C1[0, T ], then

d
dt
γ(t, um(t))→ d

dt
γ(t, u(t)) for a. e. t ∈ [0, T ].

Lemma 6 Let h ∈ Car([0, T ] × R2), g1, g2 : R2 → R be continuous functions
and σ1, σ2 be lower and upper function of the problem (3), respectively, such
that

σ1(t) ≤ σ2(t) for each t ∈ [0, T ].

Further, assume that there exists ϕ ∈ L1[0, T ] such that

|h(t, x, y)| ≤ ϕ(t)

for a. e. t ∈ [0, T ], each x ∈ [σ1(t), σ2(t)] and each y ∈ R, g1 is nondecreasing
in the second variable and g2 is nonincreasing in the second variable. Then
there exists a solution u of the problem (3) such that

σ1 ≤ u ≤ σ2 on [0, T ]. (5)
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Proof. Let us define functionals A, B : C1[0, T ]→ R by

A(u) = γ(0, u(0) + g1(u(0), u′(0))),

B(u) = γ(T, u(T ) + g2(u(T ), u′(T )))

for each u ∈ C1[0, T ]. Lemma 5 allows us to define for each u ∈ C1[0, T ] a
function h̃u : [0, T ]→ R such that

h̃u(t) = h(t, γ(t, u(t)),
d
dt
γ(t, u(t))) for a. e. t ∈ [0, T ].

Obviously, there exists h̄ ∈ L1[0, T ] such that

|h̃u(t)| ≤ h̄(t) for a. e. t ∈ [0, T ] and each u ∈ C1[0, T ].

Consider an auxiliary problem
u′′(t) = −h̃u(t) a. e. t ∈ [0, T ],
u(0) = A(u),
u(T ) = B(u).

(6)

Let us define a mapping F : C1[0, T ]→ C1[0, T ] by

(Fu)(t) = −
∫ T

0
G(t, s)h̃u(s) ds+

T − t
T

A(u) +
t

T
B(u)

for each u ∈ C1[0, T ] and t ∈ [0, T ], where

G(t, s) =

{
t(s−T )
T for 0 ≤ t ≤ s ≤ T,

s(t−T )
T for 0 ≤ s < t ≤ T.

We can check that each fixed point of the operator F is a solution of the problem
(6). Using the Schauder Fixed Point Theorem we will prove that there exists a
fixed point u of the operator F satisfying the inequalities (5) and such that u
is a solution of the problem (3).
It is easy to see that

‖Fu‖∞ ≤ T‖h̄‖1 + 2(‖σ1‖∞ + ‖σ2‖∞)

and
‖(Fu)′‖∞ ≤ ‖h̄‖1 +

2
T

(‖σ1‖∞ + ‖σ2‖∞),

i. e. that there exist K > 0 and Ω = {u ∈ C1[0, T ] : ‖u‖C1[0,T ] ≤ K}, such that
F (Ω) ⊂ Ω. It suffices to prove that the set

F ′ = {(Fu)′ : u ∈ Ω}

is relatively compact in C0[0, T ]. Obviously, for each ε > 0 there exists δ > 0
such that for each u ∈ Ω and s1, s2 ∈ [0, T ], |s2 − s1| < δ, relations

|(Fu)′(s2)− (Fu)′(s1)| = |
∫ s2

s1
h̃u(s) ds| ≤ |

∫ s2

s1
h̄(s) ds| < ε
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are valid. Now, applying Arzelà–Ascoli Theorem we get that F (Ω) is relatively
compact in C1[0, T ]. Thus, there exists a fixed point u of the operator F and
u ∈ AC1[0, T ]. We will prove that relations (5) are satisfied. From boundary
conditions in (6) it follows that

σ1(0) ≤ u(0) ≤ σ2(0) and σ1(T ) ≤ u(T ) ≤ σ2(T ).

Assume that there exists τ ∈ (0, T ) such that u(τ) < σ1(τ). Then there exist
ξ ∈ (0, T ) and δ > 0 such that

(u− σ1)(ξ) = min
t∈[0,T ]

(u− σ1)(t) < 0

and
0 > (u− σ1)(t) > (u− σ1)(ξ) for each t ∈ (ξ, ξ + δ). (7)

Obviously, (u− σ1)′(ξ) = 0 and u(t) < σ1(t) for each t ∈ (ξ, ξ + δ). According
to the definition of h̃u, we have

(u− σ1)′(t) ≤
∫ t

ξ
[−h̃u(s) + h(s, σ1(s), σ′1(s))] ds = 0,

for each t ∈ (ξ, ξ+δ), which contradicts (7). Similarly, we can prove that u ≤ σ2

on [0, T ]. From (5) it follows that u satisfies the differential equation in (3). It
suffices to prove that u satisfies boundary conditions in (3), i. e. according to
(5) and definition of γ, to prove inequalities

σ1(0) ≤ u(0) + g1(u(0), u′(0)) ≤ σ2(0) (8)

and
σ1(T ) ≤ u(T ) + g2(u(T ), u′(T )) ≤ σ2(T ).

