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1 Introduction

We will study the singular Dirichlet boundary value problem with a positive
parameter u

(r(z(t))a'(t))" = pq() f (¢, x(t), t€(0,T), (1.1)
z(0) =2(T) =0, max{z(t) : 0 <t < T} -min{z(t): 0<t<T} <0, (1.2

where T' € (0,00) and f is singular at the point 2 = 0 of the phase variable z in
the following sense

lim f(t,z) = —oo0, lir(r)1+f(t, x) =00 fortel0,T]. (1.3)
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To give a finer classification of the singularity of f at x = 0 we first assume that
f satisfies the condition

0< f(t,z)signz < g(x) for (t,x) € [0,T] x D, (1.4)

where D = (—oc,0) U (0,00) and g € C°(D).
We say that f has the weak singularity at x = 0 if f satisfies (1.3), (1.4) and
g fulfils

/0 g(x) dz < oo, /Og(x) dr < 00. (1.5)

Similarly, we say that f has the weak left singularity at x = 0 if f and g satisfy
the first condition in (1.3) and (1.5), respectively and f fulfils (1.4) on [0,77] x
(—00,0). Finally, f has the weak right singularity at x = 0 provided f and g
satisfy the second condition in (1.3) and (1.5), respectively and f fulfils (1.4) on
0,77 x (0, 00).

A simple example of a function f having the weak singularity at = 0 is

a € (0,1).

In accordance with [10] we say that a function z € C'([0,T]) is a solution of
problem (1.1),(1.2) if x has precisely one zero ty in (0,7, r(z)z' € C*((0,T) \
{to}), = fulfils (1.2) and there exists py > 0 such that (1.1) is satisfied for u = pqg
and ¢t € (0,7) \ {0}

In [10], under the assumptions

(H1) r € C°(R), r(z) > ry > 0 for z € R,
(H2) ¢ € C°((0,7)), q(t) <0 for t € (0,T), @ =sup{|q(t)] : t € [0,T]} < oo,

(H3) f € C°([0,T] x D), f(t,-) is nonincreasing on D for ¢ € [0,T], f has the
weak singularity at x = 0

we have proved the following results for problem (1.1),(1.2).
Theorem 1.1. Let (H1)-(H3) be satisfied. Then for each A € (0,00) there exists
a solution x of problem (1.1), (1.2) with the unique zero ty € (0,7T) such that

max{z(t) : 0 <t <T}=max{z(t) :0<t<ty}=A if toe[g,T),

max{z(t) : 0 <t <T} =max{z(t):0<t <t} <A if t€ (0,%).

Theorem 1.2. Suppose that (H1)-(H3) hold. Then for each B € (—00,0) there
exists a solution x of problem (1.1), (1.2) with the unique zero ty € (0,T) such
that

min{z(t) : 0 <t < T} =min{xz(t) : toc <t <T} =B if tp€ (0,§]7
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T
min{z(t) : 0 < ¢t < T} =min{z(t) 1 to <t <T}>B if ty¢€ (5,
Theorem 1.3. Let (H1)-(H3) be true. Then for each A € (0,00) there exists a
solution x of problem (1.1), (1.2) with the unique zero ty € (0,T) such that

T).

max{z(t) : 0 <t < T} =max{x(t) : ty <t <T}=A if t€ (0)%]7

max{z(t) : 0 <t < T} =max{a(t) : to <t <T} <A if ty¢€ (g,T).

Theorem 1.4. If (H1)-(H3) are valid, then for each B € (—o00,0) there is a
solution x of problem (1.1), (1.2) with the unique zero ty € (0,T) such that

min{z(t) : 0 <t < T} =min{z(t): 0<t <tp} =B if ty¢€ [T

>7)

min{z(t) : 0 <t < T} =min{z(t) : 0 <t <ty} > B if ty¢€ (0,%).

