
Localization of Nonsmooth Lower and UpperFunctions for Periodic Boundary Value ProblemsIrena Rach�unková � and Milan TvrdýDecember 20, 2000Summary. In this paper we present conditions ensuring the existence and localization of lower andupper functions of the periodic boundary value problem u00 + k u= f(t; u); u(0)=u(2�); u0(0)=u0(2�); k2R; k 6=0: These functions are constructed as solutions of some related generalized linearproblems and they can be nonsmooth, in general.Mathematics Subject Classi�cation 2000. 34 B 15, 34 C 25Keywords. Second order nonlinear ordinary di�erential equation, periodic problem, lower andupper functions, generalized linear di�erential equation.1 . IntroductionTheorems about the existence of solutions of boundary value problems for ordinarydi�erential equations often suppose the existence of lower and upper functions to thestudied problem. For such theorems concerning periodic boundary value problemswe can refer e.g. to the papers [1], [2], [3], [5], [6], [8], [9], [10], [11], [12], [13], [14] andour forthcoming paper [15]. We can decide whether the problem has constant lowerand upper functions (see e.g. [2], [5]) and to �nd them if they exist. In general,however, it is easy neither to �nd nonconstant lower and upper functions nor toprove their existence which can make di�cult the application of such theorems.One possibility how to get nonconstant and possibly nonsmooth lower and upperfunctions to the periodic boundary value problemu00 + k u = f(t; u); u(0) = u(2�); u0(0) = u0(2�); k 2 R ; k 6= 0(1.1)is shown here. (The case k = 0 is solved in [13] and [14].) We make use of fairly gen-eral de�nitions of these notions introduced in [12] and we construct them as solutionsof generalized periodic boundary value problems for linear di�erential equations insections 2 and 3. (Essentially they are solutions of linear generalized di�erential�Supported by the grant No. 201/98/0318 of the Grant Agency of the Czech Republic1



2 Irena Rach�unková and Milan Tvrdýequations in the sense of J. Kurzweil, cf. e.g. [4], [17], [18] and [19].) Our next paper[15] will show new e�ective existence criteria for the problem (1.1). The proofs ofthem are based on the theorems about the existence and localization of lower andupper functions from this paper.We say that f : [0; 2 �]�R 7! R ful�ls the Carathéodory conditions on [0; 2 �]�R ;if f has the following properties: (i) for each x 2 R the function f(:; x) is measurableon [0; 2 �]; (ii) for almost every t 2 [0; 2 �] the function f(t; :) is continuous on R ;(iii) for each compact set K� R the function mK(t) = sup x2K jf(t; x)j is Lebesgueintegrable on [0; 2 �]:The set of functions satisfying the Carathéodory conditions on [0; 2 �] � R isdenoted by Car([0; 2 �]� R):Throughout the paper we assume f 2 Car([0; 2 �]� R):For a given subinterval J of R (possibly unbounded) C (J) denotes the set offunctions continuous on J; L [0; 2 �] stands for the set of functions Lebesgue inte-grable on [0; 2 �]; L2 [0; 2 �] is the set of functions square Lebesgue integrable on[0; 2 �]; L1 [0; 2 �] is the set of functions essentially bounded on [0; 2 �]; A C [0; 2 �]denotes the set of functions absolutely continuous on [0; 2 �] and BV [0; 2 �] is theset of functions of bounded variation on [0; 2 �]: For x 2 L [0; 2 �]; y 2 L 2 [0; 2 �] andz 2 L1 [0; 2 �]; we denotex = 12� Z 2�0 x(s) ds; kxk1 = Z 2�0 jx(t)j dtkyk2 = �Z 2�0 y2(t) dt� 12 and kzk1 = sup esst2[0;2�] jz(t)j:If x 2 BV [0; 2 �]; s 2 (0; 2�] and t 2 [0; 2�); then the symbols x(s�); x(t+) and�+x(t) are respectively de�ned byx(s�) = lim�!s�x(�); x(t+) = lim�!t+x(�) and �+x(t) = x(t+)� x(t)and xac and xsing stand for the absolutely continuous part of x and the singular partof x; respectively. We suppose xsing(0) = 0:Ln [0; 2 �] and Ln�n [0; 2 �] are respectively the sets of column n-vector valuedand of n� n-matrix valued functions with elements from L [0; 2 �]; A C n[0; 2 �] andA C n�n[0; 2 �] are respectively the sets of n-vector valued and of n�n-matrix valuedfunctions whose elements are absolutely continuous on [0; 2 �] and BV n[0; 2 �] is theset of n-vector valued functions whose elements have a bounded variation on [0; 2 �]:For a subset M of R ; �M denotes the characteristic function of M: For x 2L [0; 2 �] and a.e. t 2 [0; 2 �]; we writex+(t) = maxfx(t); 0g and x�(t) = maxf�x(t); 0g:



