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Abstract. We study analytical properties of a singular nonlinear ordinary differential equation with a
φ-Laplacian. In particular we investigate solutions of the initial value problem

(p(t)φ(u′(t)))′ + p(t)f(φ(u(t))) = 0, t > 0, u(0) = u0 ∈ [L0, L], u′(0) = 0

on the half-line [0,∞). Here, f is a continuous function with three zeros φ(L0) < 0 < φ(L), function p is
positive on (0,∞) and the problem is singular in the sense that p(0) = 0 and 1/p(t) may not be integrable on
[0, 1]. The main goal of the paper is to prove the existence of damped solutions defined as solutions u satisfying
sup{u(t), t ∈ [0,∞)} < L. Moreover, we study the uniqueness of damped solutions. Since the standard approach
based on the Lipschitz property is not applicable here in general, the problem is more challenging. We also
discuss the uniqueness of other types of solutions.

1 Introduction

We study the equation
(p(t)φ(u′(t)))′ + p(t)f(φ(u(t))) = 0, t > 0 (1.1) {ppphi}

with the initial conditions
u(0) = u0, u′(0) = 0, u0 ∈ [L0, L], (1.2) {ic}

where

φ ∈ C1(R), φ′(x) > 0 for x ∈ (R \ {0}), (1.3) {phi_1}
φ(R) = R, φ(0) = 0, (1.4) {phi_2}

L0 < 0 < L, f(φ(L0)) = f(0) = f(φ(L)) = 0, (1.5) {f_1}
f ∈ C[φ(L0), φ(L)], xf(x) > 0 for x ∈ ((φ(L0), φ(L)) \ {0}), (1.6) {f_2}

p ∈ C[0,∞) ∩ C1(0,∞), p′(t) > 0 for t ∈ (0,∞), p(0) = 0. (1.7) {p_1}

A model example of (1.1), (1.2) is a problem with the α-Laplacian described below.

Example 1.1. Consider φ(x) = |x|α sgnx, x ∈ R, where α ≥ 1. Then φ′(x) = α|x|α−1 and conditions (1.3) {ex1}
and (1.4) are fulfilled. If we take p(t) = tβ , t ∈ [ 0,∞ ), where β > 0, then p fulfils (1.7). As an example of f
satisfying conditions (1.5) and (1.6) we can take f(x) = x (x− φ(L0)) (φ(L)− x), x ∈ R.

A special case of equation (1.1), which has the form(
tn−1u′(t)

)′
+ tn−1f(u(t)) = 0,

arises in many areas. For example in the study of phase transition of Van der Waals fluids [9], in population
genetics, where it serves as a model for the spatial distribution of the genetic composition of a population [8],
in the homogeneous nucleation theory [1], in the relativistic cosmology for description of particles which can be
treated as domains in the universe [13], or in the nonlinear field theory, in particular, when describing bubbles
generated by scalar fields of the Higgs type in the Minkowski spaces [7]. The equation

(p(t)u′(t))
′
+ q(t)f(u(t)) = 0,

without φ-Laplacian, was investigated for p ≡ q in [14]–[19] and for p 6≡ q in [5], [6], [20] and [21]. Other
problems close to (1.1), (1.2) can be found in [2]–[4], [10]–[12].
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Definition 1.2. A function u ∈ C1[0,∞) with φ(u′) ∈ C1 (0,∞ ] which satisfies equation (1.1) for every
t ∈ [0,∞) is called a solution of equation (1.1). If moreover u satisfies the initial conditions (1.2), then u is
called a solution of problem (1.1), (1.2).

Definition 1.3. Consider a solution u of problem (1.1), (1.2) with u0 ∈ (L0, L) and denote {def2}

usup = sup{u(t) : t ∈ [0,∞)}.

If usup < L, then u is called a damped solution of problem (1.1), (1.2).
If usup = L, then u is called a homoclinic solution of problem (1.1), (1.2).
The homoclinic solution is called a regular homoclinic solution, if u(t) < L for t ∈ [ 0,∞ ) and a singular
homoclinic solution, if there exists t0 > 0 such that u(t0) = L.
If usup > L, then u is called an escape solution of problem (1.1), (1.2).

Remark 1.4. Equation (1.1) has the constant solutions u(t) ≡ L, u(t) ≡ 0 and u(t) ≡ L0. {kons}

Our goal in this paper is to prove new existence and uniqueness results for equation (1.1) with φ-Laplacian.
The presence of φ-Laplacian in equation (1.1) brings difficulties in the study of the uniqueness. For example

if φ(x) = |x|α sgnx and α > 1, then φ fulfils the Lipschitz condition on R. Since φ−1 = |x| 1α sgnx and(
φ−1

)′
(x) = 1

α |x|
1
α−1, we get limx→0

(
φ−1

)′
(x) =∞ and the function φ−1 does not fulfil the Lipschitz condition

in the neighbourhood of 0. Since both φ and φ−1 must be present in the operator form of problem (1.1), (1.2),
(compare with (4.2)), we cannot use the standard approach with some Lipschitz constant to prove the uniqueness
near 0. Therefore we develop a different approach near 0 and show conditions which guarantee the uniqueness
of damped and regular homoclinic solutions of problem (1.1), (1.2) (Theorem 5.5) and the uniqueness of escape
solutions (Theorem 6.5) of the auxiliary problem (2.1), (1.2) introduced in Section 2.

We also present conditions sufficient for the existence of solutions of problem (1.1), (1.2). The existence of
damped solutions of problem (1.1), (1.2) is proved here (Theorem 5.2). The complicated questions about the
existence of escape and homoclinic solutions and about nonexistence of singular homoclinic solutions remain
open and they will be studied in our next paper.

2 Properties of solutions of auxiliary equation (2.1)
{sec2}

In this section we introduce an auxiliary equation with a bounded nonlinearity and we describe properties of
its solutions. By means of these results we proceed to a priori estimates of solutions, existence and continuous
dependence of solutions on initial values in next sections. The auxiliary equation has the form

(p(t)φ(u′(t)))′ + p(t)f̃(φ(u(t))) = 0, (2.1) {vppphi}

where

f̃(x) =

{
f(x) for x ∈ [φ(L0), φ(L)],

0 for x < φ(L0), x > φ(L).
(2.2) {vf}

Properties of solutions of (2.1) are derived in the next lemmas.

Lemma 2.1. Let (1.3)–(1.7) hold and let u be a solution of equation (2.1). {lemma1}

a) Assume that there exists a ≥ 0 such that u(a) ∈ (0, L) and u′(a) = 0. Then u′(t) < 0 for t ∈ (a, θ], where
θ is the first zero of u on (a,∞). If such θ does not exist, then u′(t) < 0 for t ∈ (a,∞).

b) Assume that there exists b ≥ 0 such that u(b) ∈ (L0, 0) and u′(b) = 0. Then u′(t) > 0 for t ∈ (b, θ], where
θ is the first zero of u on (b,∞). If such θ does not exist, then u′(t) > 0 for t ∈ (b,∞).

Proof.

a) Let a ≥ 0 be such that u(a) ∈ (0, L) and u′(a) = 0. First, we assume that there exists θ > a satisfying
u(t) > 0 on (a, θ) and u(θ) = 0. Assume that there exists τ ∈ (a, θ) such that u′(τ) ≥ 0, u(t) ∈ [u(a), L)
for t ∈ (a, τ ]. Integrate (2.1) from a to τ and obtain

p(τ)φ(u′(τ)) = −
∫ τ

a

p(s)f̃(φ(u(s))) ds < 0.

Hence, by (1.3) and (1.7), u′(τ) < 0, a contradiction. Therefore u′ < 0 on (a, θ). Furthermore, integrating
(2.1) over (a, θ), we get

p(θ)φ(u′(θ)) = −
∫ θ

a

p(s)f̃(φ(u(s))) ds < 0.
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Thus, by (1.3) and (1.7), u′(θ) < 0 and we have u′ < 0 on (a, θ]. If u is positive on [a,∞), we obtain as
before u′ < 0 on (a,∞).

b) We argue similarly as in a). �

Lemma 2.2. Let (1.3)–(1.7) hold and let u be a solution of equation (2.1). Assume that there exists a ≥ 0 {lemma1a}
such that u(a) = L and u′(a) = 0.

a) Let θ > a be the first zero of u on (a,∞). Then there exists a1 ∈ [a, θ ) such that

u(a1) = L, u′(a1) = 0, 0 ≤ u(t) < L, u′(t) < 0, t ∈ (a1, θ].

b) Let u > 0 on [a,∞) and u 6≡ L on [a,∞). Then there exists a1 ∈ [a,∞) such that

u(a1) = L, u′(a1) = 0, 0 < u(t) < L, u′(t) < 0, t ∈ (a1,∞). (2.3) {lem1aa}

In the both cases u(t) = L for t ∈ [a, a1].
Proof.

a) Assume that there exists t? > a such that u(t?) > L. Then we can find τ ∈ [a, t?) satisfying

u(t) > L, t ∈ (τ, t?], u(τ) = L. (2.4) {lem1ab}

Hence u′(τ) ≥ 0. Integrating (2.1) over [τ, t?], we get, by (2.2),

p(t?)φ(u′(t?)) = p(τ)φ(u′(τ)) ≥ 0,

which yields u′(t?) ≥ 0. Therefore u > L on [t?,∞) and u cannot have the zero θ, a contradiction. We
have proved 0 < u ≤ L on [a, θ) and deduce from (2.1) (p(t)φ(u′(t)))′ ≤ 0 for t ∈ [a, θ]. Consequently
u′(t) ≤ 0 and u is nonincreasing on [a, θ]. Hence there exists a1 = [a, θ) such that

u(a1) = L, u′(a1) = 0, 0 < u(t) < L, t ∈ (a1, θ).

Since u is monotonous on [a, a1] then u ≡ L on [a, a1]. Now, we can argue as in the proof of Lemma 2.1
a) with a1 instead of a.

b) Assume as in a) that there exists t? > a such that u(t?) > L. Then we can find τ ∈ [a, t?) satisfying (2.4).
Hence u′(τ) ≥ 0. Integrate (2.1) over [τ, t], where t ∈ (τ, t?]. We get, by (2.2),

p(t)φ(u′(t)) = p(τ)φ(u′(τ)), t ∈ (τ, t?].

