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2 Irena Rach�unková, Milan Tvrdý and Ivo VrkoèThis problem was studied by many authors, starting from Lazer and Solimini[6], where (1.1) with k = 0 and g positive was considered. Later, this work has beengeneralized or extended e.g. by del Pino, Manásevich and Montero [1], Fonda [2],Fonda, Manásevich and Zanolin[3], Mawhin [7], Ge and Mawhin [4], Omari and Ye[9], Rach�unková [10], Rach�unková and Tvrdý [12], Rach�unková, Tvrdý and Vrkoè[14], Yan and Zhang [16], Zhang [17] and others. Particularly, the problems havingnonlinearities with the asymptotic behaviour at +1 which corresponds to k > 0 andg bounded below in (1.1) were solved by some of the above authors. For example,the papers [2], [9], [10],[12], [14] and [17] dealt with the problems characterizedby a positive k which was less than the �rst positive Dirichlet eigenvalue �1 ofx00+�x = 0; while the cases corresponding to k lying between two neighbour highereigenvalues were investigated in [1] or [16]. The existence results in the resonancecase k = �1 were reached in [14]. In [2] or [3] we can also �nd multiplicity results forsubharmonics. Theorems about more solutions of (1.1) provided k = 0 are provedin [10].Here we bring new results about the existence of one or two positive solutionsof (1.1) for both nonresonance and resonance values of k: Moreover, our Theorem4.4 generalizes for n = 3 Theorem 3.5 in [10] (even in the case k = 0), because thecondition (3.4) in Theorem 4.4 is weaker than the corresponding condition (3.16)in [10, Theorem 3.5] which requires (for i = 1) g(x) + e > 0 on [a1; b1] � (0;1);where b1 � a1 = �3 ke� ek1:Let J be a (possibly unbounded) subinterval of R : We say that f : [0; 2�]�J 7! Rful�ls the Carathéodory conditions on [0; 2�]� R ; if f has the following properties:(i) for each x 2 J the function f(:; x) is measurable on [0; 2�]; (ii) for almost everyt 2 [0; 2�] the function f(t; :) is continuous on J ; (iii) for each compact set K� Jthe function mK(t) = sup x2K jf(t; x)j is Lebesgue integrable on [0; 2�]: The setof functions satisfying the Carathéodory conditions on [0; 2�] � J is denoted byCar([0; 2�]� J):For a given subinterval J of R (possibly unbounded) C (J) denotes the set of func-tions continuous on J; L [0; 2�] stands for the set of functions (Lebesgue) integrableon [0; 2�]; L2 [0; 2�] is the set of functions square integrable on [0; 2�]; L1 [0; 2�] is theset of functions essentially bounded on [0; 2�]; A C [0; 2�] denotes the set of functionsabsolutely continuous on [0; 2�]; A C 1[0; 2�] is the set of functions u 2 A C [0; 2�]with �rst derivative absolutely continuous on [0; 2�] and BV [0; 2�] denotes the setof functions of bounded variation on [0; 2�]: For x 2 L1 [0; 2�]; y 2 L [0; 2�] andz 2 L2 [0; 2�]; we denote kxk1 = sup esst2[0;2�] jx(t)j;y = 12� Z 2�0 y(s) ds; kyk1 = Z 2�0 jy(t)j dt and kzk2 = � Z 2�0 z2(t) dt� 12 :Furthermore, C 1 [0; 2�] is the space of functions from C [0; 2�] having a continuous�rst derivative on [0; 2�] equipped with the norm x 2 C 1 [0; 2�] 7! kxk1 + kx0k1:



Resonance and Multiplicity in Periodic BVP's with Singularity 3If x 2 BV [0; 2�]; s 2 (0; 2�] and t 2 [0; 2�); then the symbols x(s�); x(t+) and�+x(t) are respectively de�ned byx(s�) = lim�!s�x(�); x(t+) = lim�!t+ x(�) and �+x(t) = x(t+)� x(t):Furthermore, xac and xsing stand for the absolutely continuous part of x and thesingular part of x; respectively. We suppose xsing(0) = 0: For x 2 L [0; 2�]; thesymbols x+ and x� denote its nonnegative and nonpositive parts.Besides (1.1) we will also consider more general problemx00 = f(t; x); x(0) = x(2�); x0(0) = x0(2�);(1.4)where f 2 Car([0; 2�]� J) and J � R :1.1. De�nition. By a solution of (1.4) we understand a function x : [0; 2�] 7! Rsuch that x0 2 A C [0; 2�]; x(0) = x(2�); x0(0) = x0(2�) and x(t) 2 J and x00(t) =f(t; x(t)) hold for a.e. t 2 [0; 2�]:1.2. De�nition. The functions (�; �) 2 A C [0; 2�]� BV [0; 2�] are lower functionsof (1.4) if �(t) 2 J for a.e. t 2 [0; 2�]; the singular part �sing of � is nondecreasingon [0; 2�]; �0(t) = �(t) and �0(t) � f(t; �(t)) for a.e. t 2 [0; 2�]; �(0) = �(2�) and�(0+) � �(2��):Similarly, the functions (�; �) 2 A C [0; 2�] � BV [0; 2�] are upper functions of(1:4) if �(t) 2 J for a.e. t 2 [0; 2�]; �sing is nonincreasing on [0; 2�]; �0(t) = �(t) and�0(t) � f(t; �(t)) for a.e. t 2 [0; 2�]; �(0) = �(2�) and �(0+) � �(2��):1.3. Remark. If J = R ; then De�nitions 1.1 and 1.2 reduce to those given fora regular case in [11].If (1.2) is true and J = (0;1); then each solution and each upper (lower) func-tions must be positive a.e. on [0; 2�]:Our proofs will be based on the following theorem which is contained in [11,Theorems 4.1, 4.2 and 4.3] and which concerns the nonsingular case with J = R :1.4. Theorem. Let (�1; �1) and (�2; �2) be respectively lower and upper functionsof the problem (1:4); where J = R : Furthermore, assume that there is m 2 L [0; 2�]such that f(t; x) � m(t) for a.e. t 2 [0; 2�] and all x 2 R (or f(t; x) � m(t) for a.e.t 2 [0; 2�] and all x 2 R): Then (1:4) has a solution x such that kx0k1 � kmk1:Moreover, if �1(t) � �2(t) for all t 2 [0; 2�];(1.5)then �1(t) � x(t) � �2(t) is true for all t 2 [0; 2�] and if (1:5) does not hold, thenthere is tx 2 [0; 2�] such that �2(tx) � x(tx) � �1(tx):