Localization of Nonsmooth Lower and Upper Functions 3By a solution of (1.1) we understand a function u : [0; 2 �] 7! R such thatu0 2 A C [0; 2 �]; u(0) = u(2�); u0(0) = u0(2�) andu00(t) + k u(t) = f(t; u(t)) for a.e. t 2 [0; 2 �]:1.1. De�nition. Functions (�1; �1) 2 A C [0; 2 �] � BV [0; 2 �] are said to be lowerfunctions of the problem (1.1), if the singular part �sing1 of �1 is nondecreasing on[0; 2 �]; �01(t) = �1(t); �01(t) + k �1(t) � f(t; �1(t)) for a.e. t 2 [0; 2 �]and �1(0) = �1(2�); �1(0+) � �1(2��):(1.2)Similarly, functions (�2; �2) 2 A C [0; 2 �]� BV [0; 2 �] are said to be upper func-tions of the problem (1.1), if the singular part �sing2 of �2 is nonincreasing on [0; 2 �];�02(t) = �2(t); �02(t) = k �2(t) � f(t; �2(t)) for a.e. t 2 [0; 2 �]and �2(0) = �2(2�); �2(0+) � �2(2��):(1.3)2 . Periodic solutions of certain generalized lineardi�erential problemsWe want to show that if for a.e. t 2 [0; 2 �] and all x 2 It; where It is a subintervalof R ; the function f ful�ls a condition of the formf(t; x) � �(t)(2.1)or f(t; x) � �(t);(2.2)with � 2 L [0; 2 �]; then it is possible to construct lower or upper functions for theproblem (1.1), respectively.It is known that if k 6= n2 for all n 2 N [ f0g; then the problem�0 = �; �0 + k � = �(t) a.e. on [0; 2 �];(2.3) �(0) = �(2�); �(0) = �(2�)(2.4)



4 Irena Rach�unková and Milan Tvrdýpossesses a unique solution (�; �) 2 A C [0; 2 �] � A C [0; 2 �] for any � 2 L [0; 2 �]:Consequently, if we have in addition�(t) 2 It for all t 2 [0; 2 �];(2.5)then the functions (�; �) are lower or upper functions of (1.1) (according to whether(2.1) or (2.2) is satis�ed). In general the relation (2.5) need not be true, of course.However, if we admit a more general notion of a solution to the linear problem(2.3), (2.4) and if the intervals It of validity of (2.1) or (2.2) are large enough, wecan always use the problem (2.3), (2.4) for a construction of lower or upper functionsfor (1.1).To show this, let us consider a linear di�erential system on [0; 2 �]�0 = P (t) � + q(t);(2.6)where P 2 Ln�n [0; 2 �] and q 2 Ln [0; 2 �]: By a solution of (2.6) on [0; 2 �] wemean a function � 2 A C n[0; 2 �] satisfying (2.6) a.e. on [0; 2 �]: The correspondingnormalized fundamental matrix solution of the system�0 = P (t) �(2.7)is denoted by X; i.e. X 2 A C n�n[0; 2 �] andX(t) = I + Z t0 P (s)X(s) ds on [0; 2 �];where I stands, as usual, for the identity n� n-matrix. Its inverse matrix X�1(t) isde�ned for any t 2 [0; 2 �]; X�1 2 A C n�n[0; 2 �] and ifdet �X�1(2�)� I� 6= 0(2.8)holds, then for any q 2 Ln [0; 2 �] there is a unique solution � 2 A C n[0; 2 �] of (2.6)on [0; 2 �] such that �(0) = �(2�):(2.9)This solution can be written in the form�(t) = Z 2�0 G(t; s) q(s) ds on [0; 2 �];where G(t; s) = X(t) 8<: �X�1(2�)� I��1 for t � s;I + �X�1(2�)� I��1 for s < t 9=; X�1(s)(2.10)is the Green function of the problem (2.7), (2.9).