If u′(τ) = 0, then u′(t) = 0 for t ∈ (τ, t?], which contradicts u(τ) = L, u(t?) > L. Therefore u′(τ) > 0. Let
ξ ∈ [0, τ) be the minimal number fulfilling 0 < u(t) < L, u′(t) > 0, t ∈ (ξ, τ). Since u(ξ) < L, u′(ξ) ≥ 0,
we obtain ξ > a. Integrating (2.1) over [a, ξ], we derive u′(ξ) < 0, a contradiction. We have proved that
0 < u ≤ L on [a,∞), and that u is nonincreasing on (a,∞). If u 6≡ L on [a,∞), we can find a1 ≥ a such
that (2.3) holds using the arguments from the proof of Lemma 2.1 a). Moreover, u ≡ L on [a, a1]. �

In order to derive further important properties of solutions of (2.1) we need to assume

∃B̄ ∈ (L0, 0) : F̃
(
B̄
)

= F̃ (L), where F̃ (x) =

∫ x

0

f̃(φ(s)) ds, x ∈ R (2.5) {f_4}

and

lim sup
t→∞

p′(t)

p(t)
<∞. (2.6) {p_3}

Remark 2.3. According to (2.5), we have F̃ ∈ C1(R), F̃ (0) = 0, F̃ is positive and increasing on [0, L] and {pozn6}
positive and decreasing on [L0, 0].

Example 2.4. If p, φ and f are from Example 1.1 and in addition L < |L0|, then conditions (2.5) and (2.6)
are satisfied.

Remark 2.5. From (1.3) and (1.4), we get

xφ(x) > 0 for x ∈ (R \ {0}), (2.7) {phi_3}
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and there exists an inverse function φ−1, which is continuous and increasing on R. By (1.7), p is positive and
increasing on (0,∞).

Lemma 2.6. Assume that (1.3)–(1.7), (2.5) and (2.6) hold. Let u be a solution of equation (2.1) and let there {lemma2}
exist b ≥ 0 and θ > b such that

u(b) ∈
[
B̄, 0

)
, u′(b) = 0, u(θ) = 0, u(t) < 0 for t ∈ [b, θ ) . (2.8) {23}

Then there exists a ∈ (θ,∞) such that

u′(a) = 0, u′(t) > 0 for t ∈ (b, a), u(a) ∈ (0, L).

Proof. Let u be a solution of equation (2.1) on [0,∞ ) satisfying (2.8). Then

φ′(u′(t))u′′(t) +
p′(t)

p(t)
φ(u′(t)) + f̃(φ(u(t))) = 0, t ∈ (0,∞). (2.9) {25}

By Lemma 2.1 b and by (2.8) we have u′(t) > 0 for t ∈ (b, θ ].
Step 1. We assume that a > θ satisfying u′(a) = 0 does not exist. Then we get

1u′(t) > 0, t ∈ (b,∞), (2.10) {27}

and hence u is increasing on (b,∞). Since u(θ) = 0, the inequality

u(t) > 0, t ∈ (θ,∞) (2.11) {28}

holds. Let (θ,A) ⊂ (θ,∞) be a maximal interval with the property

u(t) < L, t ∈ (θ,A). (2.12) {29}

Using (1.3), (1.5), (1.6) and (2.7) we obtain f̃(φ(u(t))) > 0 for t ∈ (θ,A). Consequently, equation (2.9) yields

u′′(t) < 0, t ∈ (θ,A), (2.13) {210}

and thus u′ is decreasing on (θ,A).

(i) Let A <∞. Then (2.12) implies u(A) = L. Multiplying (2.9) by u′ and integrating from b to A we get∫ A

b

φ′ (u′(s))u′(s)u′′(s) ds+

∫ A

b

p′(s)

p(s)
φ (u′(s))u′(s) ds+

∫ A

b

f̃(φ(u(s)))u′(s) ds = 0.

After substitutions we derive∫ u′(A)

u′(b)

xφ′(x) dx+

∫ A

b

p′(s)

p(s)
φ(u′(s))u′(s) ds+

∫ u(A)

u(b)

f̃(φ(y)) dy = 0. (2.14) {211}

Due to (2.8) and (2.10) u′ fulfils u′(b) = 0 and u′(A) > 0. Therefore conditions (1.7) and (2.7) imply∫ u′(A)

u′(b)

xφ′(x) dx > 0,

∫ A

b

p′(s)

p(s)
φ(u′(s))u′(s) ds > 0.

Using this we derive from (2.14)∫ u(A)

u(b)

f̃(φ(y)) dy =

∫ L

u(b)

f̃(φ(y)) dy < 0,

and hence F̃ (L)− F̃ (u(b)) < 0. By Remark 2.3, (2.5) and (2.8) we obtain

F̃ (L) < F̃ (u(b)) ≤ F̃
(
B̄
)

= F̃ (L),

which is a contradiction.

1Původńı labely 26 a 26a jsem vyhodil, protože na ně bylo po jednom odkazu hned za rovnićı. Pokud někoho napadne, jak to
přeformulovat abychom se zbavili 27, 28, 29 a 27a, 28a, 29a, abychom to mohli hodit na řádek, tak to přepǐste. Mě nic nenapadá.
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(ii) Now we assume that A =∞. Inequalities (2.11) and (2.12) give

0 < u(t) < L for t ∈ (θ,∞) .

By (2.10) u is increasing on (θ,∞) and
lim
t→∞

u(t) = `, (2.15) {213}

where ` ∈ (0, L ]. By (2.10) and (2.13) u′ is decreasing and positive on (θ,∞) and limt→∞ u′(t) ≥ 0. By
(2.15) we have

lim
t→∞

u′(t) = 0. (2.16) {214}

Let ` = L. Similarly as before we derive∫ u′(t)

u′(b)

xφ′(x) dx+

∫ t

b

p′(s)

p(s)
φ(u′(s))u′(s) ds+

∫ u(t)

u(b)

f̃(φ(y)) dy = 0, t ∈ (b,∞) .

Since the first integral is positive, we have∫ u(t)

u(b)

f̃(φ(y)) dy < −
∫ t

b

p′(s)

p(s)
φ(u′(s))u′(s) ds, t ∈ (b,∞) .

This yields

lim
t→∞

(
F̃ (u(t))− F̃ (u(b))

)
≤ −

∫ ∞
b

p′(s)

p(s)
φ(u′(s))u′(s) ds < 0.

Using Remark 2.3, (2.5) and (2.8) we deduce

F̃ (L) < F̃ (u(b)) ≤ F̃
(
B̄
)

= F̃ (L),

which is a contradiction.

Let ` ∈ (0, L). For t→∞ in (2.9) we get by (1.4) and (2.6)

φ′(0) · lim
t→∞

u′′(t) = −f̃(φ(`)). (2.17) {25n}

Since −f̃(φ(`)) ∈ (−∞, 0), the inequality limt→∞ u′′(t) < 0 holds, contrary to (2.16).

We have proved that there exists a > θ such that u′(a) = 0.
Step 2. Let u′ > 0 on [θ, a ). Then u(a) > 0 and Lemma 2.1 b) yields u′ > 0 on (b, a). It remains to prove

that u(a) < L. Multiplying (2.9) by u′ and integrating from b to a we get similarly as before∫ u(a)

u(b)

f̃(φ(y)) dy < 0, t ∈ (b, a) ,

and
F̃ (u(a)) < F̃ (u(b)) ≤ F̃

(
B̄
)

= F̃ (L).

By Remark 2.3, the inequality u(a) < L holds. �

Lemma 2.7. Assume that (1.3)–(1.7), (2.5) and (2.6) hold. Let u be a solution of equation (2.1) and let there {lemma3}
exist a ≥ 0 and θ > a such that

u(a) ∈ (0, L ] , u′(a) = 0, u(θ) = 0, u(t) > 0 for t ∈ [a, θ ) . (2.18) {23a}

Then there exists b ∈ (θ,∞) such that

u′(b) = 0, u′(t) < 0 for t ∈ (a, b), u(b) ∈
(
B̄, 0

)
.

Proof. Let u be a solution of equation (2.1) satisfying (2.18). By Lemmas 2.1 a) and 2.2 a) and (2.18), we
have u′(t) < 0, for t ∈ (a, θ ].

Step 1. We assume that b > θ satisfying u′(b) = 0 does not exist. Then we get

u′(t) < 0, t ∈ (a,∞), (2.19) {27a}

and hence u is decreasing on [a,∞]. Since u(θ) = 0, the inequality

u(t) < 0, t ∈ (θ,∞) (2.20) {28a}
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holds. Let (θ,A) ⊂ (θ,∞) be a maximal interval with the property

u(t) > B̄, t ∈ (θ,A). (2.21) {29a}

Using (1.3), (1.5), (1.6) and (2.7) we obtain f̃(φ(u(t))) < 0 for t ∈ (θ,A). Consequently, equation (2.9) yields

u′′(t) > 0, t ∈ (θ,A) (2.22) {210a}

and thus u′ is increasing on (θ,A).

(i) Let A <∞. Then (2.21) implies u(A) = B̄. We argue similarly as in proof of Lemma 2.6 Step 1 part (i)
and we get

F̃
(
B̄
)
< F̃ (u(a)) ≤ F̃ (L) = F̃

(
B̄
)
,

a contradiction.

(ii) Now we assume that A =∞. By (2.20) and (2.21) we have

B̄ < u(t) < 0 for t ∈ (θ,∞) .

By (2.19) u is decreasing on (θ,∞) and limt→∞ u(t) = ` ∈
[
B̄, 0

)
. Due to (2.19) and (2.22) u′ is increasing

and negative on (θ,∞) and limt→∞ u′(t) ≤ 0. By (2.15) we have (2.16).

Similarly as in the proof of Lemma 2.6 Step 1 part (ii) we obtain a contradiction both for ` = B̄ and for
` ∈

(
B̄, 0

)
.

