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Abstract. For each n ∈ N, n ≥ 2 we prove the existence of a positive solution
of the singular discrete problem

1

h2
∆2uk−1 + f(tk, uk) = 0, k = 1, . . . , n− 1,

∆u0 = 0, un = 0,

where T ∈ (0,∞), h = T
n
, tk = hk, f : [0, T ] × (0,∞) is continuous and has a

singularity at x = 0. We prove that for n → ∞ the sequence of solutions of the
above discrete problems converges to a solution y of the corresponding continuous
boundary value problem

y′′(t) + f(t, y(t)) = 0,

y′(0) = 0, y(T ) = 0.
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1 Introduction

Let T ∈ (0,∞), n ∈ N, n ≥ 2 and h = T
n
. We investigate the singular discrete

mixed boundary value problem

1

h2
∆2uk−1 + f(tk, uk) = 0, k = 1, . . . , n− 1, (1.1)

∆u0 = 0, un = 0, (1.2)
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where f : [0, T ]× (0,∞) → R is continuous and f(t, x) has a singularity at x = 0,
i.e. we assume

f ∈ C([0, T ]× (0,∞)), lim sup
x→0+

|f(t, x)| = ∞ for each t ∈ (0, T ). (1.3)

Here
tk = hk, ∆uk−1 = uk − uk−1 for k = 0, . . . , n. (1.4)

Definition 1.1 A vector (u0, . . . , un) ∈ Rn+1 satisfying equation (1.1) and the
mixed boundary conditions (1.2) is called a solution of problem (1.1), (1.2). If
uk > 0 for k = 0, . . . , n− 1, the solution is called positive.

The continuous version of problem (1.1), (1.2) has the form

y′′(t) + f(t, y(t)) = 0, (1.5)

y′(0) = 0, y(T ) = 0. (1.6)

Definition 1.2 A function y ∈ C[0, T ] ∩ C2[0, T ) satisfying equation (1.5) for
t ∈ [0, T ) and fulfilling the mixed boundary conditions (1.6) is called a solution
of problem (1.5), (1.6). If y(t) > 0 for t ∈ [0, T ), the solution is called positive.

Discrete boundary value problems arise in the study of solid state physics,
chemical reaction, population dynamics and in many other areas, see [1], [13], [32].
Besides, they are also natural consequences of the discretization of differential
boundary value problems. Solvability of discrete second order boundary value
problems is investigated in the monographs [1], [4], [5], [19] and in many papers,
e.g. [3], [6], [8], [9], [10], [14], [16], [20], [21], [22]. The lower and upper functions
method for regular discrete problems is used in [7], [11], [12], [17], [25], [30], [31].
In this paper we extend this method for singular discrete problem (1.1), (1.2).
It is of interest to note that singular problems for differential equations have
been intensively studied in literature. For the second order singular differential
equations we can refer to the monographs [18], [23], [26]. However there are only
few results for its discrete analogue, see [2], [5], [24].

Here we provide conditons which imply that for each n ∈ N, n ≥ 2 the
singular discrete problem (1.1), (1.2) has a positive solution (u0, . . . , un). Then
we construct an approximate function S[n] ∈ C[0, T ] satisfying

S[n](tk) = uk, k = 0, . . . , n.

Having the sequence {S[n]} we prove that there is a subsequence {S[m]} locally
uniformly converging on [0, T ) for m→∞ to a positive solution y of the singular
continuous problem (1.5), (1.6). Similar results about discrete approximation of
regular problems can be found in [15], [27], [28], [29].
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2 Lower and upper functions method

It is known that if problem (1.1), (1.2) is regular, i.e. f is continuous on [0, T ]×R
and if there exist well ordered lower and upper functions of problem (1.1), (1.2),
then this problem has a solution lying between these functions. Here we extend
this result for the singular problem (1.1), (1.2).