Localization of Nonsmooth Lower and Upper Functions 52.1. De�nition. Let � 2 [0; 2�) and d 2 Rn be given. By a solution of the problem(2.6), (2.9), �+�(�) = d(2.11)we mean a function � 2 BV n[0; 2 �] such that the relations (2.9) and�0(t) = P (t) �(t) + q(t) a.e. on [0; 2 �](2.12)are satis�ed and � � d �(�;2�] 2 A C n[0; 2 �]:2.2. Proposition. Assume (2.8). Then for any � 2 [0; 2�); any d 2 Rn and anyq 2 Ln [0; 2 �]; the problem (2.6), (2.9), (2.11) possesses a unique solution � and thissolution is given by�(t) = G(t; �) d+ Z 2�0 G(t; s) q(s) ds on [0; 2 �];(2.13)where G is de�ned by (2.10).Proof. For any c 2 Rn ; the functionsx(t) = X(t) c+X(t) Z t0 X�1(s) q(s) ds; t 2 [0; 2 �];and y(t) = X(t)X�1(2�) c�X(t) Z 2�t X�1(s) q(s) ds t 2 [0; 2 �];are the unique solutions of (2.6) on [0; 2 �]; such that x(0) = c and y(2�) = c;respectively. De�ne �(t) = x(t) for 0 � t � � and �(t) = y(t) for � < t � 2�: Then� 2 BV n[0; 2 �] ful�ls (2.9), (2.12) and�+�(�) = X(�) [X�1(2�)� I] c�X(�) Z 2�0 X�1(s) q(s) ds:Consequently, if we putc =M�1 �X�1(�) d+ Z 2�0 X�1(s) q(s) ds�;where M = X�1(2�)� I; then � veri�es (2.11). Moreover, �(t)� d �(�;2�](t) = x(t)holds on [0; 2 �] and hence � � d �(�;2�] 2 A C n[0; 2 �]: Finally, using the relationX�1(2�)M�1 = I +M�1; we get�(t) = X(t)�M�1�X�1(�) d+ Z 2�0 X�1(s) q(s) ds�+ Z t0 X�1(s) q(s) ds�



6 Irena Rach�unková and Milan Tvrdýfor 0 � t � � and�(t) = X(t)�[I +M�1] �X�1(�) d+ Z 2�0 X�1(s) q(s) ds�� Z 2�t X�1(s) q(s) ds�for � < t � 2�; wherefrom the representation (2.13) of � follows.2.3. Remark. Clearly, for any solution � of (2.6), (2.9), (2.11) we have �ac =� � d �(�;2�]; �sing = d �(�;2�] and � is left-continuous on (0; 2�]:2.4. Remark. The problem (2.6), (2.9), (2.11) can be rewritten as the integralequation �(t) = �(0) + Z t0 P (s) �(s) ds+ h(t)� h(0); t 2 [0; 2 �];where h(t) = d �(�;2�](t) + Z t0 q(s) ds on [0; 2 �]:This equation is a very special case of generalized di�erential equations introducedby J. Kurzweil in [4].Now, we will apply Proposition 2.2 on the problem (2.3), (2.4) generalized in thesense of De�nition 2.1. In the case k = ��2 we get the following result:2.5. Corollary. Let k = ��2; � 2 (0;1); � 2 [0; 2�); � 2 R and � 2 L [0; 2 �]:Then the problem�0 = �; �0 + k � = �(t);�(0) = �(2�); �(0) = �(2�); �+�(�) = 0; �+�(�) = �(2.14)possesses a unique solution (�; �): Moreover, � 2 A C [0; 2 �]; �sing = � �(�;2�] and�(t) = g(jt� � j) � + Z 2�0 g(jt� sj) �(s) ds; on [0; 2 �];(2.15)where g(x) = �cosh(� (� � x))2� sinh(��) for x 2 [0; 2 �]:(2.16)Proof. The fundamental matrix solution X of the corresponding homogeneous sys-tem �0 = �; �0 = �2 �; is given byX(t) = 0@ cosh(� t) sinh(� t)�� sinh(�t) cosh(� t)1A on [0; 2 �]