4 Irena Rach�unková, Milan Tvrdý and Ivo VrkoèIn [12] and [13] we have presented conditions ensuring the existence and local-ization of lower and upper functions of (1.4). As an immediate consequence of theseresults we get propositions for the following special case of the problem (1.4):x00 = h(x) + e(t); x(0) = x(2�); x0(0) = x0(2�);(1.6)where h 2 C (J); e 2 L [0; 2�] and J is an open subinterval in R :(1.7)1.5. Proposition. Suppose that (1:7) holds. Further, let A 2 J and let the in-equality h(x) + e � 0 for x 2 [A;B] ( h(x) + e � 0 for x 2 [A;B] )(1.8)be ful�lled, where B 2 J and B � A � �3 ke� ek1:(1.9)Then there exist lower (upper) functions (�; �) of (1:6) and�(t) 2 [A;B] for all t 2 [0; 2�]:(1.10)Proof. If J = R ; then the proof is given in [12, Propositions 2.4 and 2.5]. In thecase that J 6= R ; we putf(t; x) = e(t) +8><>: h(A) if x < A;h(x) if x 2 [A;B];h(B) if x > B:(1.11)Since f 2 Car([0; 2�] � R); we get by [12, Propositions 2.4 and 2.5] the existenceof lower (upper) functions (�; �) of (1.4) ful�lling (1.10). The conditions (1.10) and(1.11) guarantee that (�; �) are lower (upper) functions of (1.6), as well.1.6. Proposition. Suppose that (1:7) holds. Further, let A 2 J; k 6= n2 for alln 2 N and let the inequalityh(x) + k x+ e � k A+B2 for x 2 [A;B](1.12) (h(x) + k x+ e � k A+B2 for x 2 [A;B]);be ful�lled, where B 2 J and B � A = 2�(k) ke� ek1(1.13)and
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�(k) =

8>>>>>>>>>>><>>>>>>>>>>>:
minf�6 ; coth(pjkj�4pjkj g if k < 0;minf �6 (1� k) ; 14k sin(pk�)g if k 2 (0; 14 ];minf �6 (1� k) ; 12pk sin(pk�)g if k 2 (14 ; 1);12pkj sin(pk�)j if k > 1; k 6= n2; n 2 N :(1.14)

Then there exist lower (upper) functions (�; �) of (1:6) satisfying (1:10):Proof. If J = R ; then the proof follows from [13, Theorems 3.1-3.4], where we puta = k A+B2 : In the case J 6= R ; we can use the same arguments as in the proof ofProposition 1.5.The next lemma will be helpful in what follows.1.7. Lemma. Let (1:7) be true and let x be an arbitrary solution of (1:6): Further,let t1 2 [0; 2�] be such that x(t1) = maxt2[0;2�] x(t): Then the inequalityZ Ax(t0) h(s) ds � kek1kx0k1 + Z x(t1)A jh(s)j dsholds for all t0 2 [0; 2�] and all A 2 J such that x(t1) � A:Proof. In virtue of the periodicity of x; we have x0(t1) = 0: Consequently, multiplyingthe equality x00(t) = h(x(t)) + e(t) a.e. on [0; 2�] by x0(t) and integrating from t0 tot1; we get0 � �(x0(t0))22 = Z t1t0 x00(t) x0(t) dt = Z x(t1)x(t0) h(s) ds+ Z t1t0 e(t) x0(t)dt:Hence,Z Ax(t0) h(s) ds = Z x(t1)x(t0) h(s) ds� Z x(t1)A h(s) ds� � Z t1t0 e(t) x0(t) dt� Z x(t1)A h(s) ds � kek1 kx0k1 + Z x(t1)A jh(s)j ds:The proof of the next lemma is an easy modi�cation of that of [11, Lemma 1.1].1.8. Lemma. Suppose that (1:7) is true. Furthermore, let I � J and let h� 2 Rbe such that h(x) � h� for all x 2 I: Thenkx0k1 � kek1 + 2� jh�jholds for each solution x of (1:6) with the property x(t) 2 I for all t 2 [0; 2�]:



6 Irena Rach�unková, Milan Tvrdý and Ivo Vrkoè2 . Existence theoremThe main result of this section is Theorem 2.1 which gives an existence principlefor the problem (1.1) in terms of lower and upper functions. More e�ective resultscan be obtained if we replace the assumption of the existence of lower and upperfunctions with the proper conditions from Propositions 1.5 and 1.6.2.1. Theorem. Suppose that (1:2); (1:3);lim infx!1 g(x)x > k � 14(2.1)and lim infx!0+ g(x) > �1(2.2)are satis�ed. Further, let there are lower functions (�1; �1) and upper functions(�2; �2) of (1:1) such that �2(t) > 0 on [0; 2�]:(2.3)Then the problem (1:1) has a positive solution.Before proving Theorem 2.1 we will prove several auxiliary assertions. In partic-ular, Lemmas 2.2 and 2.4 give a priori estimates for solutions of (1.6). The proof ofTheorem 2.1 follows from Proposition 2.9.2.2. Lemma. Let g 2 C (0;1); k 2 R and suppose that (1:3) is true. Further,let E;K 2 [0;1); A 2 (0;1) and R 2 [A;1): Then there is "� > 0 such thatmint2[0;2�] x(t) > "� holds for each h 2 C (R ) satisfyingh(x) = g(x)� k x on ["�; R];(2.4)for each e 2 L [0; 2�] with kek1 � E and for each solution x of (1:6) ful�llingkx0k1 � K and maxt2[0;2�] x(t) 2 [A;R]:(2.5)Proof. Put K� = EK + Z RA jg(s)� k sj ds:In view of (1.3), there is "� > 0 such thatZ A"� (g(s)� k s) ds > K�:(2.6)