We have shown that there exists b > θ such that u′(b) = 0.
Step 2. Let u′ < 0 on [θ, b ). Then u(b) < 0 and Lemma 2.1 a) yields u′ < 0 on (a, b). It remains to prove

that u(b) > B̄. We proceed similarly as in the proof of Lemma 2.6 Step 2 and get F̃ (u(b)) < F̃
(
B̄
)
. By Remark

2.3, the inequality B̄ < u(b) holds. �

Lemma 2.8. Assume that (1.3)–(1.7) and (2.6) hold. Let u be a solution of equation (2.1) and let there exists {lemma23}
b ≥ 0 such that

u(b) ∈ (L0, 0), u′(b) = 0, u(t) < 0 for t ∈ [b,∞). (2.23) {30}

Then
lim
t→∞

u(t) = 0, lim
t→∞

u′(t) = 0. (2.24) {31}

Proof. By Lemma 2.1 b), u′(t) > 0 for t ∈ (b,∞). Hence u is increasing on (b,∞),

L0 < u(t) < 0, t ∈ (b,∞) (2.25) {32}

and
lim
t→∞

u(t) =: ` ∈ (u(b), 0]. (2.26) {32a}

Multiplying equation (2.9) by u′ and integrating it from b to t, we obtain

ψ1(t) + ψ2(t) + ψ3(t) = 0, t ∈ (b,∞), (2.27) {33}

where

ψ1(t) =

∫ u′(t)

u′(b)

xφ′(x) dx, ψ2(t) =

∫ t

b

p′(s)

p(s)
φ(u′(s))u′(s) ds, ψ3(t) =

∫ u(t)

u(b)

f̃(φ(x)) dx.

We have ψ3(t) = F̃ (u(t))− F̃ (u(b)), where F̃ is defined by (2.5). Since F̃ (x) is decreasing for x ∈ (L0, 0) and u
is increasing on (b,∞), F̃ (u(t)) is decreasing for t ∈ (b,∞) due to (2.25) and limt→∞ F̃ (u(t)) = F̃ (`). Therefore

lim
t→∞

ψ3(t) =: Q3 ∈
(
−F̃ (L0), 0

)
.

The positivity of ψ1 on (b,∞) yields the inequality ψ2(t) < −ψ3(t) for t ∈ (b,∞). Since ψ2 is continuous,
increasing and positive on (b,∞),

lim
t→∞

ψ2(t) =: Q2 ∈ (0,−Q3 ] .

Consequently (2.27) gives

lim
t→∞

ψ1(t) =: Q1 ∈
[

0, F̃ (L0)
)
.

Therefore
lim
t→∞

Φ(u′(t)) = Q1,
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where

Φ(z) :=

∫ z

0

xφ′(x) dx, z > 0.

Φ is positive, continuous and increasing on (0,∞) and so its inverse Φ−1 is positive, continuous and increasing,
as well. Thus

lim
t→∞

Φ−1(Φ(u′(t))) = lim
t→∞

u′(t) = Φ−1(Q1) ≥ 0.

According to (2.25),
lim
t→∞

u′(t) = 0. (2.28) {34}

Finally, assume that ` ∈ (u(b), 0). Letting t → ∞ in (2.9), we get, by (1.4), (2.6), that (2.17) holds. Since
−f̃(φ(`)) ∈ (0,∞), we get limt→∞ u′′(t) > 0, contrary to (2.16). Therefore ` = 0 due to (2.26). �

Lemma 2.9. Assume that (1.3)–(1.7) and (2.6) hold. Let u be a solution of equation (2.1) and let there exists {lemma32}
a ≥ 0 such that

u(a) ∈ (0, L], u′(a) = 0, u(t) > 0 for t ∈ [a,∞). (2.29) {35}

Then either
u(t) = L for t ∈ [a,∞) (2.30) {36}

or (2.24) holds.

Proof. Step 1. Let u(a) ∈ (0, L). We continue analogously as in proof of Lemma 2.8. By Lemma 2.1 a),
u′(t) < 0 for t ∈ (a,∞). Hence

0 < u(t) < L, t ∈ (a,∞) (2.31) {322}

and
lim
t→∞

u(t) =: ` ∈ [0, u(a)). (2.32) {322a}

Multiplying equation (2.9) by u′ and integrating it from a to t, we obtain (2.27) with b replaced by a. By
Remark 2.3, F̃ (x) is increasing for x ∈ (0, L) and since u is decreasing on (a,∞), we get F̃ (u(t)) is decreasing
for t ∈ (a,∞) due to (2.31). Consequently limt→∞ F̃ (u(t)) = F̃ (`). Let ψ1, ψ2 and ψ3 be defined as in the
proof of Lemma 2.8, where b is replaced by a. Then

lim
t→∞

ψ3(t) = lim
t→∞

F̃ (u(t))− F̃ (u(a)) =: Q3 ∈
(
−F̃ (L), 0

)
.

The positivity of ψ1 on (a,∞) yields the inequality ψ2(t) < −ψ3(t) for t ∈ (a,∞). Since ψ2 is continuous,
increasing and positive on (a,∞),

lim
t→∞

ψ2(t) =: Q2 ∈ (0,−Q3 ] .

Consequently

lim
t→∞

ψ1(t) =: Q1 ∈
[

0, F̃ (L)
)
.

Therefore
lim
t→∞

Φ(u′(t)) = Q1,

where

Φ(z) :=

∫ z

0

xφ′(x) dx, z < 0.

Φ is positive, continuous and decreasing on (−∞, 0) and so its inverse Φ−1 is positive, continuous and decreasing,
as well. Thus

lim
t→∞

Φ−1(Φ(u′(t))) = lim
t→∞

u′(t) = Φ−1(Q1) ≥ 0.

According to (2.31), we have (2.28).
Similarly as in the proof of Lemma 2.8 we derive a contradiction for ` ∈ (0, u(a)) and hence we get ` = 0

due to (2.32).
Step 2. Let u(a) = L. Clearly, function u, defined by (2.30), satisfies equation (2.1) on [a,∞). Assume that

u does not fulfil (2.30). By Lemma 2.2 b) there exists a1 ≥ a such that 0 < u(t) < L, u′(t) < 0, t ∈ (a1,∞),
and we can use the arguments from Step 1 to prove (2.24). �
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3 A priori estimates

In order to prove the existence and uniqueness of solutions of the auxiliary problem (2.1), (1.2) and of the
original problem (1.1), (1.2), a priori estimates derived in this section are needed.

Lemma 3.1. Assume that (1.3)–(1.7), (2.5) and (2.6) hold. Let u be a solution of problem (2.1), (1.2) with {lemma33}
u0 ∈

(
L0, B̄

)
. Let there exist θ > 0, a > θ such that

u(θ) = 0, u(t) < 0 for t ∈ [0, θ), u′(a) = 0, u′(t) > 0 for t ∈ (θ, a). (3.1) {41}

Then
u(a) ∈ (0, L], u′(t) > 0 for t ∈ (0, a). (3.2) {42}

Proof. From Lemma 2.1 b) and (3.1), we have u′ > 0 on (0, a). Therefore, u(a) > 0. Now, assume that
u(a) > L. Hence, there exists a0 ∈ (θ, a) such that u(t) > L on (a0, a]. Integrating equation (2.1) over (a0, a)
and using (2.2), we get

p(a0)φ(u′(a0))− p(a)φ(u′(a)) =

∫ a

a0

p(s)f̃(φ(u(s))) ds = 0,

and so p(a0)φ(u′(a0)) = 0. Thus u′(a0) = 0, contrary to u′ > 0 on (0, a). We have proved u(a) ≤ L. �

Lemma 3.2. Let assumptions (1.3)–(1.7), (2.5) and (2.6) hold. Let u be a solution of problem (2.1), (1.2) with {lemma34}
u0 ∈ (L0, 0) ∪ (0, L). Then

u0 ∈
[
B̄, 0

)
∪ (0, L) ⇒ B̄ < u(t) < L, t ∈ (0,∞) , (3.3) {u1}

u0 ∈
(
L0, B̄

)
⇒ u0 < u(t), t ∈ (0,∞) . (3.4) {u2}

Proof. Let u(0) = u0 ∈ (0, L). If u > 0 on (0,∞), then, by Lemma 2.1 a), u′ < 0 on (0,∞) and (3.3) holds.
Assume that there exists θ1 > 0 such that u(θ1) = 0, u(t) > 0 for t ∈ [0, θ1). According to Lemma 2.7,

∃b ∈ (θ1,∞) : u′(b) = 0, u′(t) < 0 for t ∈ (0, b), u(b) =
(
B̄, 0

)
.

If u < 0 on (b,∞), then, by Lemma 2.1 b), u is increasing on (b,∞) and (3.3) is valid. Assume that there exists
θ2 > b such that u(θ2) = 0, u(t) < 0 for t ∈ [b, θ2). Due to Lemma 2.6,

∃a ∈ (θ2,∞) : u′(a) = 0, u′(t) > 0 for t ∈ (b, a), u(a) = (0, L).

Now we use the previous arguments replacing 0 by a.
Let u(0) = u0 ∈

[
B̄, 0

)
. We have the same situation as before, where b is replaced by 0. So we argue

similarly.
Let u(0) = u0 ∈

(
L0, B̄

)
. If u < 0 on (0,∞), then, by Lemma 2.1 b), u′ > 0 on (0,∞) and (3.4) is valid.

Assume that there exists θ1 > 0 such that u(θ1) = 0, u(t) < 0 for t ∈ [0, θ1). By Lemma 2.1 b), u′ > 0 on
(0, θ1]. If u′ > 0 on (θ1,∞), then (3.4) holds. Assume that there exists a > θ1 such that u′(a) = 0, u′(t) > 0 for
t ∈ (θ1, a). According to Lemma 3.1, (3.2) holds. If u > 0 on [a,∞), (3.4) is valid. Let there exists θ2 > a such
that u(θ2) = 0, u > 0 on [a, θ2). We can apply Lemma 2.7 and argue as before. �

By (2.2), there exists M̃ > 0 such that ∣∣∣f̃(φ(x))
∣∣∣ ≤ M̃, x ∈ R. (3.5) {r2}

Lemma 3.3. Assume (1.3)–(1.7). Let u be a solution of problem (2.1), (1.2) with u0 ∈ [L0, L]. The inequality {odh}∫ β

0

p′(t)

p(t)
|φ(u′(t))| dt ≤ M̃(β − ϕ(β)) (3.6) {r3}

is valid for every β > 0. If moreover (2.5) and (2.6) hold, then there exists c̃ > 0 such that

|u′(t)| ≤ c̃, t ∈ [0,∞), (3.7) {r4}

for every solution u of (2.1), (1.2) with u0 ∈ [L0, 0) ∪ (0, L ].
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Proof. Step 1. Let u be solution of (2.1), (1.2) with u0 ∈ [L0, L]. Integrating equation (2.1) over (0, t), t > 0,
and using (3.5), we have

|φ(u′(t))| =
∣∣∣∣− 1

p(t)

∫ t

0

p(τ)f̃(φ(u(τ))) dτ

∣∣∣∣ ≤ M̃

p(t)

∫ t

0

p(τ) dτ

and
p′(t)

p(t)
|φ(u′(t))| ≤ M̃ p′(t)

p2(t)

∫ t

0

p(τ) dτ.