Localization of Nonsmooth Lower and Upper Functions 7and det �X�1(2�)� I� = �4 sinh(��) 6= 0:Thus, we can apply Proposition 2.2 to the problem (2.6), (2.9), (2.11) with�(t) =  ��! ; q(t) =  0�! and d =  0�! ;to obtain that the problem (2.14) possesses a unique solution (�; �): Since, in partic-ular, �+�(�) = 0 and �+�(�) = �; it follows from De�nition 2.1 that � 2 A C [0; 2 �]and �� � �(�;2�] 2 A C [0; 2 �] (i.e. �sing = � �(�;2�]): Furthermore, substituting for Xinto (2.10), we get
G(t; s) =

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

0BBB@ �sinh(�(� + t� s))2 sinh(��) �cosh(�(� + t� s))2� sinh(��)�� cosh(�(� + t� s))2 sinh(��) �sinh(�(� + t� s))2 sinh(��)
1CCCAif 0 � t � s � 2�;0BBB@ sinh(�(� + s� t))2 sinh(��) �cosh(�(� + s� t))2� sinh(��)�� cosh(�(� + s� t))2 sinh(��) sinh(�(� + s� t))2 sinh(��)
1CCCAif 0 � s < t � 2�;which implies that � has the form (2.15), where g is de�ned in (2.16).2.6. Remark. We can verify that for any � 2 (0;1); the Green function g from(2.16) satis�es the relations�coth(��)2� � g(x) � � 12� sinh(��) < 0 for x 2 [0; 2 �](2.17)and Z 2�0 g(jt� sj) ds = � 1�2 for t 2 [0; 2 �]:(2.18)The next result concerns the case k = �2:2.7. Corollary. Let k = �2; � 2 (0;1) n N ; � 2 [0; 2�); � 2 R and � 2 L [0; 2 �]:Then the problem (2.14) possesses a unique solution (�; �): Moreover, � 2 A C [0; 2 �];�sing = � �(�;2�] and � has the form (2.15), whereg(x) = cos(� (� � x))2� sin(��) for x 2 [0; 2 �]:(2.19)



8 Irena Rach�unková and Milan TvrdýProof. Substituting X in (2.10) byX(t) = 0@ cos(� t) sin(� t)��� sin(� t) cos(� t)1A ; t 2 [0; 2 �];we get
G(t; s) =

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

0BBB@ �sin(�(� + t� s))2 sin(��) cos(�(� + t� s))2� sin(��)�� cos(�(� + t� s))2 sin(��) �sin(�(� + t� s))2 sin(��)
1CCCAif 0 � t � s � 2�;0BBB@ sin(�(� + s� t))2 sin(��) cos(�(� + s� t))2� sin(��)�� cos(�(� + s� t))2 sin(��) sin(�(� + s� t))2 sin(��)
1CCCAif 0 � s < t � 2�and since under our assumptions we have det �X�1(2�)� I� = 4 sin2(��) 6= 0; theproof follows from Proposition 2.2 similarly as the proof of Corollary 2.5.2.8. Remark. For the function g from (2.19) and any � 2 (0;1) n N ; we havekg�k1 � kg+k1 = kgk1 = 12� j sin(��)j(2.20)and Z 2�0 g(jt� sj) ds = 1�2 for t 2 [0; 2 �]:(2.21)Furthermore, if � 2 (0; 12 ]; then0 � cotan(��)2� � g(x) � 12� sin(��) for x 2 [0; 2 �]:(2.22)In the rest of this section we will derive some estimates for solutions of theproblem �00 + k � = b(t); �(0) = �(2�); �0(0) = �0(2�)(2.23)which will be useful for the proofs of Section 3.