Resonance and Multiplicity in Periodic BVP's with Singularity 7Let h 2 C (R ) ful�l (2.4), let e 2 L [0; 2�] be such that kek1 � E and let x be asolution of (1.6) verifying (2.5). Suppose that mint2[0;2�] x(t) � "� and denote by t0and t1 the points in [0; 2�] such that t0 < t1; x(t0) = "�; x(t) � "� on [t0; t1] andx(t1) = maxt2[0;2�] x(t): With respect to (2.5) we have x(t1) 2 [A;R]: Thus, takinginto account (2.4) and (2.6) and using Lemma 1.7, we getK� < Z A"� (g(s)� k s) ds = Z Ax(t0) h(s) ds� EK + Z RA jh(s)j ds = EK + Z RA jg(s)� k sj ds = K�;a contradiction.In particular, we have:2.3. Corollary. Suppose (1:2) and (1:3): Then each solution of (1:1) is positive on[0; 2�]:2.4. Lemma. Let E; C 2 [0;1); � 2 (0; 14) and (0;1) � J � R : Then for anyB 2 (0;1) there is R 2 (B;1) such that the estimatemaxt2[0;2�] x(t) � R(2.7)is valid for each h 2 C (J) satisfyingh(x) x+ (14 � �) x2 � �C jxj for all x 2 J;for each e 2 L [0; 2�] with kek1 � E and each solution x of (1:6) ful�llingx(t) 2 J for all t 2 [0; 2�] and mint2[0;2�] x(t) � B:(2.8)Proof. Suppose that such R does not exist. Then for any ` 2 N we can �nd h` 2C (J); e` 2 L [0; 2�] and a solution x` ofx00 = h`(x) + e`(t); x(0) = x(2�); x0(0) = x0(2�)such that kek1 � E;h`(x) x+ (14 � �) x2 � �C jxj for all x 2 J(2.9)and mint2[0;2�] x`(t) � B and maxt2[0;2�] x`(t) > `:(2.10)



8 Irena Rach�unková, Milan Tvrdý and Ivo VrkoèFor ` 2 N ; denote by t` the point in [0; 2�] for which x`(t`) = B: Furthermore, letus extend x` and e` to functions 2�-periodic on R : We havex00̀(t) = h`(x`(t)) + e`(t) for a.e. t 2 R :Multiplying this equality by x`(t); integrating from t` to t` + 2� and making use of(2.9), we obtainkx0̀k22 = � Z t`+2�t` h`(x`(t)) x`(t)dt� Z t`+2�t` e`(t) x`(t)dt� (14 � �) kx`k22 + C kx`k1 + E kx`k1:On the other hand, in virtue of (2.10) we havekx`k1 � jx`(t`)j+ Z t`+2�t` jx0̀ (t)jdt � B +p2� kx0̀k2:(2.11)Thus, �kx0̀k2 � Er�2 �2 � (14 � �) kx`k22 +p2� C kx`k2 + E B + �2 E2:(2.12)Inserting x`(t) = v`(t) +B on R into (2.12), we obtain(kv 0̀k2 � c)2kv`k22 � 14 � � + akv`k2 + bkv`k22 ;(2.13)where a; b; c 2 R do not depend on `: Now, (2.10), (2.11) and (2.12) yieldlim`!1 kv 0̀k2 =1 and lim`!1 kv`k2 =1:(2.14)Since v`(t`) = v`(t`+2�) = 0; by Schee�er's inequality [15, p. 207] (see also [8, II.2])we have kv`k22 � 4 kv 0̀k22 and(kv 0̀k2 � c)2kv`k22 � (kv 0̀k2 � c)24kv 0̀k22 :Finally, by virtue of (2.13) and (2.14), we have14 = lim`!1 (kv 0̀k2 � c)24kv 0̀k22 � lim`!1 �14 � � + akv`k2 + bkv`k22� = 14 � �;a contradiction.



Resonance and Multiplicity in Periodic BVP's with Singularity 9Let g 2 C (0;1) ful�l (1.3), (2.1) and (2.2). Denoteg0(x) = g(x)� k x for x 2 (0;1):(2.15)Then we have g0 2 C (0;1); limx!0+Z 1x g0(s) ds =1(2.16)and lim infx!1 g0(x)x > �14 :(2.17)Furthermore, (2.2) and (2.16) implyinfx2(0;R] g0(x) 2 R for each R 2 (0;1)(2.18)and lim supx!0+ g0(x) =1:(2.19)Moreover, in view of (2.17) and (2.18), there exist � 2 (0; 14) and C 2 [0;1) suchthat g0(x) + (14 � �) x � �C: for all x 2 (0;1)(2.20)2.5. Lemma. Assume (1:2); (1:3) and (2:2) and let (�; �) be lower functions of(1:1): Then mint2[0;2�] �(t) > 0:Proof. In view of (2.15), (2.16) and (2.18), there are � 2 (0;1) and M 2 [0;1)such that limx!0+Z �0x g0(s) ds =1 for all �0 2 (0; �)(2.21)and g0(x) � �M for all x 2 (0; �):(2.22)In view of De�nition 1.2 we have �(t) > 0 a.e. on [0; 2�]: Thus, for any " > 0; thereis t0 2 (0; "] such that �(t0) > 0: Choose an arbitrary t0 2 (0; 2�) with this propertyand put t� = supft 2 [t0; 2�] : �(s) > 0 on [t0; t]g: Notice that �(t�) = 0 holdswhenever t� < 2�:Assume �(t�) = 0: Then there is t0 2 (t0; t�) such that�(t) 2 [0; �) for all t 2 [t0; t�]:(2.23)



10 Irena Rach�unková, Milan Tvrdý and Ivo VrkoèAs � 2 BV [0; 2�]; it is r = k�k1 + 1 < 1 and, with respect to De�nition 1.2, weget that �0(t) (�(t)� r) � g0(�(t)) (�(t)� r) + e(t) (�(t)� r)is satis�ed for a.e. t 2 [0; 2�]: Let tn 2 (t0; t�) be an increasing sequence such thatlimn!1 tn = t�: Then limn!1 �(tn) = �(t�) = 0(2.24)and Z tnt0 �0(t) (�(t)� r) dt� Z tnt0 g0(�(t)) (�(t)� r) dt+ Z tnt0 e(t) (�(t)� r) dt= � Z �(t0)�(tn) g0(s) ds� r Z tnt0 g0(�(t)) dt + Z tnt0 e(t) (�(t)� r) dt:In virtue of (2.22) and (2.23), for any n 2 N we have� Z tnt0 g0(�(t)) dt � 2�M and �� Z tnt0 e(t) (�(t)� r) dt�� � 2 r kek1:Moreover, by (2.21) and (2.24)limn!1Z �(t0)�(tn) g0(s) ds =1:This implies that limn!1Z tnt0 �0(t) (�(t)� r) dt = �1:On the other hand,�� Z tnt0 �0(t) (�(t)� r) dt�� � 2 r Z 2�0 j�0(t)j dt � 2 r k�kBV <1;a contradiction. Thus, t� = 2� and �(t�) = �(2�) > 0: In particular, we haveshown that �(t) is positive on any interval ("; 2�]; " > 0; and, as with respect to theperiodicity condition we also have �(0) = �(2�) > 0; this completes the proof.