Remark 1.5. From (H3) it follows that f(¢,z)signx is continuous and positive
on J x D and lim, o f(¢,x)signx = oo for ¢t € [0,7]. Hence, for each M > 0,
there is a positive function &y € C°([0,7]) such that

0 < kae(t) < f(t,x)signz  for (t,2) € [0,T] x [-M,0)U (0, M].  (L.6)

Example1.6. Let 7,A € (0,00) and « € (0,1). Consider the differential
equation

|z ()|

t(T - t))ex(t) — efa:(t) =0. (17)

(1 + ()2 (£) + pA(2 + sin

The assumptions (H1)-(H3) and conditions (1.4) and (1.5) are satisfied with
r(u) = (14 |u])? > 1, Q@ = 34 and g(x) = ‘le':_w‘. Consequently, Theorems
1.1-1.4 can be applied to problem (1.7), (1.2).

The idea of the proofs of Theorems 1.1-1.4 is based on “gluing” of positive and
negative parts of solutions and on smoothing them. At the same time positive and
negative parts of solutions are positive and negative solutions of (1.1) satisfying
the Dirichlet boundary conditions on intervals [0, ¢y] and [ty, 7] with a suitable
to € (0,7). We note that positive (negative) solutions on (0,7") of the Dirichlet
problems with nonlinearities having the singularity at the point x = 0 were stud-
ied in many papers (see, e.g., [1]-]9], [11]-[17] and references therein). Solutions
were considered either in the set C°([0,7])NC?((0,T)) ([1]-3], [8], [9], [13], [14])
or C*([0, T]) NC((0,T)) ([4], 9], [11]-{14], [17]) or C°([0, T)) N ACy,,.((0, T)) ([5]-
[7], [15], [16]). Here AC}.((0,T)) denotes the set of functions having absolutely
continuous first derivatives on each [a,b] C (0,7"). The nonlinearities of equations




have been usually nonpositive ([1]-[5], [8], [9], [11]-[15], [17]) but in ([3], [6], [7],
[16]) this assumption was overcome.

The aim of this paper is the consideration of connections between the weak
and strong singularities of f at x = 0, where the notation of the strong singularity
of f at x = 0 will be defined in Section 3, and smoothness of solutions to problem
(1.1), (1.2). By Theorems 1.1-1.4, we know that the weak singularity of f at
x = 0 implies the existence of solutions to problem (1.1), (1.2) in the space
C1([0,T]). For other papers giving the existence results for the Dirichlet problems
with the weak singularities we can refer to [1], [3], [4], [9], [11], [12], [13], [14],
[17]. On the other hand the strong singularity (even one-sided) of f at x = 0
implies the non-existence of solutions for problem (1.1), (1.2) in C*([0,T]) (see
Theorems 3.3 and 3.5). Therefore solutions of the Dirichlet problems with the
strong singularity at = 0 can be smooth on (0,7"), only. Such existence results
we can also find in [2], [3], [5]-[9], [13]-[16].

Finally, in Section 3, we introduce a notion of a w-solution to problem (1.1),
(1.2) which can be nonsmooth at its zero ty € (0,7") and we give exact multiplicity
results for such solutions in Theorems 3.7 and 3.8. Moreover, in Theorem 3.10
we prove the existence of a w-solution having its maximum and minimum given.

2 Lemmas

In this section we suppose that conditions (H1)-(H3) are satisfied. Moreover,
assume that A € (0,00), B € (—00,0) and 0 < a < b < T. In our further
consideration we will work with the following auxiliary boundary conditions

z(a) =x(b) =0, z(t) > 0 for t € (a,b), (2.1)

z(a) =x(b) =0, z(t) <0 for t € (a,b) (2.2)
and we will use the function H : (—oo, 0] — [0, c0) defined by

H(u) = /uo r(s) ds, (2.3)

where r is the function from (H1). Of course, H is continuous decreasing function.
The inverse functions to H is denoted by H~! : [0,00) — (—00, 0].