Definition 2.1 The vector (α0, . . . , αn) ∈ Rn+1 is called a lower function of
problem (1.1), (1.2) if

1

h2
∆2αk−1 + f(tk, αk) ≥ 0, k = 1, . . . , n− 1, (2.1)

∆α0 ≥ 0, αn ≤ 0. (2.2)

Definition 2.2 The vector (β0, . . . , βn) ∈ Rn+1 is called an upper function of
problem (1.1), (1.2) if

1

h2
∆2βk−1 + f(tk, βk) ≤ 0, k = 1, . . . , n− 1, (2.3)

∆β0 ≤ 0, βn ≥ 0. (2.4)

Theorem 2.3 (Lower and upper functions method). Assume that conditon (1.3)
holds. Let (α0, . . . , αn) and (β0, . . . , βn) be a lower function and an upper function
of problem (1.1), (1.2) such that 0 < αk ≤ βk, k = 1, . . . , n − 1. Then problem
(1.1), (1.2) has a solution (u0, . . . , un) satisfying

αk ≤ uk ≤ βk, k = 0, . . . , n. (2.5)

Proof. For k ∈ {1, . . . , n− 1}, x ∈ R define a function

f̃(tk, x) =


f(tk, βk)− x−βk

x−βk+1
if x > βk,

f(tk, x) if αk ≤ x ≤ βk,
f(tk, αk) + αk−x

αk−x+1
if x < αk.

(2.6)

We see that f̃(tk, ·): R → R is continuous for k = 1, . . . , n − 1 and there exists
M > 0 such that

|f̃(tk, x)| ≤M for k = 1, . . . , n− 1, x ∈ R.

Consider the auxiliary difference equation

1

h2
∆2uk−1 + f̃(tk, uk) = 0, k = 1, . . . , n− 1. (2.7)

Denote
E = {v = (v0, . . . , vn) ∈ Rn+1: ∆v0 = 0, vn = 0}

3



and define ‖v‖ = max{|vk|: k = 1, . . . , n − 1}. Then E is a Banach space with
dimE = n− 1. Define an operator F :E → E by

(Fv)k = −
n−1∑
i=1

G(tk, si)f̃(si, vi), k = 0, . . . , n, (2.8)

where G is the Green function of the homogeneous linear problem

1

h2
∆2uk−1 = 0, ∆u0 = 0, un = 0. (2.9)

Then

G(tk, si) = h
{
tk − T for 0 < si ≤ tk ≤ T ,
si − T for 0 ≤ tk < si ≤ T ,

where si = hi, tk = hk, k = 0, . . . , n, i = 1, . . . , n. Since

−hT < G(tk, si) < 0 for i = 1, . . . , n− 1, k = 0, . . . , n− 1,

we get
‖Fv‖ < nhTM = T 2M.

Therefore if we denote r∗ = T 2M and consider the closed ball K(r∗) = {v ∈
E: ‖v‖ ≤ r∗}, we see that F maps K(r∗) into itself. Since F is continuous, the
Brouwer fixed point theorem yields a fixed point u ∈ K(r∗) of the operator F .
So, we have u = Fu and consequently, by (2.8),

uk = −
n−1∑
i=1

G(tk, si)f̃(si, ui), k = 0, . . . , n.

Since G is the Green function of problem (2.9), the vector u = (u0, . . . , un) is a
solution of problem (2.7), (1.2).

Now we will prove estimate (2.5). Let us put zk = αk − uk and assume

max{zk: k = 0, . . . , n} = z` > 0. (2.10)

Then ` ∈ {1, . . . , n − 1} because zn = αn − un ≤ 0 and ∆z0 = z1 − z0 =
α1 − α0 − (u1 − u0) ≥ 0. Consequently z1 ≥ z0. Since z` is maximal, we have

z`−1 ≤ z`, z` ≥ z`+1.

Therefore
∆u`−1 ≤ ∆α`−1, ∆u` ≥ ∆α`.

This leads to
∆2u`−1 ≥ ∆2α`−1. (2.11)

On the other hand, by Definition 2.1 and formula (2.6), we obtain

1

h2
(∆2α`−1 −∆2u`−1) =

1

h2
∆2α`−1 + f̃(t`, u`)
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=
1

h2
∆2α`−1 + f(t`, u`) +

α` − u`

α` − u` + 1
≥ z`

z` + 1
> 0,

contrary to (2.11). So, we have proved αk ≤ uk, k = 0, . . . , n. The estimate
uk ≤ βk, k = 0, . . . , n can be proved similarly. Therefore (u0, . . . , un) satisfies
(2.5) and hence (u0, . . . , un) is also a solution of problem (1.1), (1.2). �

3 Approximate functions

Assume that conditions (1.3) and

α, β ∈ C[0, T ], 0 < α(t) ≤ β(t) for t ∈ (0, T ) (3.1)

hold and denote

αk = α(tk), βk = β(tk), k = 0, . . . , n. (3.2)