Resonance and Multiplicity in Periodic BVP's with Singularity 112.6. Remark. If g satis�es the assumptions of Lemma 2.5 and, in addition g(x) �k on (0;1); e(t) = (k�1) sin t on [0; 2�]; �(t) = 1+sin t and �(t) = cos t on [0; 2�];then (�; �) are upper functions of (1.1) and mint2[0;2�] �(t) = 0: This shows that forupper functions the analogue of Lemma 2.5 does not hold.2.7. De�nition. Let g 2 C (0;1) and k 2 R : Then, for given E; A 2 (0;1) andB 2 [A;1); we denote by E(E;A;B) the set of functions e 2 L [0; 2�] with kek1 � Eand such that (1:1) has lower functions (�1; �1) and upper functions (�2; �2) ful�llingA � �i(t) � B on [0; 2�] for i = 1; 2:(2.25)2.8. Remark. Let g 2 C (0;1) satisfy (1:3); (2:1) and (2:2) and let g0 be given by(2.15). Then g0 ful�ls (2.16)-(2.19) and we can choose a sequence f"ng1n=1 � (0; 1)with the properties( "n+1 < "n and g0("n) > 0 for all n 2 N ;limn!1 "n = 0 and limn!1 g0("n) =1(2.26)and de�ne functions gn;m 2 C (R ); n;m 2 N ; in such a way that the relationsgn;m(x) = g0(x) for x 2 ["n; m];(2.27) gn;m(x) x + (14 � �) x2 � �C jxj for all x 2 R(2.28)and g� := infx2Rn;m2N gn;m(x) 2 R(2.29)are valid for all n;m 2 N : Indeed, for given n;m 2 N ; we can put e.g.gn;m(x) = 8>>><>>>: 0 if x � 0;g0("n) x"n if x 2 [0; "n];g0(x) if x 2 ["n; m];g0(m) if x � m:In what follows, having a sequence f"ng1n=1 which satis�es (2.27) and (2.28) andfunctions gn;m; n;m 2 N ; satisfying (2.27)-(2.29), we will often work with the aux-iliary regular boundary value problemsx00 = gn;m(x) + e(t); x(0) = x(2�); x0(0) = x0(2�):(2.30)2.9. Proposition. Suppose that g 2 C (0;1); k 2 R ; E; A 2 (0;1); B 2 [A;1)and let (1:3); (2:1); (2:2) be satis�ed. Then there are R; "� 2 (0;1); and K 2 [0;1)such that for each e 2 E(E;A;B) the problem (1:1) has a solution u satisfying"� � u(t) � R on [0; 2�] and ku0k1 � K:(2.31)



12 Irena Rach�unková, Milan Tvrdý and Ivo VrkoèMoreover, if (�1; �1) and (�2; �2) are respectively lower and upper functions of (1:1)with the property (2:25); thenA � minf�1(tu); �2(tu)g � u(tu) � maxf�1(tu);�2(tu)g � B(2.32) for some tu 2 [0; 2�]:Proof. Let "n and gn;m; n;m 2 N ; be chosen in such a way that (2.26)-(2.29) aretrue and "n < A for all n 2 N :(2.33)By Lemma 2.4, there is R 2 N \ (B;1) such that the estimate (2.7) is valid forall n;m 2 N ; for each e 2 L [0; 2�] with kek1 � E and each solution x of (2.30)ful�lling (2.8) with J = R : For n 2 N ; consider the problemsx00 = gn;R(x) + e(t); x(0) = x(2�); x0(0) = x0(2�):(2.34)In view of (2.29), we have gn;R(x) � g� 2 R for all x 2 R ; i.e.gn;R(x) + e(t) � g� + e(t) for a.e. t 2 [0; 2�] and all x 2 R and n 2 N :Let e 2 E(E;A;B) and let (�1; �1) and (�2; �2) be respectively lower and upperfunctions of (1.1) ful�lling (2.25). In view of (2.33), (�1; �1) and (�2; �2) are lowerand upper functions of (2.34) for all n 2 N , respectively. Thus, by Theorem 1.4and Lemma 1.8, for any n 2 N ; the problem (2.34) has a solution xn such thatkx0nk1 � E + 2� jg�j = K andA � minf�1(tn); �2(tn)g � xn(tn) � maxf�1(tn); �2(tn)g � Bfor some tn 2 [0; 2�]: In particular, we havemaxt2[0;2�] xn(t) 2 [A;R] for all n 2 N ; n � n1:Now, let "� > 0 correspond to E; K; A and R by Lemma 2.2 and let n0 2 N be suchthat "n0 < "�: Then, since gn0;R(s) = g0(s) on ["n0; R]; Lemma 2.2 yieldsmint2[0;2�] xn0(t) > "� > "n0 :Therefore, u = xn0 is a solution to (1.1) with the properties (2.31) and (2.32).Proof of Theorem 2.1. In virtue of (2.3) and of Lemma 2.5 we can �nd A 2 (0;1)and B 2 [A;1) such that e 2 E(kek1; A; B) and the assertion of Theorem 2.1 followsfrom Proposition 2.9.