Choose a β > 0. Integrating this inequality by parts from 0 to β, we get (3.6).
Step 2. Assume moreover that (2.5) and (2.6) hold. Denote

Ψ1(z) :=

∫ z

0

xφ′(x) dx; Ψ2(z) :=

∫ z

0

xφ′(−x) dx; z ∈ [ 0,∞ ) .

Clearly, Ψ1,Ψ2 are positive, continuous and increasing on (0,∞). Put

c̃ = max
{

Ψ−1
1

(
F̃ (L0)

)
,Ψ−1

2

(
F̃ (L)

)}
, (3.8) {t2}

where F̃ is defined in (2.5).
Let u(0) = u0 ∈ (L0, 0), u′(0) = 0 and let u be a solution of equation (2.1). Then (2.9) holds.

1. Assume that u < 0 on [0,∞ ). By Lemma 2.1 b) u′ > 0 on (0,∞), and by Lemma 2.8 limt→∞ u′(t) = 0.
Therefore there exists ξ ∈ (0,∞) such that

max
t∈[ 0,∞ )

|u′(t)| = u′(ξ) > 0, u(ξ) ∈ (u0, 0) . (3.9) {t4}

Multiplying (2.9) by u′ and integrating over [0, ξ] we get∫ u′(ξ)

u′(0)

xφ′(x) dx+

∫ ξ

0

p′(t)

p(t)
φ (u′(t))u′(t) dt+

∫ u(ξ)

u(0)

f̃ (φ(x)) dx = 0. (3.10) {t5}

Since the second integral in (3.10) is positive, (3.9) and (3.10) yield

Ψ1 (u′(ξ)) < F̃ (u0)− F̃ (u(ξ)) < F̃ (u0) < F̃ (L0).

Therefore
0 < u′(ξ) < Ψ−1

1

(
F̃ (L0)

)
. (3.11) {t6}

Due to (3.8) and (3.9) estimate (3.7) is proved.

2. Assume that θ ∈ (0,∞) is such that u < 0 on [0, θ ), u(θ) = 0. Then by Lemma 2.1 b), u′ > 0 on (0, θ ].
Let a > θ be such that u′ > 0 on (θ, a), u′(a) = 0. On interval (θ, a) we have u > 0, u′ > 0 and by (1.3),
(1.6), (1.7), (2.7) and (2.9) we get u′′ < 0 on [θ, a ). Therefore u′ is decreasing on [θ, a ) and there exists
ξ ∈ (0, θ) such that

max
t∈[ 0,a )

|u′(t)| = u′(ξ) > 0, u(ξ) ∈ (u0, 0) . (3.12) {t7}

Analogously as in part 1 we get (3.11) and if a =∞ then estimate (3.7) is proved.

3. Assume that a < ∞ in (3.12). We have u′(a) = 0 and by Lemma 2.6 and Lemma 3.1 we deduce that
u(a) ∈ (0, L ]. Let u > 0 on [a,∞ ). Then Lemma 2.9 gives limt→∞ u′(t) = 0 and hence there exists
η ∈ (a,∞) such that

max
t∈[a,∞ )

|u′(t)| = −u′(η) > 0, u(η) ∈ (0, u(a)) . (3.13) {t8}

Multiplying (2.9) by u′ and integrating over [a, η] we get∫ |u′(η)|

u′(a)

xφ′(−x) dx+

∫ η

a

p′(t)

p(t)
φ (u′(t))u′(t) dt+

∫ u(η)

u(a)

f̃ (φ(x)) dx = 0. (3.14) {t9}

Since the second integral in (3.10) is positive, (3.9) and (3.10) yield

Ψ2 (|u′(η)|) < F̃ (u(a))− F̃ (u(η)) < F̃ (L).

Then
0 < |u′(η)| < Ψ−1

2

(
F̃ (L)

)
. (3.15) {t10}

Using (3.11), (3.12), (3.13) and (3.15) we obtain (3.7) due to (3.8).
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4. Assume, that there exists χ ∈ (a,∞) which is the next zero of u. Summarized, we have u(a) ∈ (0, L ],
u′(a) = 0, u(χ) = 0, u > 0 on [a, χ ). By Lemma 2.7 there exists b ∈ (χ,∞) such that u′(b) = 0, u′ < 0 on
(a, b), u(b) ∈

(
B̄, 0

)
and by (2.9) we have u′′ > 0 on [χ, b ). Consequently there exists η ∈ (a, χ) such that

max
t∈[a,b]

|u′(t)| = −u′(η) > 0, u(η) ∈ (0, u(a)) . (3.16) {t11}

Similarly as in part 3 we get (3.15) and (3.7).

5. Since u(b) < 0 we continue repeating the argument of parts 1 - 3 with b on place of 0 and the arguments
of part 4 writing b̃ instead of b. After finite or infinite number of steps we obtain (3.7).

If u0 ∈ (0, L), we can argue similarly. �

4 Existence and continuous dependence of solutions on initial values

The existence of solutions of the auxiliary problem (2.1), (1.2) is proved in Theorem 4.1 by means of the
Schauder Fixed Point Theorem. Moreover, the question about continuous dependence of solutions on initial
values is discussed in Theorems 4.3, 4.6, 4.8. These results are extended to the existence and uniqueness of
damped solutions of the original problem (1.1), (1.2) on grounds of a priori estimates derived in Section 5.

For the following investigation, we introduce a function ϕ

ϕ(t) :=
1

p(t)

∫ t

0

p(s) ds, t ∈ (0,∞), ϕ(0) = 0.

This function is continuous on [0,∞) and satisfies

0 < ϕ(t) ≤ t, t ∈ (0,∞), lim
t→0+

ϕ(t) = 0. (4.1) {p_4}

Theorem 4.1 (Existence of solutions of problem (2.1), (1.2)). Assume (1.3)–(1.7). Then, for each {exi}
u0 ∈ [L0, L], there exists a solution u of problem (2.1), (1.2).

Proof. Clearly, for u0 = L0, u0 = 0 and u0 = L there exists a solution by Remark 1.4. Assume that
u0 ∈ (L0, 0) ∪ (0, L). Integrating equation (2.1), we get the equivalent form of problem (2.1), (1.2)

u(t) = u0 +

∫ t

0

φ−1

(
− 1

p(s)

∫ s

0

p(τ)f̃(φ(u(τ))) dτ

)
ds, t ∈ [ 0,∞ ) . (4.2) {34a}

Choose a β > 0, consider the Banach space C [0, β] with the maximum norm and define an operator F : C [0, β]→
C [0, β],

(Fu)(t) = u0 +

∫ t

0

φ−1

(
− 1

p(s)

∫ s

0

p(τ)f̃(φ(u(τ))) dτ

)
ds.

Put Λ = max{|L0|, L} and consider the ball B (0, R) =
{
u ∈ C [0, β] : ‖u‖C[0,β] ≤ R

}
, whereR = Λ+βφ−1

(
M̃β

)
and M̃ is from (3.5). Since φ is increasing on R, φ−1 is also increasing on R and, by (4.1), φ−1

(
M̃ϕ(t)

)
≤

φ−1
(
M̃β

)
, t ∈ [0, β]. The norm of Fu can be estimated as follows

‖Fu‖C[0,β] = max
t∈[0,β]

∣∣∣∣u0 +

∫ t

0

φ−1

(
− 1

p(s)

∫ s

0

p(τ)f̃(φ(u(τ))) dτ

)
ds

∣∣∣∣ ≤ Λ +

∫ t

0

∣∣∣φ−1
(
M̃ϕ(s)

)∣∣∣ ds

≤ Λ +

∫ t

0

φ−1
(
M̃β

)
ds ≤ Λ + βφ−1

(
M̃β

)
= R,

which yields that F maps B (0, R) on itself.
Let us prove that F is compact on B (0, R). Choose a sequence {un} ⊂ C [0, β] such that limn→∞ ‖un −

u‖C[0,β] = 0. We have

(Fun)(t)− (Fu)(t) =

∫ t

0

(
φ−1

(
− 1

p(s)

∫ s

0

p(τ)f̃(φ(un(τ))) dτ

)
− φ−1

(
− 1

p(s)

∫ s

0

p(τ)f̃(φ(u(τ))) dτ

))
ds.
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Since f̃(φ) is continuous on [0, β], we get

lim
n→∞

∥∥∥f̃(φ(un))− f̃(φ(u))
∥∥∥
C[0,β]

= 0.

Put

An(t) = − 1

p(t)

∫ t

0

p(τ)f̃(φ(un(τ))) dτ,

A(t) = − 1

p(t)

∫ t

0

p(τ)f̃(φ(u(τ))) dτ, t ∈ (0, β], An(0) = A(0) = 0, n ∈ N.

Then, for a fixed n ∈ N,

|An(t)−A(t)| =
∣∣∣∣ 1

p(t)

∫ t

0

p(τ)
(
f̃(φ(u(τ)))− f̃(φ(un(τ))) dτ

)∣∣∣∣ , t ∈ (0, β]

and, by (4.1) and (3.5), limt→0+ |An(t)−A(t)| = 0. Therefore An −A ∈ C[0, β] and

‖An −A‖C[0,β] ≤
∥∥∥f̃(φ(un))− f̃(φ(u))

∥∥∥
C[0,β]

β, n ∈ N.