Let us choose n ∈ N, n ≥ 2 and suppose that (α0, . . . , αn) and (β0, . . . , βn) are
a lower function and an upper function of problem (1.1), (1.2). By Theorem 2.3
there exists a solution (u0, . . . , un) of problem (1.1), (1.2) fulfilling estimate (2.5).
By means of the substitution

∆uk

h
= vk, k = 0, . . . , n− 1 (3.3)

in equation (1.1) we get

∆vk−1

h
= −f(tk, uk), k = 1, . . . , n− 1. (3.4)

Since ∆u0 = v0 = 0, equations (3.3) and (3.4) can be written in the form

uk+1 = u0 + h
k∑

i=1

vi, k = 1, . . . , n− 1 (3.5)

and

vk = −h
k∑

i=1

f(ti, ui), k = 1, . . . , n− 1. (3.6)

Let us put

S[n](t) = uk + vk(t− tk), t ∈ [tk, tk+1], k = 0, . . . , n− 1. (3.7)

Then
S[n] ∈ C[0, T ], S[n](tk) = uk, k = 0, . . . , n.
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Let us putP
[n](t) = vk +

∆vk

h
(t− tk), t ∈ [tk, tk+1], k = 0, . . . , n− 2,

P [n](t) = vn−1, t ∈ [tn−1, tn].

(3.8)

Then
P [n] ∈ C[0, T ], P [n](tk) = vk, k = 0, . . . , n− 1.

By (3.5) and (3.6) we get

S[n](tk+1) = S[n](0) + h
k∑

i=1

P [n](ti), k = 1, . . . , n− 1 (3.9)

and

P [n](tk) = −h
k∑

i=1

f(ti, S
[n](ti)), k = 1, . . . , n− 1. (3.10)

The main result of the paper is contained in the following theorem.

Theorem 3.1 Assume that conditions (1.3), (3.1) and (3.2) hold. Let for each
n ≥ 2 the vectors (α0, . . . , αn) and (β0, . . . , βn) be a lower function and an upper
function of problem (1.1), (1.2) and let α0 > 0, βn = 0. Then for each n ≥ 2
problem (1.1), (1.2) has a solution (u0, . . . , un), a sequence {S[n]} can be given
by (3.7) and there exists a subsequence {S[m]} ⊂ {S[n]} which converges locally
uniformly on [0, T ) to a solution y ∈ C[0, T ] ∩ C2[0, T ) of problem (1.5), (1.6).

If, in addition,

|f(t, x)| ≤ g0(t, x) + g1(t, x) for t ∈ [0, T ], x ∈ (0,∞), (3.11)

where g0 ∈ C([0, T ]× (0,∞)) is nonincreasing in its second variable with∫ T

0
g0(t, α(t))dt <∞ (3.12)

and g1 ∈ C([0, T ]× [0,∞)), then moreover y ∈ C1[0, T ].

To prove Theorem 3.1 we use the next two lemmas.

Lemma 3.2 Let the assumptions of Theorem 3.1 hold. Assume that S[n] and
P [n] are given by (3.7) and (3.8) and choose an arbitrary interval [0, b] ⊂ [0, T ).
Then the sequences {S[n]} and {P [n]} are bounded and equicontinuous on [0, b].

Proof. Let us choose c ∈ (b, T ) and denote

A = min{α(t): t ∈ [0, c]},
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B = max{β(t): t ∈ [0, c]},
M = max{|f(t, x)|: t ∈ [0, c], x ∈ [A,B]}.

There exists n0 ∈ N such that for each n ≥ n0 we can choose bn ∈ {1, . . . , n}
such that

tbn−1 ≤ b < tbn < tbn+1 < c. (3.13)

Clearly
lim

n→∞
tbn = lim

n→∞
tbn+1 = b. (3.14)

Further we have

max{|S[n](t)|: t ∈ [0, b]} ≤ max{|uk|+ |∆uk|: k = 0, . . . , bn}

and
max{|P [n](t)|: t ∈ [0, b]} ≤ max{|vk|+ |∆vk|: k = 0, . . . , bn}.

By (3.1) and (2.5) we get

max{|uk|: k = 0, . . . , bn} ≤ B

and by (2.5) and (3.6) we obtain

max{|vk|: k = 0, . . . , bn} ≤
T

n
bnM < TM.

Condition (3.3) implies

max{|∆uk|: k = 0, . . . , bn} ≤
T

n
TM < T 2M

and condition (3.4) gives

max{|∆vk|: k = 0, . . . , bn} ≤
T

n
M < TM.