Localization of Nonsmooth Lower and Upper Functions 92.9. Lemma. Let p 2 L1 [0; 2 �]; b 2 L [0; 2 �] and b = 0: Then��� Z 2�0 p(s) b(s) ds��� � p� kbk1; where p� = kp+k1 + kp�k12 :Proof. First, notice that b+ = b� and kbk1 = 4�b+ = 4 �b� holds whenever b 2L [0; 2 �] and b = 0: Thus, if p(s) � 0 a.e. on [0; 2 �]; then��� Z 2�0 p(s) b(s) ds��� � kpk1 2� b+ = kp+k1kbk12 :In a general case, we have��� Z 2�0 p(s) b(s) ds��� = ��� Z 2�0 p+(s) b(s) ds+ Z 2�0 p�(s) (�b(s)) ds���� (kp+k1 + kp�k1) kbk12 = p� kbk1:2.10. Lemma. Let k 6= 0; b 2 L [0; 2 �] and b = 0: Then � = 0 holds for anysolution � of (2.23).Proof. In virtue of the periodicity conditions we have �00 = 0: Thus, integratingthe di�erential equation from (2.23) over [0; 2 �]; we get 0 = �00 = �k � + b; i.e.� = 0:2.11. Lemma. Let k = ��2; � 2 (0;1); b 2 L [0; 2 �]; b = 0 and let � be a solutionof (2.23). Then k�k1 � �(�) kbk1;(2.24)where �(�) = minf�6 ; coth(��)4� g:(2.25)If b 2 L2 [0; 2 �]; then � ful�ls moreoverk�k1 �r�6 kbk2:(2.26)Proof. Multiplying the relation��00(t) = ��2 �(t)� b(t) for a.e. t 2 [0; 2 �](2.27)



10 Irena Rach�unková and Milan Tvrdýby �(t); integrating it over [0; 2 �] and using the Hölder inequality, we getk�0k22 = ��2 k�k22 + Z 2�0 b(t) �(t) dt � kbk1 k�k1:Furthermore, by Lemma 2.10 we have � = 0; and thus � satis�es the Sobolevinequality (see [7, Proposition 1.3])k�k1 �r�6 k�0k2:(2.28)Hence k�0k2 �r�6 kbk1and, using the Sobolev inequality (2.28) once more, we obtaink�k1 � �6 kbk1:(2.29)On the other hand, by Corollary 2.5,�(t) = Z 2�0 g(jt� sj) b(s) ds on [0; 2 �](2.30)with g de�ned by (2.16). Hence, according to Lemma 2.9 and (2.17) we also havek�k1 � coth(��)4� kbk1:This together with (2.29) completes the proof of the �rst assertion of the lemma.Now, suppose b 2 L2 [0; 2 �]: Using the Schwarz inequality, we deduce from (2.27)that k�0k22 � kbk2 k�k2:Since � satis�es the Wirtinger inequality (see [7, Proposition 1.3])k�k2 � k�0k2;(2.31)we get k�0k2 � kbk2: This together with the Sobolev inequality (2.28) implies theestimate (2.26).



Localization of Nonsmooth Lower and Upper Functions 112.12. Remark. As the function '(�) = coth(��)4� is decreasing on (0;1); '(0+) =1 and limx!1 '(x) = 0; there is exactly one �� 2 (0;1) (�� � 0:51624) such that'(��) = �6 ; while '(�) > �6 for � 2 (0; ��) and '(�) < �6 for � 2 (��;1): Thismeans that the function � from (2.25) can be described by�(�) = 8><>: �6 if � 2 (0; ��];coth(��)4� if � 2 (��;1):2.13. Lemma. Let k = �2; � 2 (0;1) n N ; b 2 L [0; 2 �]; b = 0 and let � be asolution of (2.23). Thenk�k1 � 	(�) kbk1;(2.32)where 	(�) = 8>>>>>><>>>>>>:
minf �6(1� �2) ; 14� sin(��)g if � 2 (0; 12 ];minf �6(1� �2) ; 12� sin(��)g if � 2 (12 ; 1);12� j sin(��)j if � 2 (1;1) n N :(2.33)