Let j € {1,2} and u be a positive fixed number. We say that x € C'([a, b]) is
a solution of problem (1.1),(2.j), if x satisfies (2.j), r(z)z’ € C*((a,b)) and (1.1)
with this fixed p is fulfilled for ¢ € (a,b).

Existence and uniqueness results for problems (1.1), (2.j), 7 € {1,2} are
formulated in Lemmas 2.1 and 2.2 and follow from results in [10] and [12].
Lemma2.1. Let a, b€ [0,7], a < b. Then for each pu > 0 problem (1.1), (2.1)
has a unique solution.



Suppose moreover that A > 0 and put

2(/0A r(s) ds)2
(- a2Q [ r(s)g(s) ds

Then there is just one value py of the parameter u such that problem (1.1),(2.1)
with p = py has a solution u satisfying max{u(t) : a <t < b} = A. This solution
is unique and py € [m4(a, b; A), 00).
Lemma2.2. Leta, b€ [0,7], a <b. Then for each pu > 0 problem (1.1), (2.2)
has a unique solution.

Moreover, for any M € (0,00) and any solution v of problem (1.1), (2.2) such
that |v(t)| < M fort € [a,b],

{ Hﬁl(—Z“(tf?_IiM(a’b)) fort € [a, ‘%’b]

Hfl(W) fort € (%£2,0],

my (CL, b; A) =

(2.4)

v(t) <
where

Ky (a,b) = min{/

a

a+b
2

(s — a)la(s)lkae(s) ds, [, (b s)lals)lkae(s) ds} (2.

2

with ky € C°([0,T]) satisfying (1.6).

Lemma2.3. Let p > 0 and ay,as € [0,T), a1 < ag, b =T and u; be a (unique)
solution of problem (1.1), (2.2) with a = a;, i = 1,2. Then

uy(t) < wug(t) fort € [ag, T). (2.6

)
Proof. Since uy (1) = ua(7T") = 0 and ug(az) = 0 > uy(az), there is a & € (az, T
such that uy(t) < us(t) for t € [ag, &) and uy(§) = us(§). If &€ = T, then (2.6)
is true. Assume that £ < T and let (2.6) not be satisfied. Then there exist
a; < a < [ < T such that uy(a) = uy(a), ui(a) > uh(a), u () = u(p),

ul () < ub(B) and uy(t) > uy(t) for t € («, 5). Then according to (H3) we have
f(t,ui(t)) < f(t,ux(t)) for t € (a, 5). Set p(t) = fsz((tt)) r(s)ds for t € [, 5]. Then
pla) =p(B) =0,p < 0on (o, ), p'(a) <0 and

p"(t) = (r(uz(t))us(t)) = (r(ua(t))ui (1) = pa(t)(f(t, ua(t)) = £t u(t))) <0

for t € (o, ). Therefore p'(t) < 0 for ¢t € [, ] and p(o) = p(f) = 0 implies
p =0 on [«, 8], contrary to p < 0 on («, f3). O

Let A > 0. Then, by Lemma 2.1, for each ¢ € (0,T] there exists just one
value of the parameter p, which will be denoted by pu(c), such that the problem

(r(z(t)2'(t)) = u(e)g(t) f(t, z(1)), t€(0,¢)

(2.7)
z(0) =x(c) =0, z(t) >0on (0,¢), max{z(t) : 0<t<c}=A
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has a (unique) solution which we will denote by w.. In such a way we get the
function
p: (0,77 — (0, 00).

Lemma 2.4. ([10, Proposition 3.1]) The function p(c) is continuous and nonin-
creasing on (0,T].