Therefore we get for n ≥ n0

max{|S[n](t)|: t ∈ [0, b]} ≤ B + T 2M,

max{|P [n](t)|: t ∈ [0, b]} ≤ 2TM.

We have proved that the sequences {S[n]} and {P [n]} are bounded on [0, b].
Now, choose τ1, τ2 ∈ [0, b], τ1 < τ2. By (3.13) we can find k, ` ∈ {1, . . . , bn},

k < ` such that τ1 ∈ [tk−1, tk), τ2 ∈ (t`−1, t`) and for each n ≥ n0

|S[n](τ2)− S[n](τ1)|

≤
`−1∑

i=k+1

|S[n](ti)− S[n](ti−1)|+ |S[n](tk)− S[n](τ1)|+ |S[n](τ2)− S[n](t`−1)|
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≤
`−1∑

i=k+1

|vi−1|(ti − ti−1) + |vk−1|(tk − τ1) + |v`−1|(τ2 − t`−1)

< TM(τ2 − τ1).

If k + 1 > `− 1 we put
∑`−1

i=k+1 = 0.
Similarly, due to (3.4),

|P [n](τ2)− P [n](τ1)|

≤
`−1∑

i=k+1

∣∣∣∣∆vi

h

∣∣∣∣ (ti − ti−1) +
∣∣∣∣∆vk−1

h

∣∣∣∣ (tk − τ1) +
∣∣∣∣∆v`−1

h

∣∣∣∣ (τ2 − t`−1)

< M(τ2 − τ1).

We have proved that the sequences {S[n]} and {P [n]} are equicontinuous on [0, b].
�

Lemma 3.3 Let the assumptions of Theorem 3.1 hold. Assume that S[n] and
P [n] are given by (3.7) and (3.8). Then there exist subsequences {S[m]} ⊂ {S[n]}
and {P [m]} ⊂ {P [n]} satisfying

lim
m→∞

S[m](t) = S(t) locally uniformly on [0, T ) (3.15)

and
lim

m→∞
P [m](t) = P (t) locally uniformly on [0, T ). (3.16)

Moreover
0 < α(t) ≤ S(t) ≤ β(t) for t ∈ [0, T ). (3.17)

Proof. Choose an interval [0, b] ⊂ [0, T ). Lemma 3.2 and the Arzelà-Ascoli
theorem imply that we can choose subsequences of {S[n]} and of {P [n]} which
uniformly converge on [0, b]. Since [0, b] is an arbitrary interval in [0, T ), we use
the diagonalization theorem (see e.g. [26]) to get that these subsequences can be
chosen in such a way that they fulfil (3.15) and (3.16).

Now, choose an arbitrary b ∈ [0, T ] and assume that (3.13) holds. By (2.5)
we have

α(tbn) ≤ S(tbn) ≤ β(tbn)

and letting n→∞ we get due to (3.14)

α(b) ≤ S(b) ≤ β(b).

Since b ∈ [0, T ) is arbitrary, estimate (3.17) follows. �

Proof of Theorem 3.1. By (3.15) and (3.16) the functions S and P are con-
tinuous on [0, T ). Let b ∈ (0, T ), c ∈ (b, T ) and let (3.13) hold. By (3.14)–(3.16)
we have

lim
m→∞

S[m](tbm+1) = S(b), lim
m→∞

P [m](tbm) = P (b). (3.18)
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Due to (1.3) and (3.17) the function f(t, S(t)) is continuous on [0, T ). Let us
denote

%m = max{|P [m](t)− P (t)|: t ∈ [0, c]}
and

σm = max{|f(t, S[m](t))− f(t, S(t))|: t ∈ [0, c]}.
Then, by (3.15) and (3.16), we get

lim
m→∞

%m = 0, lim
m→∞

σm = 0

and consequently, having h = T
m

, we conclude

lim
m→∞

T

m

bm∑
i=1

|P [m](ti)− P (ti)| = lim
m→∞

T

m
bm%m ≤ T lim

m→∞
%m = 0, (3.19)


lim

m→∞

T

m

bm∑
i=1

|f(ti, S
[m](ti))− f(ti, S(ti))|

= lim
m→∞

T

m
bmσm ≤ T lim

m→∞
σm = 0.

(3.20)

Further we have

lim
m→∞

T

m

bm∑
i=1

f(ti, S(ti)) =
∫ b

0
f(τ, S(τ))dτ (3.21)

and

lim
m→∞

T

m

bm∑
i=1

P (ti) =
∫ b

0
P (τ)dτ. (3.22)

Equation (3.9) yields

S[m](tbm+1) = S[m](0) +
T

m

bm∑
i=1

P [m](ti).