This implies that limn→∞ ‖An −A‖C[0,β] = 0. Using the continuity of φ−1 on R, we have limn→∞
∥∥φ−1(An)−

φ−1(A)
∥∥
C[0,β]

= 0. Therefore

lim
n→∞

‖Fun −Fu‖C[0,β] = lim
n→∞

∥∥∥∥∫ t

0

(
φ−1(An(s))− φ−1(A(s))

)
ds

∥∥∥∥
C[0,β]

≤ β lim
n→∞

∥∥φ−1(An)− φ−1(A)
∥∥
C[0,β]

= 0,

that is the operator F is continuous.
Choose an arbitrary ε > 0 and put δ = ε

φ−1(M̃β)
. Then, for t1, t2 ∈ [0, β] and for u ∈ B (0, R), we have

|t1 − t2| < δ ⇒ |(Fu) (t1)− (Fu) (t2)| =
∣∣∣∣∫ t1

t2

φ−1

(
− 1

p(s)

∫ s

0

p(τ)f̃(φ(u(τ))) dτ

)
ds

∣∣∣∣ ≤ ∣∣∣∣∫ t1

t2

φ−1
(
M̃ϕ(s)

)
ds

∣∣∣∣
≤
∣∣∣∣∫ t1

t2

φ−1
(
M̃β

)
ds

∣∣∣∣ = φ−1
(
M̃β

)
|t1 − t2| < φ−1

(
M̃β

)
δ = ε.

Hence, functions in F(B (0, R)) are equicontinuous, and, by the Arzelà–Ascoli theorem, the set F(B (0, R)) is
relatively compact. Consequently, the operator F is compact on B (0, R).

The Schauder fixed point theorem yields a fixed point u? of F in B (0, R). Therefore,

u?(t) = u0 +

∫ t

0

φ−1

(
− 1

p(s)

∫ s

0

p(τ)f̃(φ(u?(τ))) dτ

)
ds.

Hence, u?(0) = u0,
(p(t)φ((u?)′(t)))

′
= −p(t)f̃ (φ(u?(t))) , t ∈ [0, β] .

Further,

|(u?)′(t)| =
∣∣∣∣φ−1

(
− 1

p(t)

∫ t

0

p(s)f̃(φ(u?(s))) ds

)∣∣∣∣ ≤ φ−1
(
M̃ϕ(t)

)
, t ∈ [0, β] .

Thus, by (4.1), limt→0+ φ−1
(
M̃ϕ(t)

)
= φ−1(0) = 0 and therefore limt→0+(u?)′(t) = 0 = (u?)′(0). According

to (2.2), f̃(φ(u?(t))) is bounded on [0,∞ ) and hence, by Theorem 11.5 in [11], u? can be extended to interval
[0,∞ ) as a solution of equation (2.1). �

Example 4.2. Consider φ : R→ R given by one of the next formulas {mex1}

φ(x) = |x|α sgnx, α ≥ 1, (4.3) {exphi}

φ(x) =
(
x4 + 2x2

)
sgnx, (4.4) {exphi1}

φ(x) = sinhx =
ex − e−x

2
, (4.5) {exphi2}

φ(x) = arg sinhx = ln
(
x+

√
x2 + 1

)
, (4.6) {exphi3}

φ(x) = ln(|x|+ 1) sgnx, (4.7) {exphi4}
φ(x) = ((|x|+ 1)α − 1) sgnx. (4.8) {exphi5}
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Assume that φ(L) < −φ(L0) and put

p(t) = tβ , t ∈ [ 0,∞ ) , β > 0,

f(x) = k|x|γ sgnx(x− φ(L0))(φ(L)− x), x ∈ [φ(L0), φ(L)], γ > 0, k > 0.

Then the functions p, φ and f fulfil all assumptions of Theorem 4.1. In particular φ ∈ Liploc(R) for each φ
given by (4.3)–(4.8). Therefore the auxiliary problem (2.1), (1.2) has a solution for every u0 ∈ [L0, L].

Further we examine the uniqueness of solutions of the auxiliary problem (2.1), (1.2). Our arguments will be
based on a continuous dependence on initial values expressed in Theorem 4.3, Theorem 4.6 and Theorem 4.8.

Assumption (1.3) implies that φ ∈ Liploc(R). This need not be true for φ−1 as we have shown in Introduction
for φ(x) = |x|α sgnx, α > 1. The next theorem discusses the special case when both φ and φ−1 are locally
Lipschitz continuous.

Theorem 4.3 (Uniqueness and continuous dependence on initial values I). Assume (1.3)–(1.7) and {invlip}

f ∈ Lip [φ(L0), φ(L)] , (4.9) {cdlip}

φ−1 ∈ Liploc(R). (4.10) {liplip}

Let ui be a solution of problem (2.1), (1.2) with u0 = Bi ∈ [L0, L], i = 1, 2. Then, for each β > 0, there exists
K > 0 such that

‖u1 − u2‖C1[0,β] ≤ K|B1 −B2|. (4.11) {KK}

Furthermore, any solution of problem (2.1), (1.2) with u0 ∈ [L0, L] is unique on [0,∞).

Proof. Let i ∈ 1, 2 and let ui be a solution of problem (2.1), (1.2) with u0 = Bi. By integrating (2.1) over
(0, t), we obtain

φ(u′i(t)) = Ai(t), ui(t) = Bi +

∫ t

0

φ−1 (Ai(s)) ds, t ∈ [0,∞), (4.12) {conIII}

where

Ai(s) = − 1

p(s)

∫ s

0

p(τ)f̃ (φ(ui(τ))) dτ.

Choose β > 0. Since ui, φ(u′i) ∈ C [0, β], there exist m,M ∈ R such that

m ≤ ui(t) ≤M, m ≤ φ(u′i(t)) ≤M, for t ∈ [0, β], i = 1, 2.

According to (1.3), (4.9) and (4.10) there exist positive constants Λf ,Λφ,Λinv satisfying

|f(x1)− f(x2)| ≤ Λf |x1 − x2|, x1, x2 ∈ [φ(L0), φ(L)] ,

|φ(x1)− φ(x2)| ≤ Λφ|x1 − x2|, x1, x2 ∈ [m,M ],∣∣φ−1(x1)− φ−1(x2)
∣∣ ≤ Λinv|x1 − x2|, x1, x2 ∈ [m,M ].

Denote ρ(t) := max{|u1(s)− u2(s)| : s ∈ [0, t]}, t ∈ [0, β] . Then, by (4.1),

|A1(s)−A2(s)| ≤ 1

p(s)

∫ s

0

p(τ)
∣∣∣f̃(φ(u1(τ)))− f̃(φ(u2(τ)))

∣∣∣ dτ

≤ ΛfΛφ
1

p(s)

∫ s

0

p(τ)|u1(τ)− u2(τ)|dτ ≤ ΛfΛφρ(s)β,

and by virtue of (4.12)

ρ(t) ≤ |B1 −B2|+
∫ t

0

∣∣φ−1(A1(s))− φ−1(A2(s))
∣∣ ds ≤ |B1 −B2|+ Λinv

∫ t

0

|A1(s)−A2(s)|ds

≤ |B1 −B2|+ ΛfΛφΛinvβ

∫ t

0

ρ(s) ds, t ∈ [0, β] .

The Gronwall lemma yields

ρ(t) ≤ |B1 −B2|eLβ
2

, t ∈ [0, β] , (4.13) {conIII_rho}

where L := ΛfΛφΛinv. Similarly, from (4.12) it follows

|u′1(t)− u′2(t)| ≤
∣∣φ−1(A1(t))− φ−1(A2(t))

∣∣ ≤ Λinv|A1(t)−A2(t)| ≤ Lρ(t)β, t ∈ [0, β] .
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Applying (4.13), we get

max {|u′1(t)− u′2(t)| : t ∈ [0, β]} ≤ |B1 −B2|LβeLβ
2

.

Consequently,

‖u1 − u2‖C1[0,β] ≤ |B1 −B2|(1 + Lβ)eLβ
2

,

that is (4.11) holds for

K := (1 + Lβ)eLβ
2

.

Clearly, if B1 = B2, we have u1 = u2 on each [0, β] ⊂ R and the uniqueness for problem (2.1), (1.2) on
[0,∞) follows. �

Remark 4.4. If also (2.5) and (2.6) are fulfilled, we can use (3.7) and get universal estimates for φ(u′i) and ui. {unire}
This is the case that K in (4.11) does not depend on choice of u1, u2.

Example 4.5. In order to apply Theorem 4.3 we need both φ and φ−1 from Liploc(R). Let us check the
functions φ in Example 4.2 from this point of view:

φ(x) = |x|α sgnx, α ≥ 1 ⇒φ−1(x) = |x| 1α sgnx /∈ Liploc(R)

φ(x) =
(
x4 + 2x2

)
sgnx, ⇒φ−1(x) =

√√
|x|+ 1− 1 /∈ Liploc(R)

φ(x) = sinhx =
ex − e−x

2
, ⇒φ−1(x) = arg sinhx ∈ Liploc(R)

φ(x) = arg sinhx = ln
(
x+

√
x2 + 1

)
⇒φ−1(x) = sinhx ∈ Liploc(R)

φ(x) = ln(|x|+ 1) sgnx ⇒φ−1(x) =
(
e|x|−1

)
sgnx ∈ Liploc(R)

φ(x) = ((|x|+ 1)α − 1) sgnx, α ∈ (0, 1) ⇒φ−1(x) =
(

(|x|+ 1)
1
α − 1

)
sgnx ∈ Liploc(R).

Consider p, f from Example 4.2 with γ ≥ 1 and φ given by one of the formulas (4.5)–(4.8). Then all assumptions
of Theorem 4.3 are fulfilled and problem (2.1), (1.2) has a unique solution for u0 ∈ [L0, L].

Note that if γ ∈ (0, 1), then f is not Lipschitz continuous on a neighbourhood of 0, that is (4.9) is not valid.
Similarly, in the case that φ is given by (4.3) or (4.4), then φ−1 is not Lipschitz continuous on a neighbourhood
of 0 and hence (4.10) falls.

In next two theorems we show assumptions under which solutions of problem (2.1), (1.2) continuously depend
on their initial values in the case that φ−1 is not locally Lipschitz continuous.

Theorem 4.6 (Continuous dependence on initial values II). Assume (1.3)–(1.7), (2.5), (2.6), (4.9) and {th28a}

lim sup
x→0−

(
−x
(
φ−1

)′
(x)
)
<∞, φ′ is nonincreasing on (−∞, 0). (4.14) {cdII10}

Let B1, B2 satisfy
B1 ∈ (2ε, L− 2ε), |B1 −B2| < ε

for some ε > 0. Let ui be a solution of problem (2.1), (1.2) with u0 = Bi, i = 1, 2. Then for each β > 0 where

u′i < 0 on (0, β], i = 1, 2,

there exists K ∈ (0,∞) such that
‖u1 − u2‖C1[0,β] ≤ K|B1 −B2|.