So, for given A > 0 and ¢ € (0,7") we have the uniquely determined parameter
p(e) and, by Lemma 2.2 for p = pu(c), a = ¢, b = T, there exists exactly one
solution of the problem

(r(x(t)2"(1))" = p(e)a(®) f(t, x(t), e (cT)

(2.8)
z(c) =xz(T) =0, z(t) <0on (¢,7T),

which we denote by v.. Let us define the function Ay : (0,77) — (—o0,0) by the
formula
Ay(e) =min{v.(t) :c <t < T} (2.9)

Lemma 2.5. The function A, is continuous and nondecreasing on (0,7).
Proof. Let the functions 7* : R — [rg,00), f*:[0,7] x D - R and g* : D - R
be defined by

T*(l‘) = T(_l‘)a f*(t7 1‘) = _f(ta _1‘)7 g*(LL‘) = g(—LL‘)

and consider the differential equation

(r* (@ (8)2' (t))" = pq(t) f*(t, x(t)). (2.10)

Then u is a solution of problem (1.1), (2.1) if and only if the function u* = —u on
[a, b] is a solution of problem (2.10), (2.2) (see [10]). Since assumptions (H1) and
(H3) are satisfied with r*, f* and ¢* instead of r, f and g, it follows immediately
from Lemma 2.3 in [10]:

(i) if 0 < py < po, 0 < a < b < T and wu; is a (unique) solution of problem
(1.1),(2.2) with g = p;, i = 1,2, then uy(t) > uq(t) for t € (a,b).

As a direct consequence of Lemma 2.3 and (i) we get that A, is nondecreasing
on (0,7).

Suppose that A, is discontinuous on the right at some ¢y € (0,7), i.e. there
is a decreasing sequence {c¢,} C (¢, T') such that lim, . ¢, = ¢y and

lim Au(en) > Aslep). (2.11)

Consider the corresponding sequence {u(c,)} of parameter values and the se-
quence {v.,} of solutions to problem (2.8) for ¢ = ¢,,n € N U {0}. Then
Ay(e,) = min{v,, (t) : ¢, <t < T} and Ay(cy) = min{v(t) 1 ¢o <t < T}.
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Using the procedure as in the proof of Proposition 3.1 in [10] we can prove, after
evident modifications, that there exists a subsequence {v., } of {v.,} such that
limy, o0 Ve, (t) = we,(t) locally uniformly on (co,7]. Hence lim, o Aa(c,) =
A4(cg), contrary to (2.11).

The left continuity can be proved similarly. a
Lemma2.6. lim. ,;- Ay(c) = 0.
Proof. Let {¢,} C (0,7) be an increasing sequence and let lim,,,o, ¢, = T. By
Lemma 2.5, {A4(c,)} is a nondecreasing sequence, so lim,,_,, Aa(c,) = v < 0.

Moreover o
2
2 / r(s)ds
(Jy, 7@ )

Tl [ r(s)a(s)ds

which follows from Theorem 2.6* in [10]. Here {u(c,)} is the corresponding
sequence of parameter values to {v., }. If v < 0, then from (2.12) we deduce
that lim,,_, p(c,) = oo, contrary to Lemma 2.4. Hence v = 0 and the lemma is
proved. O
Lemma 2.7. lim, ,p+ Ay(c) = —oc.

Proof. Let {¢,} C (0,7) be a decreasing sequence and let lim,, ., ¢, = 0. Let
{p(cy)} be the corresponding sequence of parameter values to {v., }. If we put
a =0, b=c¢, and use Lemma 2.1, we get u(c,) > m(0,¢c,; A) for n € N, where

2(/A r(s) ds)2

A) = 0 .
Q[ r()g(s) ds

p(en) > forne N (2.12)

my (0, ¢p;

Since limy, o m (0, ¢,; A) = 00, we yield

lim p(c,) = oo. (2.13)

n—o0

Now, assume, on the contrary, that the assertion of the lemma is not true. Taking
into account Lemma 2.5, there exists M > 0 such that

0>w.,(t)>—-M fortce|c,,T],neN. (2.14)