Let the first inequality in (8) be not satisfied. Then according to (5) we have

u(0) = σ1(0), 0 > g1(σ1(0), u′(0)) and u′(0) ≥ σ′1(0).

Using the monotonicity of g1 we have 0 > g1(σ1(0), σ′1(0)), which contradicts
the definition of a lower function. The remaining inequalities can be proven in
a similar way. 2

3 Main result

Now, we are ready to prove the existence theorem for singular problem (1), (2).

Theorem 7 Assume that f ∈ Car((0, T )×D), where T > 0, D = (0,∞)×R,
with possible time singularities at t = 0 and/or t = T and a space singularity
at x = 0. Further assume that there exist ε ∈ (0, 1), ν ∈ (0, T ), c ∈ (ν,∞) and
ε0 ∈ (0,∞) such that

f(t, ct, c) = 0 for a. e. t ∈ [0, T ], (9)
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0 ≤ f(t, x, y) for a. e. t ∈ [0, T ], each x ∈ (0, ct], y ∈ [ min
t∈[0,cT ]

ψ(t), c], (10)

ε ≤ f(t, x, y) for a. e. t ∈ [T − ν, T ], each x ∈ (0, ct], y ∈ (−ε0, ν], (11)

0 = ψ(0), ψ(cT ) ≤ c (12)

hold. Then there exists a solution u of the problem (1), (2) such that

0 < u(t) ≤ ct (13)

for each t ∈ (0, T ].

Proof. Step 1. Let k ∈ N, k ≥ 3/T . We define

αk(t, x) =


c/k for x < c/k,
x for c/k ≤ x ≤ ct,
ct for x > ct,

for each t ∈ [1/k, T − 1/k], x ∈ R,

β(y) =


mint∈[0,cT ] ψ(t) for y < mint∈[0,cT ] ψ(t),
y for mint∈[0,cT ] ψ(t) ≤ y ≤ c,
c for y > c,

and

γ(y) =


ε for y < ν,

ε c−yc−ν for ν ≤ y ≤ c,
0 for y > c,

for each y ∈ R and

fk(t, x, y) =


0 for t ∈ [0, 1/k),
f(t, αk(t, x), β(y)) for t ∈ [1/k, T − 1/k],
γ(y) for t ∈ (T − 1/k, T ],

for each x, y ∈ R. Obviously, fk ∈ Car([0, T ]× R2) and

fk(t, x, y) ≥ 0 for a. e. t ∈ [0, T ] and each x, y ∈ R. (14)

Let us define regular problem

u′′ + fk(t, u, u′) = 0, u(0) = 0, u′(T ) = ψ(u(T )). (15)

From relations (9), (12) and (14) it follows that σ1(t) = 0 and σ2(t) = ct for
t ∈ [0, T ] are lower and upper functions of problems (15), respectively. From
Lemma 6 we get a solution uk of the problem (15) (where we put h = fk,
g1(x, y) = −x, g2(x, y) = ψ(x)− y) such that

0 ≤ uk(t) ≤ ct t ∈ [0, T ]. (16)

Obviously, it is valid

u′k(0) ≥ 0 and u′k(0) = lim
t→0+

uk(t)
t
≤ c.
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From (14) it follows that u′k is nonincreasing on [0, T ]. These facts, (15) and
(16) imply

min
s∈[0,cT ]

ψ(s) ≤ ψ(uk(T )) = u′k(T ) ≤ u′k(t) ≤ u′k(0) ≤ c

for every t ∈ [0, T ].
Step 2. (A priori estimates) Consider a sequence {uk} from Step 1. We

will prove the relation
lim inf
k→∞

uk(T ) > 0. (17)

Let (17) be not valid, i. e. lim infk→∞ uk(T ) = 0. From the continuity of ψ and
(12) it follows that for each arbitrarily small ε1 > 0 (ε1 ≤ ε0 and ε1 ≤ ν) there
exists δ > 0 (we can choose it such that δ ≤ ε1) such that for every x ∈ R the
implication

0 ≤ x ≤ δ =⇒ |ψ(x)| < ε1

holds. Then there exists l ∈ N such that

0 ≤ ul(T ) < δ ≤ ε1 and |u′l(T )| = |ψ(ul(T ))| < ε1. (18)

particularly, −ε0 ≤ −ε1 < u′l(T ) ≤ u′l(t) for each t ∈ [0, T ] and u′l(T ) < ε1 < ν.
Then there exists tl ∈ (0, T ) such that −ε0 ≤ u′l(t) ≤ ν for every t ∈ (tl, T ].
There are two possibilities. If tl ≤ T − ν, then integrating the differential
equation from (15) we get

u′l(T )− u′l(t) =
∫ T

t
u′′l (s) ds

= −
∫ T

t
fl(s, ul(s), u′l(s)) ds ≤ −

∫ T

t
εds = −ε(T − t) (19)

for every t ∈ [T − ν, T ]. If tl > T − ν and u′l(t) > ν for every t ∈ [T − ν, tl),
then (19) is valid for each t ∈ [tl, T ]. Since ν ≥ ε(T − t) for t ∈ [T − ν, tl), it
follows that u′l(t) ≥ ε(T − t) for each t ∈ [T − ν, tl). In both cases we have the
inequality

u′l(t) ≥ −ε1 + ε(T − t)

for t ∈ [T − ν, T ]. Integrating this relation over the interval [T − ν, T ] we get

ul(T )− ul(T − ν) ≥ −ε1ν +
εν2

2

and according to (16) and (18) (and since ul(T − ν) ≥ 0) we have

εν2

2
< ε1(ν + 1).