Proof. Let ui be a solution of problem (2.1), (1.2) with u0 = Bi, i = 1, 2. Then by integrating (2.1) over (0, t),
t ∈ (0,∞), we obtain

φ(u′i(t)) = − 1

p(t)

∫ t

0

p(s)f(φ(ui(s))) ds =: Ai(t)

ui(t) = Bi +

∫ t

0

φ−1(Ai(s)) ds, i = 1, 2.

Therefore

|u1(t)− u2(t)| ≤ |B1 −B2|+
∫ t

0

∣∣φ−1(A1(s))− φ−1(A2(s))
∣∣ ds, t ∈ (0,∞).
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In order to obtain the required estimate, we restrict our consideration on a small interval [0, δ] for a suitably
chose δ > 0 in Step 1. Then we prolongate the result on [0, β] in Step 2.

Step 1. Assumptions (1.3)–(1.6), (4.9), (4.14) yield the existence of positive constants Λf ,Λφ,K1,K2 such
that

|f(y1)− f(y2)| ≤ Λf |y1 − y2|, y1, y2 ∈ [φ(L0), φ(L)],

|φ(x1)− φ(x2)| ≤ Λφ|x1 − x2|, x1, x2 ∈ [L0, L],

K1 = min {f(φ(x)) : x ∈ [B1 − 2ε,B1 + 2ε]} , (4.15) {K1}

0 < −x
(
φ−1

)′
(x) ≤ K2, x ∈ [−1, 0). (4.16) {72a}

By Lemma 3.3, there exists c̃ > 0 such that |u′i| ≤ c̃, i = 1, 2 on [0,∞). Let us choose δ such that

0 < δ ≤ min

{
ε

c̃
,

1

K1
,

K1

2K2ΛfΛφ

}
. (4.17) {cdIIdelta}

Then we get for t ∈ [0, δ]
|B1 − u1(t)| = |u1(0)− u1(t)| ≤ c̃δ ≤ ε.

This yields u1(t) ∈ [B1 − ε,B1 + ε] for t ∈ [0, δ]. Moreover,

|B1 − u2(t)| ≤ |B1 −B2|+ |u2(0)− u2(t)| ≤ ε+ δc̃ ≤ 2ε,

thus u2(t) ∈ [B1 − 2ε,B1 + 2ε] holds for t ∈ [0, δ]. Consequently,

f(φ(ui)(t)) ≥ K1, t ∈ [0, δ], i = 1, 2.

Therefore

Ai(s) = −
∫ s

0

p(τ)

p(s)
f(φ(ui(τ))) dτ ≤ −K1

∫ s

0

p(τ)

p(s)
dτ.

Moreover,

|A1(s)−A2(s)| ≤
∫ s

0

p(τ)

p(s)
|f(φ(u1(τ)))− f(φ(u2(τ)))|dτ ≤ ΛfΛφ‖u1 − u2‖C[0,δ]

∫ s

0

p(τ)

p(s)
dτ.

Let s ∈ (0, δ] be fixed. By the Mean Value Theorem there exists A?(s) between A1(s) and A2(s) such that∣∣φ−1(A1(s))− φ−1(A2(s))
∣∣ ≤ (φ−1

)′
(A?(s)) |A1(s)−A2(s)|.

Since (φ−1)′ is a nondecreasing function on (−∞, 0), we get

∣∣φ−1(A1(s))− φ−1(A2(s))
∣∣ ≤ (φ−1

)′(−K1

∫ s

0

p(τ)

p(s)
dτ

)
|A1(s)−A2(s)|

≤
(
φ−1

)′(−K1

∫ s

0

p(τ)

p(s)
dτ

)
ΛfΛφ‖u1 − u2‖C[0,δ]

K1
K1

∫ s

0

p(τ)

p(s)
dτ.

By (4.17)

0 < K1

∫ s

0

p(τ)

p(s)
dτ ≤ K1δ ≤ 1,

and hence we use (4.16) and get∣∣φ−1(A1(s))− φ−1(A2(s))
∣∣ ≤ K2

K1
ΛfΛφ‖u1 − u2‖C[0,δ].

Consequently, by (4.17)

|u1(t)− u2(t)| ≤ |B1 −B2|+
∫ t

0

K2

K1
ΛfΛφ‖u1 − u2‖C[0,δ] ds

≤ |B1 −B2|+ δ
K2

K1
ΛfΛφ‖u1 − u2‖C[0,δ]

≤ |B1 −B2|+
1

2
‖u1 − u2‖C[0,δ].
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This yields
‖u1 − u2‖C[0,δ] ≤ 2|B1 −B2|. (4.18) {cdIIdeltasol}

Furthermore,

|u′1(t)− u′2(t)| =
∣∣φ−1(A1(t))− φ−1(A2(t))

∣∣ ≤ K2

K1
ΛfΛφ‖u1 − u2‖C[0,δ].

Hence
‖u′1 − u′2‖C[0,δ] ≤ K3|B1 −B2|, (4.19) {cdIIdeltader}

where K3 := 2K2

K1
ΛfΛφ. Finally

‖u1 − u2‖C1[0,δ] ≤ KS1|B1 −B2|,

with KS1 := 2
(
K2

K1
ΛfΛφ + 1

)
.

Step 2. In this step, we extend the continuous dependence on initial values from [0, δ] to [0, β], where
u′i(t) < 0 for t ∈ (0, β], i = 1, 2. To this aim, we denote

νi = max{u′i(t) : t ∈ [δ, β]} < 0, m1 = max{ν1, ν2}, m = min{−c̃, L0}.

Moreover, (1.3) yields the existence of positive Lipschitz constants Λm,Λφ−1 such that

|φ(x1)− φ(x2)| ≤ Λm|x1 − x2|; x1, x2 ∈ [m,L],∣∣φ−1(y1)− φ−1(y2)
∣∣ ≤ Λφ−1 |y1 − y2|; y1, y2 ∈ [φ(−c̃), φ(m1)].

By integrating (2.1) over [δ, t], t ∈ [δ, β], we get

φ(u′i(t)) =
p(δ)

p(t)
φ(u′i(δ))−

1

p(t)

∫ t

δ

p(s)f̃(φ(ui(s))) ds.

Let us denote

Ãi(t) := −
∫ t

δ

p(s)

p(t)
f̃(φ(ui(s))) ds,

xi(t) :=
p(δ)

p(t)
φ(u′i(δ)) + Ãi(t) = φ(u′i(t)), t ∈ [δ, β].

Then
u′i(t) = φ−1(xi(t)), t ∈ [δ, β]. (4.20) {cdIIder}

Since −c̃ ≤ u′i(t) ≤ m1, then
xi(t) ∈ [φ(−c̃), φ(m1)], t ∈ [δ, β].

Integrating (4.20) from δ to t, t ∈ [δ, β], we get

ui(t) = ui(δ) +

∫ t

δ

φ−1(xi(s)) ds.

By (4.18) we obtain for t ∈ [δ, β]

|u1(t)− u2(t)| ≤ |u1(δ)− u2(δ)|+
∫ t

δ

∣∣φ−1(x1(s))− φ−1(x2(s))
∣∣ ds

≤ 2|B1 −B2|+ Λφ−1

∫ t

δ

|x1(s)− x2(s)|ds.

Further by (1.7), (4.19) we obtain for s ∈ [δ, β]

|x1(s)− x2(s)| ≤ p(δ)

p(s)
|φ(u′1(δ))− φ(u′2(δ))|+

∣∣∣Ã1(s)− Ã2(s)
∣∣∣

≤ Λm|u′1(δ)− u′2(δ)|+
∫ s

δ

∣∣∣f̃(φ(u1(τ)))− f̃(φ(u2(τ)))
∣∣∣ dτ

≤ ΛmK3|B1 −B2|+ ΛfΛm

∫ s

δ

|u1(τ)− u2(τ)| dτ.
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Therefore,

|u1(t)− u2(t)| ≤ 2|B1 −B2|+ Λφ−1ΛmK3β|B1 −B2|+ Λφ−1ΛfΛm

∫ t

δ

∫ s

δ

|u1(τ)− u2(τ)|dτ ds

≤ K4|B1 −B2|+K5

∫ t

δ

|u1(τ)− u2(τ)|dτ, t ∈ [δ, β],

where K4 = 2 + Λφ−1ΛmK3β, K5 = Λφ−1ΛfΛmβ. Next we set for t ∈ (δ, β]

ρ(t) = max{|u1(s)− u2(s)| : s ∈ [δ, t]}.

Then

ρ(t) ≤ K4|B1 −B2|+K5

∫ t

δ

ρ(τ) dτ.

The Gronwall Lemma yields that

ρ(t) ≤ K4|B1 −B2|eK5β , t ∈ [δ, β]

‖u2 − u2‖C[δ,β] ≤ K6|B1 −B2|, where K6 = K4e
K5β .

Finally,

|u′1(t)− u′2(t)| ≤
∣∣φ−1(x1(t))− φ−1(x2(t))

∣∣ ≤ Λφ−1 |x1(t)− x2(t)|
≤ Λφ−1ΛmK3|B1 −B2|+ Λφ−1ΛfΛmβ‖u1 − u2‖C[δ,β] ≤ K7|B1 −B2|,

where K7 = Λφ−1ΛmK3 + Λφ−1ΛfΛmβK6. Hence

‖u′1 − u′2‖C[δ,β] ≤ K7|B1 −B2|

and
‖u1 − u2‖C1[δ,β] ≤ KS2|B1 −B2|

with KS2 = K6 +K7

Finally, there exists K = KS1 +KS2 such that

‖u1 − u2‖C1[0,β] ≤ K|B1 −B2|.

This completes the proof. �

Remark 4.7. The approach developed in the proof of Theorem 4.6 cannot be used for B1 = L because then {pozn45}
the positive constant K1 in (4.15) which is crucial in the proof does not exists.

Theorem 4.8 (Continuous dependence on initial values III). Assume (1.3)–(1.7), (2.5), (2.6), (4.9) and {th28}

lim sup
x→0+

(
x
(
φ−1

)′
(x)
)
<∞, φ′ is nondecreasing on (0,∞). (4.21) {cd10}

Let B1, B2 satisfy
B1 ∈ (L0 + 2ε,−2ε) , |B1 −B2| < ε

for some ε > 0. Let ui be a solution of problem (2.1), (1.2) with u0 = Bi, i = 1, 2. Then for each β > 0 where

u′i > 0 on (0, β], i = 1, 2,

there exists K ∈ (0,∞) such that
‖u1 − u2‖C1[0,β] ≤ K|B1 −B2|.