Let ¢, < £ for n > ng with some ng € N. Then Ay(cn) < H Y(pu(cn) Kn(5,T))
for n > ny by Lemma 2.2 with a = ¢, and b = T. Since

lim H ' (/L(cn)KM(g,T)) = —00

n—0o0

by (2.13), we have lim,, o A4(c,) = —o0, contrary to (2.14). O



3 Weak and strong singularity and smoothness
of solutions

The weak singularity of f at = 0, which has been defined in Section 1, produces
that solutions of problem (1.1),(1.2) cannot increase or decrease in neighbour-
hoods of their zeros extremely quickly, and so those have finite derivatives at their
zeros. This enables to get solutions of problem (1.1), (1.2) in the class C'*([0, 7).
For other papers working with assumptions of the type (1.4), (1.5) for nonnegative
solutions of the Dirichlet problem we can refer to [1], [11] or [12].

The smoothness of solutions can be also obtained by some modifications of
conditions (1.4) and (1.5). For example in [4], the authors consider the problem

" = f(t,x), x(0)==xz(1)=0, (3.1)

and assume the validity of second condition in (1.3) together with the inequalities

0< /01 F(t,c®(t)) dt < 0o for ¢ € (0,00), (3.2)

where

O(t) =

{ t for t € [0, 3] (3.3)

1—t forte(3,1].

By means of (3.2) and (3.3) they get positive (on (0, 1)) solutions of problem (3.1)
in the space C*([0,1]). To the same purpose conditions (3.2) and (3.3) are used
in [17]. In [14], the behaviour of f in a right neighbourhood of its singularity
x = 0 is controlled by the inequalities

0< f(t,z) < at)g(x) for (t,x) € (0,1) x (0, 00), (3.4)
where

/01 H(1 = t)alt) dt < oo, /Olg(kt(l _)alt)dt < 0o for ke (0,00).  (35)

It is proved that assumptions (3.4), (3.5) guarantee the smoothness of solutions
to (3.1). The same is proved in [9] or in [13] for a special case of (3.4) and
(3.5). The common feature of all these conditions is the convergence of auxiliary
integrals of a majorant to f.

Motivated by the example f(t,z) = Slgh &

, a« > 1, and by the fact that
| z[®

dz 0 dx . : .
/— = 00, W = oo if @ > 1, we define other type of singularity of f at
0% T|“
xz=0.

Let f :[0,7] x D — R and there exist a positive function p € C°(D) such
that

0 < p(z) < f(t,x)signz  for (t,z) € [0,T] x D. (3.6)
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We say that f has the strong left singularity at x = 0 if

/Op(x) dr = o0 (3.7)

and we say that f has the strong right singularity at x = 0 if

/Op(a:) dx = oo. (3.8)

The strong left (right) singularity of f at x = 0 means that the time for which
solution z of problem (1.1),(1.2) stays near 0 is very small, which consequently
breaks the boundedness of derivatives of x at its zeros. For example papers [2],
[3], [5]-19], [13]-[16] consider the Dirichlet problem for differential equations with
nonlinearities admitting the strong right singularity at * = 0 and thus nonneg-
ative solutions having continuous first derivatives only on (0,1) are guaranteed
there.

The fact that the presence of strong left (right) singularity produces the loss
of the finiteness of derivatives of solutions at their zeros is demonstrated in the
following two lemmas.

Lemma 3.1. Let assumptions (H1), (H2) and

(H4) f € C°[0,T] x D), f(t,-) is nonincreasing on D for t € [0,T], f satisfies
(3.6) and has strong right singularity at x =0

be satisfied. Further assume that > 0, [a,b] C [0,T], 0 < b—a < T, u €
C’([a, b)) N C((a, b)) satisfies (2.1), r(u)u’ € C*((a,d)) and (1.1) with x = u and
this p is fulfilled on (a,b). Then

li "(t) = .
Jim u (t) = o0 (3.9)
provided a > 0 and
lim u'(t) = —o00 (3.10)
t—b—

provided b < T'.
Proof. First assume that a > 0. By our assumptions, u € C°([a,b]) N C*((a, b))
satisfies (2.1) and (r(u(t))u/(t))" = pq(t) f(t,u(t)) for t € (a,b). Set

A =max{u(t) :a <t < b} = u(ty).