Resonance and Multiplicity in Periodic BVP's with Singularity 13The next result shows that the assumption of the existence of upper functionsfor (1.1) in Theorem 2.1 can be replaced with (2.35).2.10. Corollary. Suppose that (1:2); (1:3); (2:1); (2:2) andinf esst2[0;2�] e(t) > �1(2.35)are satis�ed. Further, let (�1; �1) be lower functions of (1:1): Then the problem (1:1)has a positive solution u such thatu(tu) � �1(tu) for some tu 2 [0; 2�]:(2.36)Proof. By (1.3) we have lim supx!0+ g(x) = 1 and, in virtue of (2.35), there is"� 2 (0; 1) such that"� < mint2[0;2�] �1(t) and g("�)� k "� + e(t) � g("�)� k "� + inf esst2[0;2�] e(t) � 0:Therefore the functions (�2(t); �2(t)) = ("�; 0) on [0; 2�] are upper functions of (1.1)and Theorem 2.1 yields the existence of a positive solution u which ful�ls (2.36).2.11. Remark. Assume (1.2), while (1.3) need not be satis�ed, and let u be a so-lution of (1.1). Further, suppose that g has a singularity at 0; which means that gis unbounded at 0; i.e. lim supx!0+ g(x) =1:(2.37)De�nition 1.1 requires that any solution u of (1.1) is positive a.e. on [0; 2�]: Inparticular, u can touch the singularity point x = 0: However it can vanish onlyon the set of the zero measure. Corollary 2.3 says that this is impossible providedthe singularity is strong, i.e. if (1.3) is satis�ed. Therefore, the problem (1.1) canpossess nonnegative solutions with at least one zero only if limx!0+ R 1x g(s) ds 2 R :If this together with (2.37) hold, the singularity x = 0 of g is called weak.3 . Existence criteriaThe main result of this section is Theorem 3.3 which gives more e�ective existencecriterion without the a priori assumption of the existence of lower and upper func-tions. For its proof the following lemmas will be helpful.3.1. Lemma. Suppose (1:7): Furthermore, let (d; A0] � J andh(x)� k x + e > 0 for all x 2 (d; A0]:(3.1)Then maxt2[0;2�] x(t) > A0 holds for each solution x of (1:6) such that x(t) 2J forall t 2 [0; 2�] and mint2[0;2�] x(t) > d:



14 Irena Rach�unková, Milan Tvrdý and Ivo VrkoèProof. Let x be a solution of (1.6) and let mint2[0;2�] x(t) > d and x(t) 2 J for allt 2 [0; 2�]: Integrating the equalityx00(t) = h(x(t))� k x(t) + e(t) a.e. on [0; 2�]over [0; 2�] and taking into account the periodicity of x; we getZ 2�0 (h(x(t)� k x(t)) dt + 2� e = 0:(3.2)On the other hand, if it were x(t) � A0 for all t 2 [0; 2�]; then using (3.1) we wouldhave Z 2�0 (h(x(t))� k x(t)) dt+ 2� e > 0;a contradiction to (3.2).3.2. Lemma. Let A 2 (0;1); B 2 [A;1); E 2 [0;1); k 2 R and let g 2 C (0;1)ful�l (1:3); (2:1) and (2:2): Then there are R; "� 2 (0;1) and K 2 [0;1) such thatfor each e 2 L [0; 2�] with kek1 � E and each solution u of (1:1) satisfyingu(tu) 2 [A;B] for some tu 2 [0; 2�];(3.3)the estimates (2:31) are true.Proof. Let g0 be given by (2.15). Then g0 2 C (0;1) ful�ls (2.20) with some � 2(0; 14) and C 2 [0;1): By Lemma 2.4, for each e 2 L [0; 2�] with kek1 � E andeach solution u of (1.1) ful�lling (3.3) the estimate u(t) � R on [0; 2�] is true.Furthermore, as in view of (2.18) g� := infx2(0;R] g0(x) 2 R ; according to Corollary2.3 and Lemma 1.8 we have u(t) > 0 on [0; 2�] and ku0k1 � E + 2� jg�j for all suchsolutions. Thus, if we put K = E + 2� jg�j; then we can complete the proof bymeans of Lemma 2.2.3.3. Theorem. Suppose that (1:2); (1:3); (2:1) andlim infx!0+ g(x) > �e(3.4)are satis�ed. Further, let A 2 (0;1) be such thatg(x)� k x � �e for all x 2 [A;B];(3.5)where B ful�ls (1:9): Then the problem (1:1) has a positive solution u such thatu(tu) � B for some tu 2 [0; 2�]:(3.6)



Resonance and Multiplicity in Periodic BVP's with Singularity 15Proof. i) First, assume that (3.5) is satis�ed with the strict inequality, i.e.g(x)� k x+ e < 0 for all x 2 [A;B]:(3.7)For n 2 N de�ne en(t) = maxfe(t);�ng a.e. on [0; 2�](3.8)and consider the problemsx00 + k x = g(x) + en(t); x(0) = x(2�); x0(0) = x0(2�):(3.9)There is E 2 (0;1) such that kenk1 � E for all n 2 N : Furthermore,inf esst2[0;2�] en(t) � �n for all n 2 N and limn!1 en = e:(3.10)In virtue of (3.4), we can choose A0 2 (0; A2 ) in such a way that g(x)� k x + en �g(x)�k x+ e > 0 holds for all x 2 (0; A0] and all n 2 N : By Lemma 3.1 this impliesmaxt2[0;2�] x(t) > A0 for all n 2 N and all positive solutions x of (3:9):(3.11)Let f"ng1n=1 � (0; A0) be an arbitrary decreasing sequence which tends to 0 asn ! 1 and satis�es the relation g("n) � k "n > n for any n 2 N : In particular,with respect to (3.10), the functions (�2;n(t); �2;n(t)) = ("n; 0) are upper functionsfor (3.9). Furthermore, in view of (3.7), (3.8) and (1.9) we can �nd n0 2 N and� 2 (0; A2 ) such that g(x)� k x+ en � 0 and ken� enk1 � 3� (B�A+ �) hold for allx 2 [A� �; B] and all n � n0: By Proposition 1.5, this means that, for each n � n0;the problem (3.9) has lower functions (�1;n; �1;n) such that �1;n(t) 2 [A � �; B] forall t 2 [0; 2�]:To summarize, we have en 2 E(E; "n; B) for all n � n0: Thus, due to (3.11)Proposition 2.9 implies that for each n � n0 the problem (3.9) has a positive solutionxn such that xn(tn) 2 [A0; B] for some tn 2 [0; 2�]:(3.12)Hence, we can use Lemma 3.2 with A = A0 to get that there are R; "� 2 (0;1) andK 2 [0;1) such that the relations "� � xn(t) � R on [0; 2�] and kx0nk1 � K holdfor each n � n0: This means that the set fg(xn(t)) � k xn(t) : t 2 [0; 2�]; n � n0gis bounded and it follows that the sequence fxng1n=n0 is equi-bounded and equi-continuous in C 1 [0; 2�] and so, by the Arzel¸ - Ascoli Theorem, we can assumewithout loss of generality that fxng1n=n0 converges in C 1 [0; 2�] to some functionu 2 C 1 [0; 2�]: Consequently, for each t 2 [0; 2�] we havelimn!1 �x0n(t)� x0n(0) + k Z t0 xn(s) ds� = limn!1Z t0 (g(xn(s)) + en(s)) ds;