Proof. The proof of this theorem we proceed similarly as in the proof of the Theorem 4.6. In Step 1. we make
following changes:

K1 = min{|f(φ(x))| : x ∈ [B1 − 2ε,B1 + 2ε]};

by (4.21) there exists positive constant K2 such that

0 < x
(
φ−1

)′
(x) ≤ K2, x ∈ (0, 1 ] ;
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−f(φ(ui)(t)) = |f(φ(ui)(t))| ≥ K1, t ∈ [0, δ], i = 1, 2;

Ai(s) = −
∫ s

0

p(τ)

p(s)
f(φ(ui(τ))) dτ ≥ K1

∫ s

0

p(τ)

p(s)
dτ ;(

φ−1
)′

is nonincreasing on (0,∞) and we get

∣∣φ−1(A1(s))− φ−1(A2(s))
∣∣ ≤ (φ−1

)′(
K1

∫ s

0

p(τ)

p(s)
dτ

)
|A1(s)−A2(s)|

≤
(
φ−1

)′(
K1

∫ s

0

p(τ)

p(s)
dτ

)
ΛfΛφ‖u1 − u2‖C[0,δ]

K1
K1

∫ s

0

p(τ)

p(s)
dτ.

In Step 2. we have u′i(t) > 0 for t ∈ (0, β ], i = 1, 2 and we denote

νi = min{u′i(t) : t ∈ [δ, β]} > 0, m0 = min{ν1, ν2}, M = max{c̃, L}.

By (1.3) there exists positive Lipschitz constants Λm,Λφ−1 such that

|φ(x1)− φ(x2)| ≤ Λm|x1 − x2|; x1, x2 ∈ [L0,M ],∣∣φ−1(y1)− φ−1(y2)
∣∣ ≤ Λφ−1 |y1 − y2|; y1, y2 ∈ [φ(m0), φ(c̃)] .

We have m0 ≤ u′i(t) ≤ c̃ and
xi(t) ∈ [φ(m0), φ(c̃)] , t ∈ [δ, β]

Futrther we argue as in the proof of Theorem 4.6. �

5 Existence and uniqueness of damped solutions of problem (1.1),
(1.2)

{mainsection}
Main results of the present paper are formulated in this section. The existence of damped solutions is proved in
Theorem 5.2 and the uniqueness is derived in Theorem 5.5. Both results hold not only for the auxiliary problem
(2.1), (1.2), but above all for the original problem (1.1), (1.2). Immediately from Theorem 4.1 and Lemma 3.2,
we obtain

Theorem 5.1 (Existence of damped solutions of problem (2.1), (1.2)). Assume (1.3)–(1.7), (2.5) and {dam1}
(2.6). Then, for each u0 ∈

[
B̄, L

)
, problem (2.1), (1.2) has a solution. Every solution of problem (2.1), (1.2)

with u0 ∈
[
B̄, L

)
is damped.

Let u be a solution of problem (2.1), (1.2) with u0 ∈
[
B̄, L

)
. According to (2.2) and (3.3), we have

f(φ(u(t))) = f̃(φ(u(t))) for t ∈ [0,∞). Hence we can formulate the previous theorem also for the original
problem (1.1), (1.2).

Theorem 5.2 (Existence of damped solutions of problem (1.1), (1.2)). Assume (1.3)–(1.7), (2.6) and {dam2}

∃B̄ ∈ (L0, 0) :

∫ B̄

0

f(φ(z)) dz =

∫ L

0

f(φ(z)) dz.

Then, for each u0 ∈
[
B̄, L

)
, problem (1.1), (1.2) has a solution. Every solution of problem (1.1), (1.2) with

u0 ∈
[
B̄, L

)
is damped.

Example 5.3. Problem (1.1), (1.2) with p, f and φ from Example 4.2 has for each u0 ∈
[
B̄, L

]
a damped

solution.

Remark 5.4. By Theorem 5.2, we can get homoclinic or escape solutions only if u0 ∈
(
L0, B̄

)
. {hoes}

If φ−1 /∈ Liploc(R), we derive results about the uniqueness by means of Theorems 4.6 and 4.8. Since the
next uniqueness result concerns damped solutions, it can be formulated directly for the original problem (1.1),
(1.2).

Theorem 5.5 (Uniqueness of damped solutions). Assume (1.3)–(1.7), (2.5), (2.6), (4.9), (4.14) and {uni1}
(4.21). Let u be a damped solution of problem (1.1), (1.2) with u0 ∈ (L0, 0)∪ (0, L). Then u is a unique solution
of this problem.
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Proof. Assume that u is a damped solution of the auxiliary problem (2.1), (1.2) and that there exists another
solution v of problem (2.1), (1.2). Definition 1.3 yields

u(t) < L, t ∈ [0,∞). (5.1) {6.1}

By Lemma 3.2, we have
L0 < u(t), L0 < v(t), t ∈ (0,∞ ] . (5.2) {334}

Step 1. Let u0 ∈ (L0, 0).

(i) According to Lemma 2.1 b), there exists β > 0 such that

u′(t) > 0, v′(t) > 0, t ∈ (0, β]. (5.3) {6.2}

Put

a = sup{β > 0: (5.3) holds},
ρ(t) = u(t)− v(t), t ∈ [0,∞).

Since u′ > 0, v′ > 0 on (0, a) and B1 := u0 = v(0) =: B2, Theorem 4.8 yields

ρ(t) = 0, t ∈ [0, a). (5.4) {6.3}

If a =∞, then
u(t) = v(t), t ∈ [0,∞). (5.5) {6.4}

Consequently, by (5.1) and (5.2), u is a unique solution of problem (1.1), (1.2).
Let a <∞. Since u, v ∈ C1[0,∞), we get, by (5.4),

lim
t→a−

ρ(t) = ρ(a) = u(a)− v(a) = 0,

lim
t→a−

ρ′(t) = ρ′(a) = u′(a)− v′(a) = 0.

 (5.6) {6.41}

Therefore u′(a) = v′(a).

(ii) According to the definition of number a, we have u′(a) = v′(a) = 0. By (5.1) and Lemma 2.6 or Lemma
3.1, u(a) = v(a) ∈ (0, L). Due to Lemma 2.1 a), there exists γ > a such that

u′(t) < 0, v′(t) < 0, t ∈ (a, γ]. (5.7) {6.5}

Put b = sup{γ > a : (5.7) holds}. Since u′ < 0, v′ < 0 on (a, b) and u(a) = v(a) ∈ (0, L), by Theorem 4.6
(working with a, γ, u(a) and v(a) instead of 0, β, B1 and B2 respectively), we get

ρ(t) = 0, t ∈ [a, b). (5.8) {6.6}

If b =∞, then (5.5) holds and, by (5.1), (5.2), u is a unique solution of problem (1.1), (1.2).
Let b <∞. Since u, v ∈ C1[0,∞), (5.8) yields

lim
t→b−

ρ(t) = ρ(b) = u(b)− v(b) = 0,

lim
t→b−

ρ′(t) = ρ′(b) = u′(b)− v′(b) = 0.

Hence u′(b) = v′(b) and, due to the definition of b, u′(b) = v′(b) = 0. Lemma 2.7 implies u(b) = v(b) ∈(
B̄, 0

)
. Repeating the arguments in parts (i) and (ii), we get that u is a unique solution of problem (1.1),

(1.2).

Step 2. Let u0 ∈ (0, L). We have the same situation as in part (ii) of Step 1, where a is repleced by 0, and
so we argue similarly. �

6 Uniqueness of homoclinic and escape solutions

In this section we discuss homoclinic and escape solutions and hence, by Remark 5.4, we take u0 ∈
(
L0, B̄

)
.

Theorem 6.1 (Nonexistence of singular homoclinic solutions). Assume (1.3)–(1.7), (4.9) and (4.10). {neex}
Then each homoclinic solution of problem (1.1), (1.2) with u0 ∈

(
L0, B̄

)
is regular.
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Proof. Let u be a singular homoclinic solution of problem (1.1), (1.2) with

u0 ∈
(
L0, B̄

)
. (6.1) {h1}

Then, by Definition 1.3, there exists t0 > 0 such that

u(t0) = L, u′(t0) = 0, (6.2) {h2}

and
u(t) < L, t ∈ [0, t0). (6.3) {h3}

Using the substitution

s = t0 − t, q(s) = p(t), v(s) = u(t), t ∈
[
t0
2
, t0

]
,

we transform the terminal value problem (1.1), (6.2) on
[
t0
2 , t0

]
to the initial value problem

−(q(s)φ(−v′(s)))′ + q(s)f̃(φ(v(s))) = 0, s ∈
[
0,
t0
2

]
, (6.4) {h4}

v(0) = L, v′(0) = 0. (6.5) {h5}

By Theorem 4.3, the only possible function satisfying (6.4) and (6.5) is the constant function v(s) = L for
s ∈

[
0, t02

]
. Therefore u(t) = L for t ∈

[
t0
2 , t0

]
, which contradicts (6.3). �

Theorem 6.1 discusses the case where φ−1 ∈ Liploc(R). Now we will study the case where condition (4.10)
falls, that is φ−1 /∈ Liploc(R). Then both regular and singular homoclinic solutions may exist and, according to
Remark 4.7, we are able to prove the uniqueness just for regular ones.

Theorem 6.2 (Uniqueness of regular homoclinic solutions). Assume (1.3)–(1.7), (2.5), (2.6), (4.9), {uni11}
(4.14) and (4.21). Let u be a regular homoclinic solution of problem (1.1), (1.2) with u0 ∈ (L0, 0)∪ (0, L). Then
u is a unique solution of this problem.

Proof. Assume that u is a regular homoclinic solution of the auxiliary problem (2.1), (1.2) and that there
exists another solution v of problem (2.1), (1.2). Since, by Definition 1.3 and Lemma 3.2, the inequalities (5.1)
and (5.2) hold, we can argue as in the proof of Theorem 5.5. �

Lemma 6.3 (Homoclinic solution is increasing). Assume (1.3)–(1.7), (2.5), (2.6). Let u be a regular {homros}
homoclinic solution of problem (1.1), (1.2) with u0 ∈ (L0, B̄). Then

lim
t→∞

u(t) = L, u′(t) > 0 for t ∈ (0,∞). (6.6) {hom}

Moreover
lim
t→∞

u′(t) = 0. (6.7) {limprime0}

Proof. Let u be a regular homoclinic solution of problem (1.1), (1.2) with u0 ∈ (L0, B̄). Thus, by Definition 1.3,
usup = L.