Letting m→∞ and using (3.18), (3.19) and (3.22), we get

S(b) = S(0) +
∫ b

0
P (τ)dτ.

Equation (3.10) yields

P [m](tbm) = − T
m

bm∑
i=1

f(ti, S
[m](ti)).

By (3.18), (3.20) and (3.21) we get for m→∞

P (b) = −
∫ b

0
f(τ, S(τ))dτ.
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Since b ∈ (0, T ) is arbitrary, we have
S(t) = S(0) +

∫ t

0
P (τ)dτ,

P (t) = −
∫ t

0
f(τ, S(τ))dτ, t ∈ [0, T ).

(3.23)

Let us put y(t) = S(t) for t ∈ [0, T ). Then (3.23) gives

y′(t) = P (t) = −
∫ t

0
f(τ, y(τ))dτ, t ∈ [0, T ) (3.24)

and hence y ∈ C2[0, T ), y′(0) = 0. According to (3.17) we have

0 < α(t) ≤ y(t) ≤ β(t) for t ∈ [0, T ).

Conditions (3.1) and (2.2) imply αn = α(T ) = 0. Hence the assumption βn =
β(T ) = 0 leads to limt→T− y(t) = 0. So, if we put y(T ) = 0, we get y ∈ C[0, T ]
and consequently y is a solution of problem (1.5), (1.6).

Now, assume in addition that inequality (3.11) holds with g0 and g1 described
in Theorem 3.1. Then

|f(t, y(t))| ≤ g0(t, α(t)) + g1(t, y(t))

and ∫ T

0
|f(t, y(t))|dt ≤

∫ T

0
g0(t, α(t))dt+

∫ T

0
g1(t, y(t))dt <∞.

Therefore the function
∫ t
0 f(τ, y(τ))dτ is continuous for t ∈ [0, T ] and equality

(3.24) yields y ∈ C1[0, T ]. �

Example 1. Assume that T ∈ (0,∞), n ∈ N, n ≥ 2, h = T
n

and we use notation
(1.4). Consider the singular difference equation

1

h2
∆2uk−1 +

a0

u2
k

− b0
uk

− c0t
2γ−4
k = 0, k = 1, . . . , n− 1, (3.25)

where a0, b0, c0 ∈ (0,∞), γ ∈ [2,∞). Such types of equations appear in the theory
of shallow membrane caps. We see that the function

f(t, x) =
a0

x2
− b0
x
− c0t

2γ−4 (3.26)

satisfies (1.3). Choose ν, c ∈ (0,∞) and define

α(t) = ν(ν + t)(T − t), β(t) = c
√
T 2 − t2, t ∈ [0, T ]. (3.27)

Then for each sufficiently large c the functions α and β satisfy (3.1) and

α(0) > 0, α(T ) = β(T ) = 0. (3.28)
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Now, we use notation (3.2) and get

∆αk−1 = α(tk)− α(tk−1) = ν(tk − tk−1)(T − ν − (tk + tk−1))

and

∆α0 = νt1(T − ν − t1) > 0 for each ν ∈
(
0,
T

2

)
.

Similarly

∆βk−1 = β(tk)− β(tk−1) = c
(√

T 2 − t2k −
√
T 2 − t2k−1

)
and

∆β0 = c
(√

T 2 − t21 −
√
T 2

)
< 0 for each c > 0.

Further, we have
1

h2
∆2αk−1 = −2ν, k = 1, . . . , n− 1

and

f(tk, αk) =
a0

α2(tk)
− b0
α(tk)

− c0t
2γ−4
k

=
a0

ν2(ν + tk)2(T − tk)2
− b0
ν(ν + tk)(T − tk)

− c0t
2γ−4
k

=
1

ν2(ν + tk)2(T − tk)2
ϕ(tk, ν),

where

ϕ(tk, ν) = a0 − b0ν(ν + tk)(T − tk)− c0t
2γ−4
k ν2(ν + tk)

2(T − tk)
2

for k = 1, . . . , n− 1. We see that

lim
ν→0+

1

ν2(ν + tk)2(T − tk)2
ϕ(tk, ν) = ∞, k = 1, . . . , n− 1.

Hence for each sufficiently small ν > 0 the vector (α0, . . . , αn) fulfils (2.2) and
(2.1) with f given by (3.26) and therefore this vector is a lower function of problem
(3.25), (1.2).