Taking ε1 sufficiently small we get a contradiction. Hence (17) is valid. Accord-
ing to the concavity of uk and (17), there exists ω > 0 such that

uk(t) ≥ ωt for every t ∈ [0, T ], a. e. k ∈ N. (20)
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Step 3. (Convergence of the sequence {uk}) Let uk be a solution of the
problem (15) for each k ∈ N, k ≥ 3/T and [a, b] ⊂ (0, T ) be a compact interval.
Then (20) implies that there exists k0 ∈ N such that for every t ∈ [a, b] and
k ≥ k0

c

k0
≤ uk(t) ≤ ct.

There exists ϕ ∈ L1[a, b] such that

|fk(t, uk(t), u′k(t))| ≤ ϕ(t) for a. e. t ∈ [a, b]

From Arzelà–Ascoli Theorem and diagonalization principle it follows that there
exists u ∈ C0[0, T ] such that u′ is continuous on (0, T ) and a subsequence {unk

}
such that

unk
→ u uniformly on [0, T ],

u′nk
→ u′ locally uniformly on (0, T ), u′nk

(T )→ ψ(u(T ))

}
(21)

and u(0) = 0. Without any loss of generality we assume that {nk} = {k}.
Step 4. (Convergence of the approximate problems) Let us take ξ ∈ (0, T )

such that f(ξ, ·, ·) is continuous on (0,∞) × R. Then there exists a compact
interval J? ⊂ (0, T ) and k? ∈ N such that ξ ∈ J? and for each k ≥ k0

uk(ξ) >
c

k?
, J? ⊂

[
1
k
, T − 1

k

]
.

Then fk(ξ, uk(ξ), u′k(ξ)) = f(ξ, uk(ξ), u′k(ξ)). We get assertion

lim
k→∞

fk(t, uk(t), u′k(t)) = f(t, u(t), u′(t)) for a. e. t ∈ (0, T ). (22)

Let t ∈ (0, T ). Then there exists a compact interval [a, b] ⊂ (0, T ) and ϕ ∈
L1[a, b] such that t ∈ [a, b], T/2 ∈ [a, b] and

|fk(s, uk(s), u′k(s))| ≤ ϕ(s) for a. e. s ∈ [a, b]. (23)

Obviously,

u′k

(
T

2

)
− u′k(t) =

∫ t

T
2

fk(s, uk(s), u′k(s)) ds.

In view of this fact, (21), (22), (23) and Lebesgue Dominated Convergence
Theorem we have

u′
(
T

2

)
− u′(t) =

∫ t

T
2

f(s, u(s), u′(s)) ds.

Obviously, this inequality is valid for every t ∈ (0, T ). It means that u′ is
continuous on each compact subinterval of the interval (0, T ) and

u′′(t) + f(t, u(t), u′(t)) = 0 for a. e. t ∈ (0, T ).

For k ≥ 3/T we have∫ T

0
fk(s, uk(s), u′k(s)) ds = u′k(0)−u′k(T ) = u′k(0)−ψ(uk(T )) ≤ c− min

s∈[0,cT ]
ψ(s)
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From this fact, (14) and Fatou Lemma it follows that f(·, u(·), u′(·)) ∈ L1[0, T ]
and obviously u ∈ AC1[0, T ]. It remains to prove the last boundary condition
in (2). For k ≥ 3/T and t ∈ (0, T ) we have

|u′k(t)− u′k(T )| ≤
∫ T

t
|f(s, u(s), u′(s))| ds

+
∫ T

t
|fk(s, uk(s), u′k(s))− f(s, u(s), u′(s))| ds.

This inequality and (21) imply that for every ε > 0 there exists δ > 0 such that
for every t ∈ (T − δ, T ) there exists k0 = k0(ε, t) ∈ N such that

|u′(t)−ψ(u(T ))| ≤ |u′(t)− u′k0(t)|+ |u′k0(t)− u′k0(T )|+ |u′k0(T )−ψ(u(T ))| < ε.

Thus, u′(T ) = limt→T− u
′(t) = ψ(u(T )). This completes the proof. 2

Example 8 Let α, β ∈ (0,∞). Then, by Theorem 7 the problem

u′′ + (u−α + uβ + t2 + 1)(1− (u′)3) = 0, u(0) = 0, u′(1) = −(u(1))2

has a solution u ∈ AC1[0, 1] such that

0 < u(t) ≤ t for each t ∈ (0, 1].
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