Step 1. By Lemma 2.1 b) there exists θ0 > 0 such that u(θ0) = 0, u(t) < 0 for t ∈ (0, θ0) and u′(t) > 0 for
t ∈ (0, θ0]. Assume on contrary with (6.6), that a1 > θ0 is the first zero of u′. Since u is a regular homoclinic
solution u(a1) belongs to (0, L). If u > 0 on [a1,∞), then by Lemma 2.1 a), u is decreasing which contradicts
usup = L. Therefore, there exists θ1 > a1 such that u(θ1) = 0, u′(t) < 0 for t ∈ (a1, θ1]. Hence we have

u(a1) ∈ (0, L), u′(a1) = 0, u′(t) > 0, t ∈ (0, a1). (6.8) {a1}

By Lemma 2.7 there exists b1 > θ1 such that

u(b1) ∈ (B̄, 0), u′(b1) = 0, u′(t) < 0, t ∈ [θ1, b1).

Since, usup = L, there exists θ2 > b1, such that u(θ2) = 0, u′(t) > 0 for t ∈ (b1, θ2]. By Lemma 2.6 there exists
a2 > θ2 such that

u(a2) ∈ (0, L), u′(a2) = 0, u′(t) > 0, t ∈ (b1, a2).

Repeating this procedure, we obtain a sequence of zeros {θn}∞n=0 of u and a sequence of local maxima {u(an)}∞n=1

of u.
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We prove that the sequence {u(an)}∞n=1 is nonincreasing. Choose n ∈ N. Multiplying equation (1.1) by
u′/p, then integrating from an to an+1 we obtain∫ an+1

an

φ′(u′(t))u′′(t)u′(t) dt+

∫ an+1

an

p′(t)

p(t)
φ(u′(t))u′(t) dt+

∫ an+1

an

f(φ(u(t)))u′(t) dt = 0.

The first integral is equal zero since u′(an) = u′(an+1) = 0. The second integral is nonnegative due to (1.7) and
(2.7). Therefore,

0 ≥
∫ an+1

an

f(φ(u(t)))u′(t) dt =

∫ u(an+1)

u(an)

f(φ(y)) dy = F (u(an+1))− F (u(an)).

Since F is increasing function, we get
u(an) ≥ u(an+1).

The sequence {u(an)}∞n=1 is nonincreasing, because n is chosen arbitrarily. Thus usup < L, which cannot be
fulfilled because u is homoclinic solution. This contradiction yields that

u′(t) > 0, t ∈ (0,∞).

Since usup = L, then limt→∞ u(t) = L.
Step 2. Since, u > 0 on (θ0,∞) we have f(φ(u)) > 0 on (θ0,∞). From (1.1) we obtain that

0 > (p(t)φ(u′(t)))
′

= p′(t)φ(u′(t)) + p(t) (φ(u′(t)))
′
, t ∈ (θ0,∞).

Since p, p′, u′ and φ(u′) are positive on (0,∞), we get that φ(u′) is decreasing on (θ0,∞). On the other hand φ
is an increasing function . Therefore u′ is a decreasing function on (θ0,∞). Since u′ > 0 on (0,∞), there exists
a nonnegative limit

lim
t→∞

u′(t) =: K ≥ 0.

If K > 0, then

K(t− θ0) ≤
∫ t

θ0

u′(s) ds = u(t)− u(θ0) = u(t).

The limit as t tends to infinity yields,

L = lim
t→∞

u(t) ≥ lim
t→∞

K(t− θ0) =∞,

a contradiction. Therefore (6.7) holds. �

Since assumptions (1.6) are imposed to f on the interval [φ(L0), φ(L)] and we have no information about a
behaviour of f out of this interval, we formulate results concerning escape solutions for the auxiliary problem
(2.1), (1.2).

Lemma 6.4 (Escape solution is increasing). Assume that (1.3)–(1.7), (2.5) and (2.6) hold. Let u be an {lemma41}
escape solution of problem (2.1), (1.2) with u0 ∈

(
L0, B̄

)
. Then

u′(t) > 0, t ∈ (0,∞) . (6.9) {unik}

Proof. Let u be an escape solution of problem (2.1), (1.2) with u0 ∈
(
L0, B̄

)
. Thus, by Definition 1.3, usup > L.

Then there exists a point c ∈ (0,∞) such that u(c) = L, u′(c) ≥ 0 and u(t) < L for t ∈ [0, c). First we exclude
the case u′(c) = 0. Lemma 2.2 yields that if u′(c) = 0 then either u has a zero point u(θ) = 0, u(t) ≤ L, t ∈ [c, θ]
or u is positive and nonincreasing on [c,∞). The later case is in contradiction with u being an escape solution.
Therefore, such zero point θ > c must exist. Applying Lemma 2.1 a), b) and Lemma 2.7 and repeating the
arguments as in Step1 in the proof of Lemma 6.3, we get that u has a nonincreasing sequence {u(an)}∞n=1 of its
local maxima. Thus u(t) ≤ L for t ≥ 0 on contrary that u is an escape solution. Therefore u′(c) > 0.

Let c1 > c be such that u′(c1) = 0 and u(t) > L, u′(t) > 0 for t ∈ (c, c1). Integrating (2.1) over [c, c1] we
get, due to (1.3), (1.4), (1.7) and (2.2),

φ(u′(c1)) =
p(c)φ(u′(c))

p(c1)
> 0,

contrary to u′(c1) = 0. We have proved u′(t) > 0 for t > c.
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Further, we prove that u′(t) > 0 for t ∈ (0, θ0]. Since u0 ∈ (L0, 0), Lemma 2.1 b) yields that there exists
θ0 > 0 such that u(θ0) = 0, u(t) < 0 for t ∈ (0, θ0), u′(t) > 0 for t ∈ (0, θ0].

It remains to prove that u′(t) > 0 for t ∈ (θ0, c). Assume on the contrary that there exists a1 ∈ (θ0, c) such
that 6.8 holds. We derive a contradiction as in Step 1 in the proof of Lemma 6.3. To summarize, u′(t) > 0 for
t > 0. �

Theorem 6.5 (Uniqueness of escape solutions). Assume (1.3)–(1.7), (2.5), (2.6), (4.9) and (4.21). Let u {uni2}
be an escape solution of problem (2.1), (1.2) with u0 ∈

(
L0, B̄

)
. Then u is a unique solution of this problem.

Proof. Let u be an escape solutions of problem (2.1), (1.2). According to Lemma 6.4, (6.9) holds. Consider
that v is another solution of problem (2.1), (1.2). Assume that there exists c > 0 such that v′(c) = 0. By
Lemma 2.1 b), there exists θ > 0 such that v(θ) = 0, v′(t) > 0 for t ∈ (0, θ]. Therefore c > θ and there exists
a ∈ (θ, c] such that v′(a) = 0, v′(t) > 0 for t ∈ (0, a). Put

ρ(t) = u(t)− v(t), t ∈ [0,∞).

Let a <∞. Since u′ > 0, v′ > 0 on (0, a), Theorem 4.8, where u0 = B1 = B2, gives

ρ(t) = 0, ρ′(t) = 0, t ∈ [0, a). (6.10) {342}

Since u, v ∈ C1[0,∞), we get that (5.6) holds. Thus u′(a) = v′(a). According to the definition of number a,
we have u′(a) = v′(a) = 0, which contradicts (6.9). Therefore a = ∞ and, by (6.10), u is a unique solution of
problem (2.1), (1.2). �

Example 6.6. Consider p, f from Example 4.2 with γ ≥ 1 and φ given by (4.3). Then

φ−1(x) = |x| 1α sgnx,
(
φ−1

)′
(x) =

1

α
|x| 1α−1, lim

x→0
x
(
φ−1

)′
(x) =

1

α
lim
x→0

x|x| 1α−1 = 0 ∈ R,

φ′(x) = α|x|α−1, φ′′(x) =
α(α− 1)|x|α−1

x

{
≤ 0 for x < 0,

≥ 0 for x > 0.

Hence φ′ is nonincreasing on (−∞, 0), nondecreasing on (0,∞) and conditions (4.14) and (4.21) hold.
If φ is given by (4.4), then

φ−1(x) =

√√
|x|+ 1− 1,

(
φ−1

)′
(x) =

sgnx

4
√√

|x|+ 1− 1
√
|x|+ 1

,

lim
x→0

x
(
φ−1

)′
(x) = lim

x→0

|x|

4
√√

|x|+ 1− 1
√
|x|+ 1

= 0 ∈ R,

φ′(x) = 4
(
x3 + x

)
sgnx, φ′′(x) = 4

(
3x2 + 1

)
sgnx

{
< 0 for x < 0,

> 0 for x > 0.

Therefore φ′ is decreasing on (−∞, 0) and increasing on (0,∞). Function φ satisfies conditions (1.3), (1.4),
(4.14) and (4.21).

In both cases all assumptions of Theorem 4.1, Theorem 5.5 and Theorem 6.5 are fulfilled. Therefore problem
(2.1), (1.2) has for u0 ∈ [L0, L] a solution u. If u0 ∈ (L0, L)∪ (0, L) and u < L on [0,∞ ), then u is a solution of
the original problem (1.1), (1.2) and it is a unique solution of this problem. If u0 ∈

(
L0, B̄

)
and u is an escape

solution of problem (2.1), (1.2), then u is a unique solution of this problem.

Remark 6.7. Theorem 6.1 does not cover equations having a φ-Laplacian in the form (4.3) or (4.4) because {open}
such φ-Laplacian does not fulfil condition (4.10). Therefore to find conditions which guarantee that singular
homoclinic solutions do not exist while φ−1 /∈ Liploc(R) is an open problem and we plan to solve it in our
next paper where we also will discuss the existence and asymptotic properties of regular homoclinic and escape
solutions.
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[14] I. Rach̊unková, L. Rach̊unek: Asymptotic formula for oscillatory solutions of some singular nonlinear
differential equation, Abstract and Applied Analysis, Vol. 2011, Article ID 981401, 1-9.
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