16 Irena Rach�unková, Milan Tvrdý and Ivo Vrkoèwherefrom, using the Lebesgue Dominated Convergence Theorem we getu0(t)� u0(0) + k Z t0 u(s) ds = Z t0 (g(u(s)) + e(s)) ds;which means that u 2 A C 1[0; 2�] and u is a solution to (1.1). Moreover, withrespect to (3.12) we have (3.6).ii) It remains to get rid of the assumption (3.7). For n 2 N ; let us de�nepn(t) = e(t)� 1n a.e. on [0; 2�]:For each n 2 N and x 2 [A;B]; we have g(x) � k x + pn < 0: Further, in view of(3.4) there are n0 2 N and A1 2 (0; A2 ) such thatg(x)� k x + pn > 0 for all x 2 (0; A1) and n � n0:Thus, by the �rst part of this proof, we get a sequence fxng1n=n0 of solutions of theproblems x00 + k x = g(x) + pn(t); x(0) = x(2�); x0(0) = x0(2�):(3.13)Since kpnk1 � E + 1 for n � n0; we get that the solutions xn of (3.13) satisfy"� � xn(t) � R on [0; 2�] and kx0nk1 � K; where the constants R; K and "� arenow determined for A1 A; B and E + 1 instead of A0; A; B; E: Therefore, we canuse the limiting process as in the �rst part of this proof and get the desired solutionu(t) = limn!1 xn(t) to (1.1) with the property (3.6).The proof of the following theorem can be done as the previous one with theonly di�erence that instead of Proposition 1.5 we will use Proposition 1.6.3.4. Theorem. Suppose that k 6= n2 for all n 2 N and replace condition (3:5) inTheorem 3:3 with g(x) + e � k A +B2 for all x 2 [A;B];(3.14)where A > 0 and B ful�l (1:13) and (1:14): Then the problem (1:1) has a positivesolution.4 . Multiplicity resultsIn this section we present su�cient conditions for the existence of at least twopositive solutions of (1.1). First, we will give some necessary auxiliary assertions.



Resonance and Multiplicity in Periodic BVP's with Singularity 174.1. Lemma. Assume (1:2) and let A 2 (0;1) and B 2 (A;1) be such that (3:7)and (1:9) are satis�ed. Then there are  : [0; 2�] � [0; 2�] 7! R continuous on[0; 2�]� [0; 2�] and �1 2 A C 1[0; 2�] such that (�1; �01) are lower functions of (1:1);�1(t) = A + �6 ke� ek1 + Z 2�0 (t; s) (e(s)� e) ds on [0; 2�](4.1)and �1(t) 2 [A;B] for all t 2 [0; 2�]:Furthermore, there is �0 > 0 such that for each � 2 [��0; �0] the functions(�1 + �; �01) are lower functions of (1:1):Proof. Due to (3.7), we can �nd �0 > 0 in such a way thatg(x)� k x + e � 0 for x 2 [A� �0; B + �0]:(4.2)Let 0(t; s) be the Green function of the problem x00 = 0; x(0) = x(2�) = 0 and let�0(t) = Z 2�0 (t; s) (e(t)� e) ds; for t 2 [0; 2�];where (t; s) = 0(t; s)� 12� Z 2�0 0(�; s) d� for t; s 2 [0; 2�]:(4.3)It is easy to verify that �0 2 A C 1[0; 2�];�000(t) = e(t)� e a.e. on [0; 2�]; �0(0) = �0(2�); �00(0) = �00(2�):(4.4)Moreover, �0 = 0 and therefore by the proof of [12, Proposition2.4] we havek�0k1 � �6 ke� ek1:(4.5)In particular, we have�1(t) = �0(t) + A+ �6 ke� ek1 on [0; 2�]:(4.6)Now, choose an arbitrary � 2 [��0; �0] and put�(t) = �1(t) + � for t 2 [0; 2�]:(4.7)Obviously, � and �1 2 A C 1[0; 2�] ful�l (4.4) in place of �0: Furthermore, (4.5)-(4.7)imply that�1(t) 2 [A;B] and �(t) 2 [A� �0; B + �0] for all t 2 [0; 2�]:Finally, in view of (4.2) we have k �(t)� e � g(�(t)) on [0; 2�] and, consequently,�00(t) + k �(t) = e(t)� e+ k �(t) � e(t) + g(�(t)) for a.e. t 2 [0; 2�];i.e. (�1 + �; �01) are lower functions of (1.1) for each � 2 [��0; �0]:



18 Irena Rach�unková, Milan Tvrdý and Ivo Vrkoè4.2. Proposition. Suppose (1:2) and let (�1; �1) and (�2; �2) be respectively lowerand upper functions of (1:1) such that �1(t) � �2(t) on [0; 2�]: Then there is a so-lution u of (1:1) such that�1(t) � u(t) � �2(t) on [0; 2�]:(4.8)Proof. Choose arbitrarily f 2 Car([0; 2�]� R) in such a way that f(t; x) = g(x)�k x+e(t) for a.e. t 2 [0; 2�] and all x 2 [�1(t); �2(t)]: Then, Theorem 1.4 ensures theexistence of a solution u of (1.4) with J = R satisfying the estimates (4.8), whichmeans that u is a solution to (1.1), as well.4.3. Theorem. Suppose that (1:2); (1:3); (2:2) and (2:35) hold and let A 2 (0;1)and B 2 (A;1) be such that (3:7) and (1:9) are true. Further, assume that thereare upper functions (�2; �2) of (1:1) such that �2(t) � B for all t 2 [0; 2�]: Then theproblem (1:1) has at least two positive solutions.Proof. First, notice that by Lemma 4.1 and Proposition 4.2 the problem (1.1) haslower functions (�1; �01) and a solution u for which (4.8) is true. Moreover, we have�1(t) 2 [A;B] on [0; 2�] and there is � 2 (0; A) such that (�1 � �; �01) are also lowerfunctions of (1.1).Consider the function g0 from (2.15). By (2.19) and (2.35) there is A0 2 (0; A��)such that g0(A0) + e(t) � g0(A0) + inf esst2[0;2�] e(t) � 0 for a.e. t 2 [0; 2�]:(4.9)This means that (A0; 0) are upper functions of (1.1). Furthermore, for a.e. t 2[0; 2�]; put m(t) = e(t) + minf0; infs2(0;�2(t)] g0(s)g:(4.10)Then, in view of (2.18), m 2 L [0; 2�]: DenoteR = k�2k1; K = kmk1 and K� = K kek1 + Z RA0 jg0(s)j ds:Due to (2.16), we can choose "� 2 (0; A0) in such a way that g0("�) > 0 andZ A0"� g0(s) ds > K�:(4.11)Now, for a.e. t 2 [0; 2�]; de�nef(t; x) = e(t) +8><>: eg0(x) if x � �2(t);eg0(�2(t)) + x� �2(t)x� �2(t) + 1 if x > �2(t);(4.12)where



Resonance and Multiplicity in Periodic BVP's with Singularity 19
eg0(x) = 8>>><>>>: 0 if x < 0;g0("�) x"� if x 2 [0; "�);g0(x) if x � "�:(4.13)Consider the problem (1.4) with J = R : We have f 2 Car([0; 2�] � R): Further,since "� < A0 and (4.9) are valid, the couple (A0; 0) de�nes upper functions of (1.4).Similarly, since �1(t) � � < �2(t) on [0; 2�]; the functions (�1 � �; �01) are lowerfunctions for (1.4). Finally, (4.10) and (4.12) implyf(t; x) � m(t) for all x 2 R and a.e. t 2 [0; 2�]:Therefore we can use Theorem 1.4 and obtain a solution v of (1.4) such thatA0 � v(tv) � �1(tv)� � for some tv 2 [0; 2�]:(4.14)Relations (4.8) and (4.14) ensure that u and v are di�erent. It remains to provethat v is a solution to (1.1). To this aim we need to show that the inequalities"� � v(t) � �2(t) on [0; 2�](4.15)are valid. First, let us put z(t) = v(t) � �2(t) for t 2 [0; 2�] and suppose thatmaxt2[0;2�] z(t) = z(�1) > 0: Due to the periodic conditions we can assume that�1 2 [0; 2�) and z0(�1) = 0: Moreover, there is �2 2 (�1; 2�] such that z(t) > 0 on[�1; �2) and z0(�2) � 0: Then, since (�2; �2) are lower functions of (1.4), taking intoaccount (4.12) we getz00(t) � z(t)z(t) + 1 > 0 a.e. on [�1; �2] and so 0 < Z �2�1 z00(t) dt = z0(�2) � 0;a contradiction. This proves thatv(t) � �2(t) on [0; 2�](4.16)and, in particular, we have maxt2[0;2�] v(t) = v(t1) 2 [A0; R]:(4.17)Now, assume that mint2[0;2�] v(t) = v(t0) < "�: With respect to (4.12), (4.13) and(4.16), we have v00(t) = eg0(v(t)) + e(t) a.e. on [0; 2�]:Therefore, using (4.11), (4.13), (4.17) and Lemma 1.7 we obtainK� < Z A0"� g0(s) ds � Z A0v(t0) eg0(s) ds � kek1K + Z RA0 jg0(s)j ds = K�;a contradiction. This proves that v(t0) � "�; wherefrom, with respect to (4.16), therelations (4.15) follow.



20 Irena Rach�unková, Milan Tvrdý and Ivo Vrkoè4.4. Theorem. Theorem 4:3 remains valid if (3:4) is assumed instead of (2:2) and(2:35):Proof. Due to Lemma 4.1, the functions (�1; �01) with �1 given by (4.1) are lowerfunctions of (1.1). Therefore, by Proposition 4.2, the problem (1.1) has a solutionu satisfying (4.8).Let g0 and en; n 2 N ; be given by (2.15) and (3.8), respectively. Recall that thesequence feng1n=1 is nonincreasing for a.e. t 2 [0; 2�]; the relations (3.10) are trueand limn!1ken � ek1 = 0:(4.18)Consequently, there is E 2 [0;1) such that kenk1 � E for all n 2 N : Due to (3.4)and (3.10) there is A0 2 (0; A2 ) such thatg0(x) + en � g0(x) + e > 0 for all x 2 (0; A0] and n 2 N :(4.19)Choose a sequence f"ng1n=1 � (0; A0) in such a way that (2.26) andg0("n) � n for all n 2 N(4.20)are satis�ed. Now, for n 2 N and a.e. t 2 [0; 2�]; de�nefn(t; x) = en(t) +8><>: egn(x) if x < �2(t);g0(�2(t)) + x� �2(t)x� �2(t) + 1 if x � �2(t)(4.21)and egn(x) = 8>>><>>>: jej+ 1 if x < 0;g0("n) x"n + (jej+ 1) "n � x"n if x 2 [0; "n);g0(x) if x � "n(4.22)and consider the problemsx00 = fn(t; x); x(0) = x(2�); x0(0) = x0(2�):(4.23)We will show that for all n su�ciently large the problem (4.23) veri�es the assump-tions of Theorem 1.4. Indeed, put R = k�2k1: Theng� = minfjej+ 1; infx2(0;R] g0(x)g 2 Rand fn(t; x) � en(t)+g� for all n 2 N ; x 2 R and a.e. t 2 [0; 2�]: Furthermore, from(3.10) and (4.20) we get that fn(t; "n) � g0("n)�n � 0 holds for a.e. t 2 [0; 2�] and