If b 2 L2 [0; 2 �] and � 2 (0; 1); then � ful�ls moreoverk�k1 �r�6 kbk21� �2 :(2.34)Proof. We have ��00(t) = �2 �(t)� b(t) a.e. on [0; 2 �]:(2.35)According to Lemma 2.10, � satis�es both the Sobolev inequality (2.28) and theWirtinger inequality (2.31). Thus, proceeding similarly as in the proof of Lemma2.11, we getk�0k22 � �2 k�0k22 +r�6 kbk1 k�0k2 i.e. k�0k2 (1� �2) �r�6 kbk1:If � 2 (0; 1); then using (2.28) once more, the relationk�k1 � �6 (1� �2) kbk1



12 Irena Rach�unková and Milan Tvrdýfollows.Further, � has the form (2.30), where g is given by (2.19) and satis�es (2.22)if � 2 (0; 12 ] and (2.20) for � 2 (12 ;1) n N : Therefore Lemma 2.9 implies thatk�k1 � kbk14� sin(��) if � 2 (0; 12]and k�k1 � kbk12� j sin(��)j if � 2 (12 ;1) n N :Finally, let b 2 L 2 [0; 2 �] and � 2 (0; 1): Then we can argue as in the proof ofLemma 2.11 and derive from (2.35) the inequalitiesk�0k22 � �2 k�0k22 + kbk2k�k2and k�0k2 (1� �2) � kbk2;wherefrom (2.34) follows.2.14. Remark. For � 2 (0; 1); denote 1(�) = �6(1� �2) and  2(�) = 14� sin(��) :It can be veri�ed that there is exactly one ��1 2 (0; 1) (��1 � 0:412036) such that 1(��1) =  (��1);  1(�) >  2(�) for � 2 (0; ��1) and  1(�) <  2(�) for � 2 (��1; 1):Similarly, there is exactly one ��2 2 (0; 1) (��2 � 0:628308) such that  1(��2) =2 (��2);  1(�) < 2 2(�) for � 2 (12 ; ��1) and  1(�) > 2 2(�) for � 2 (��2; 1): Thismeans that the function 	 from (2.33) can be described by
	(�) =

8>>>>>>>>>><>>>>>>>>>>:
�6(1� �2) ; if � 2 (0; ��1];14� sin(��) if � 2 (��1; 12 ];�6(1� �2) ; if � 2 (12 ; ��2];12� sin(��) if � 2 (��2;1) n N(cf. Fig. 1).



Localization of Nonsmooth Lower and Upper Functions 13
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Figure 1:3 . Lower and upper functionsConsider the problem (1.1) and suppose that k > 0 and that there exist a 2 R ;A1 2 (0;1); b 2 L1 [0; 2 �] such thatf(t; x) � a+ b(t)(3.1)holds for a.e. t 2 [0; 2 �] and all x 2 (A1;1): Then we can �nd r1 2 (A1;1) suchthat k r1 � a + kbk1 � f(t; r1) for a.e. t 2 [0; 2 �];which means that if we put�1(t) = r1; �1(t) = �01(t) = 0 on [0; 2 �];the functions (�1; �1) are lower functions for (1.1). Similarly, iff(t; x) � a+ b(t)(3.2)holds for a.e. t 2 [0; 2 �] and all x 2 (�1;�A2); we can �nd r2 2 (�1;�A2) suchthat k r2 � a� kbk1 � f(t; r2) for a.e. t 2 [0; 2 �];