Similarly
∆2βk−1 = ∆βk −∆βk−1

= c
(√

T 2 − t2k+1 −
√
T 2 − t2k

)
− c

(√
T 2 − t2k −

√
T 2 − t2k−1

)

= −c
t2k+1 − t2k√

T 2 − t2k+1 +
√
T 2 − t2k

+ c
t2k − t2k−1√

T 2 − t2k +
√
T 2 − t2k−1
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= −2cTh

 1√
T 2 − t2k+1 +

√
T 2 − t2k

− 1√
T 2 − t2k +

√
T 2 − t2k−1

 .
Thus

1

h2
∆2βk−1 =

−2cT

h


√
T 2 − t2k−1 −

√
T 2 − t2k+1(√

T 2 − t2k+1 +
√
T 2 − t2k

) (√
T 2 − t2k +

√
T 2 − t2k−1

)


≤ −2cT

h

t2k+1 − t2k−1(
2
√
T 2 − t2k−1

)3 ≤
−cT 2

(T 2 − t2k−1)
3/2
, k = 1, . . . , n− 1.

Moreover

f(tk, βk) =
a0

β2
k

− b0
βk

− c0t
2γ−4
k =

a0

c2(T 2 − t2k)
− b0

c
√
T 2 − t2k

− c0t
2γ−4
k

and

1

h2
∆2βk−1 + f(tk, βk) ≤

−cT 2

(T 2 − t2k−1)
3/2

(
1

2
−
a0(T

2 − t2k−1)

c3T 2(T 2 − t2k)

√
T 2 − t2k−1

)

<
−cT 2

(T 2 − t2k−1)
3/2

1

2
−

4a0

√
T 2 − t2k−1

c3T 2

 =: ψ(c, tk−1).

We see that
lim
c→∞

ψ(c, tk−1) = −∞ for k = 1, . . . , n− 1.

Hence for each sufficiently large c the vector (β0, . . . , βn) fulfils (2.4) and (2.3)
with f given by (3.26) and therefore it is an upper function of problem (3.25),
(1.2). By Theorem 2.3, for each n ∈ N, n ≥ 2, problem (3.25), (1.2) has a solution
(u0, . . . , un) satisfying (2.5). If we define vk by (3.3) and S[n] by (3.7), Theorem
3.1 yields that there is a subsequence {S[m]} which converges locally uniformly
on [0, T ) to a solution y ∈ C[0, T ] ∩ C2[0, T ) of problem

y′′(t) +
a0

y2(t)
− b0
y(t)

− c0t
2γ−4 = 0, y′(0) = 0, y(T ) = 0.

Example 2. Assume that T ∈ (0,∞), n ∈ N, n ≥ 2, h = T
n

and we use notation
(1.4) and (3.2). Consider the singular difference equation

1

h2
∆2uk−1 + (T − tk)

2

(
a0

u2
k

− b0
uk

− c0t
2γ−4
k

)
= 0, k = 1, . . . , n− 1, (3.29)

where a0, b0, c0 ∈ (0,∞), γ ∈ [2,∞). Define α and β by (3.27). We can check as
in Example 1 that for each sufficiently small ν > 0 the vector (α0, . . . , αn) is a

12



lower function of problem (3.29), (1.2) and for each sufficiently large c > ν the
vector (β0, . . . , βn) is an upper function of problem (3.29), (1.2). We see that
α(0) > 0 and β(T ) = 0. Therefore, by Theorem 2.3, for each n ∈ N, n ≥ 2,
problem (3.29), (1.2) has a solution (u0, . . . , un) satisfying (2.5). As in Example
1 we get a subsequence {S[m]} which converges locally uniformly on [0, T ) to a
solution y ∈ C[0, T ] ∩ C2[0, T ) of problem

y′′(t) + (T − t)2

(
a0

y2(t)
− b0
y(t)

− c0t
2γ−4

)
= 0, y′(0) = 0, y(T ) = 0.

Moreover, the function

f(t, x) = (T − t)2

(
a0

x2
− b0
x
− c0t

2γ−4

)

satisfies (3.11) with

g0(t, x) = (T − t)2

(
a0

x2
+
b0
x

)
, g1(t, x) = (T − t)2c0t

2γ−4.

Since ∫ T

0
g0(t, α(t))dt =

∫ T

0

(
a0

ν2(ν + t)2
+
b0(T − t)

ν(ν + t)

)
dt <∞,

we get by Theorem 3.1 that moreover y ∈ C1[0, T ].
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