Resonance and Multiplicity in Periodic BVP's with Singularity 21each n 2 N : This implies that ("n; 0) are upper functions of (4.23). Finally, in viewof (3.7), (3.10) and (4.18) there are n0 2 N and � 2 (0; A2 ) such that the relationsg0(x) + en < 0 for all x 2 [A� �; B] and �3 ken � enk1 < �3 ke� ek1 + �2hold for all n � n0: Moreover, by (1.9) we have(B � �2)� (A� �) = B � A + �2 > �3 ken � enk1 for n � n0:Thus, with respect to Lemma 4.1, for each n � n0 the functions (�1;n; �01;n); where�1;n(t) = A+ �6 ken � enk1 + Z 2�0 (t; s) (en(s)� en) ds� �; t 2 [0; 2�];(4.24)are lower functions of the problemx00 = g0(x) + en(t); x(0) = x(2�); x0(0) = x0(2�)and �1;n(t) 2 [A� �; B � �2 ] for all t 2 [0; 2�]:(4.25)Since we have"n < A2 < A� � � B � �2(t) for all t 2 [0; 2�] and n � n0;it is easy to see that the functions (�1;n; �01;n) are also lower functions of (4.23).Thus, we can use Theorem 1.4 to show that for each n � n0 the problem (4.23)has a solution xn such that kx0nk1 � K = E + 2� jg�j(4.26)and "n � xn(tn) � �1;n(tn) for some tn 2 [0; 2�]:(4.27)Now, �x n � n0 and de�ne z(t) = xn(t)��2(t) on [0; 2�]: Using the arguments fromthe proof of Theorem 4.3 (see the proof of (4.16)) we getxn(t) � �2(t) on [0; 2�]:(4.28)With respect to (4.21) this means that for each n 2 N the function xn is a solutionof x00 = egn(x) + en(t); x(0) = x(2�); x0(0) = x0(2�):



22 Irena Rach�unková, Milan Tvrdý and Ivo VrkoèFurthermore, using (3.10), (4.19) and (4.22) we can verify that there is n1 � n0 suchthat egn(x) + en > 0 for all x 2 (�1; A0] and all n � n1:Therefore, by Lemma 3.1 we havemaxt2[0;2�] xn(t) > A0 for all n � n1and Lemma 2.2 yields that there is "� > 0 such thatxn(t) � "� for all t 2 [0; 2�] and n � n1:(4.29)In view of (4.26), (4.28) and (4.29), the sequence fxng1n=n1 is equibounded andequicontinuous in C 1 [0; 2�] and thus we can assume without loss of generality thatit converges in C 1 [0; 2�] to some function v:With respect to (4.22), (4.28) and (4.29),we have "� � v(t) � �2(t) on [0; 2�]:Therefore v is a solution to (1.1).It remains to show that v di�ers from u: First, notice that since kk1 =supt;s2[0;2�] j(t; s)j <1; the relations (4.1), (4.18) and (4.24) yieldlimn!1 k�1 � � � �1;nk1 � limn!1(kk1 + �6 ) ke� enk1 = 0:(4.30)Furthermore, we can choose a subsequence ftn`g1̀=1 in ftng1n=1 in such a way thatlim`!1 tn` = t� 2 [0; 2�]: Therefore, with respect to (4.30), (4.8) and (4.27) we havev(t�) = lim`!1xn`(tn`) � lim`!1�1;n`(tn`) = �1(t�)� � < mint2[0;2�] u(t);which completes the proof of the theorem.4.5. Remark. Notice that in contrast to Theorems 2.1 and 3.3, in Theorems 4.3and 4.4 we do not need to assume (2.1).At the close of this paper we will give two additional multiplicity results (cf. The-orem 4.7). Their proofs can be done as those of Theorems 4.3 and 4.4, only insteadof Lemma 4.1 we have to use its following modi�cation related to Proposition 1.6.4.6. Lemma. Assume (1:2). Furthermore, let k 6= n2 for all n 2 N and let A 2(0;1) and B 2 (A;1) be such thatg(x) + e < k A+B2 for x 2 [A;B];(4.31)



Resonance and Multiplicity in Periodic BVP's with Singularity 23(1:13) and (1:14) are true. Let�1(t) = A+B2 + Z 2�0 e(t; s) (e(s)� e) ds for t 2 [0; 2�];where e is the Green function of the problem x00 + k x = 0; x(0) = x(2�); x0(0) =x0(2�):Then �1 2 A C 1[0; 2�]; �1(t) 2 [A;B] for all t 2 [0; 2�] and there is �0 > 0 suchthat for each � 2 [��0; �0] the functions (�1 + �; �01) are lower functions of (1:1):Proof. Choose �0 > 0 in such a way thatg(x)� k � + e � k A+B2 for x 2 [A� �0; B + �0] and � 2 [��0; �0]:(4.32)By the proofs of [13, Theorems 3.1 and 3.2], the function�0(t) = Z 2�0 e(t; s) (e(s)� e) ds; t 2 [0; 2�];possesses the following properties: �0 2 A C 1[0; 2�]; �0 = 0;�000(t) + k �0(t) = e(t)� e a.e. on [0; 2�]; �0(0) = �0(2�); �00(0) = �00(2�)and k�0k1 � �(k) ke� ek1: In view of (1.13) we have�1(t) = A+ �(k) ke� ek1 + �0(t) on [0; 2�]:Therefore �1(t) 2 [A;B] for all t 2 [0; 2�] and, with respect to (4.32), it follows that(�1 + �; �01) are lower functions of (1.1) for each � 2 [��0; �0]:4.7. Theorem. Suppose that k 6= n2 for all n 2 N and replace conditions (3:7)and (1:9) in Theorem 4:3 (Theorem 4:4) with (4:31); (1:13) and (1:14): Then theproblem (1:1) has at least two positive solutions.References[1] M. del Pino, R. Manásevich and A. Montero. T -periodic solutions for some secondorder di�erential equations with singularities. Proc. Royal Soc. Edinburgh 120A, 231-244(1992).[2] A. Fonda. Periodic solutions of scalar second order di�erential equations with a singularity.Mémoire de la Classe de Sciences, Acad. Roy. Belgique, 8-IV, 1-39 (1993).[3] A. Fonda, R. Manásevich and F. Zanolin. Subharmonic solutions for some second-orderdi�erential equations with singularities. SIAM J. Math. Anal. 24, 1294-1311 (1993).
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