14 Irena Rach�unková and Milan Tvrdýwhich means that the functions (�2(t); �2(t)) = (r2; 0) on [0; 2 �] are upper functionsof (1.1). We see that the constant function �1 has to be quite large and positive andthe constant function �2 has to be su�ciently small negative. Similar observationscan be done for k < 0:In the case that b is not essentially bounded or if we need other localizationof �1 or �2; this approach falls. However we can construct and localize lower andupper functions by means of the results from Section 2.If k < 0; we can write (1.1) in the formu00 � �2 u = f(t; u); u(0) = u(2�); u0(0) = u0(2�):(3.3)3.1. Theorem. Let � 2 (0;1) and let a 2 R ; � 2 [0; 2�); � 2 [0;1); b 2 L [0; 2 �]be such that b = 0 and (3.1) holds for a.e. t 2 [0; 2 �] and all x 2 [A(t); B(t)]; whereA(t) = g(jt� � j)�� a�2��(�)kbk1 and B(t) = A(t)+2�(�)kbk1 on [0; 2 �](3.4)and g and � are given by (2.16) and (2.25), respectively.Then there exist lower functions (�; �) of (3.3) such thatA(t) � �(t) � B(t) on [0; 2 �]:(3.5)Proof. Let us put �(t) = a+ b(t) for a.e. t 2 [0; 2 �]:By Corollary 2.5, there is a unique solution (�; �) of (2.14), where k = ��2; and, inthe view of (2.18), we have�(t) = g(jt� � j) � � a�2 + Z 2�0 g(jt� sj) b(s) ds on [0; 2 �];(3.6)where g is given by (2.16). Denote�0(t) = Z 2�0 g(jt� sj) b(s) ds for t 2 [0; 2 �]:(3.7)Then �0 is a solution to (2.23) and by Lemma 2.11 the estimatek�0k1 � �(�) kbk1(3.8)is true. Substituting (3.7) into (3.6) and using (3.4) and (3.8), we get (3.5). Thistogether with (3.1) and (2.14) means that�0(t)� �2 �(t) = �(t) = a + b(t) � f(t; �(t))is true a.e. on [0; 2 �]; i.e. (�; �) are lower functions of (3.3).



Localization of Nonsmooth Lower and Upper Functions 15In the case k > 0 we will write the problem (1.1) in the formu00 + �2 u = f(t; u); u(0) = u(2�); u0(0) = u0(2�):(3.9)3.2. Theorem. Let � 2 (0;1) n N and let a 2 R ; � 2 [0; 2�); � 2 [0;1);b 2 L [0; 2 �] be such that b = 0 and (3.1) holds for a.e. t 2 [0; 2 �] and allx 2 [A(t); B(t)]; whereA(t) = g(jt� � j)�+ a�2�	(�)kbk1 and B(t) = A(t)+2	(�)kbk1(3.10)and g and 	 are given by (2.19) and (2.33), respectively.Then there exist lower functions (�; �) of (3.9) ful�lling (3.5).Proof. By Corollary 2.7, the problem (2.14) with k = �2 and �(t) = a+ b(t) a.e. on[0; 2 �] has a unique solution (�; �) and, with respect to (2.15), (2.21),�(t) = g(jt� � j) � + a�2 + �0(t) on [0; 2 �];(3.11)where �0 and g are de�ned by (3.7) and (2.19), respectively. Thus, �0 is a solutionof (2.23). By Lemma 2.13 we havek�0k1 � 	(�) kbk1:(3.12)Furthermore, since (3.10)-(3.12) yield (3.5), according to (3.1) and (2.14) we have�0(t) + �2 �(t) = a + b(t) � f(t; �(t)) a.e. on [0; 2 �];i.e. (�; �) are lower functions of (3.9).The next two assertions are respectively dual to Theorems 3.1 and 3.2 and theirproofs can be omitted.3.3. Theorem. Let � 2 (0;1) and let a 2 R ; � 2 [0; 2�); � 2 (�1; 0]; b 2 L [0; 2 �]be such that b = 0 and (3.2) holds for a.e. t 2 [0; 2 �] and all x 2 [A(t); B(t)]; whereA(t); B(t) are de�ned by (3.4), (2.16) and (2.25).Then there exist upper functions (�; �) of (3.3) ful�lling (3.5).3.4. Theorem. Let � 2 (0;1) n N and let a 2 R ; � 2 [0; 2�); � 2 (�1; 0];b 2 L [0; 2 �] be such that b = 0 and (3.2) holds for a.e. t 2 [0; 2 �] and all x 2[A(t); B(t)]; where A(t); B(t) are de�ned by (3.10), (2.19) and (2.33).Then there exist upper functions (�; �) of (3.9) ful�lling (3.5).
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