Then A > 0, ty € (a,b) and
u'(to) = 0. (3.11

)
Since pq(t) f(t,u(t)) <0 for t € (a,b), r(u)u' is decreasing on (a, b) and, by (H1)
and (3.11), r(u)u’ > 0 on (a,ty). Let go = max{q(t) : a <t < ty}. Then ¢y <0
by (H2), and from the inequality

pa(t)f(tu(t)) < pgop(u(t)), t € (a,to]

9



it follows that

(r(u(®)u' (8))"r (u(t))u'(t) < pgop(u(t))r(u(t))u'(t) < pgorop(u(t))u(t)

for t € (a,tp]. Choose ¢ € (0,ty — a). Integrating the inequality

(r(u())u'(£))r (w(t))u'(t) < pgorop(u(t))u'(t), t € (a,to]
from a + ¢ to t;, we get

a+e

(r(ula +2))u'(a +))* > 2uqor0 [ plu(t))u'(t) dt = 2ugors /A " () ds.

to

Consequently,
A
lim (r(u(a +¢))u'(a+€))* = r*(0) lim (u'(a + €))* > 2u|q0|r0/ p(s)ds = 00
e—07t e—0t 0

which gives (3.9).

If b < T then (3.10) can be proved similarly. O
Remark 3.2. If the function ¢ in (1.1) satisfies (H2) with the inequality ¢(¢) <
qo < 0 for t € [0, 7], then the assertions of Lemma 3.1 hold for each 0 < a <b <
T.

Theorem 3.3. Let assumptions (H1), (H2) and (H4) be satisfied. Then problem
(1.1), (1.2) has no solution.

Proof. Assume that u is a solution of problem (1.1),(1.2). Then u € C*([0,T7)
and there exists precisely one ¢, € (0,7") such that u(ty) = 0 and either u > 0
on (0,%y), v < 0 on (ty,T) or u < 0 on (0,%y), u > 0 on (ty,7); say u < 0 on
(0,t9), u > 0 on (ty,7). Then, by Lemma 3.1 with a = t; and b = T, we have
lim, ,,+ u'(t) = oo, contrary to u € C*([0, T]). O

Since the proofs of next Lemma 3.4 and Theorem 3.5 are similar to those of
Lemma 3.1 and Theorem 3.3, they will be omitted.

Lemma 3.4. Let assumptions of Lemma 3.1 be satisfied with the difference that
now u fulfils (2.2) instead of (2.1) and (H4) is replaced with

(H5) f € C°[0,T] x D), f(t,-) is nonincreasing on D for t € [0,T], f satisfies
(3.6) and has strong left singularity at x = 0.

Then limy_,,+ u'(t) = —oo provided a > 0 and lim;_,,- u/(t) = oo provided b < T.
Theorem 3.5. Suppose that assumptions (H1), (H2) and (H5) hold. Then prob-
lem (1.1),(1.2) has no solution.

Remark 3.6. Observe that the nonexistence of a solution of problem (1.1), (1.2)
follows from the fact that any solution of this problem vanishes just at one point
of (0,7) and that the nonlinearity of (1.1) has strong left (or right) singularity
at = 0. Even in the case that the condition z € C1([0,T]) in our definition
of the solution = of problem (1.1),(1.2) is replaced with the weaker assumption
z € C°%[0,T]) N C*((0,T)), the assertions of Theorems 3.3 and 3.5 are true.
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Now, we generalize the notion of a solution of problem (1.1),(1.2). We say
that x € C°([0,T]) is a w-solution of problem (1.1),(1.2), if x has precisely one
zero ty € (0, 1), z € CH([0,T]\ {to}), there exist finite lim, - Z'(t), limy Z'(t),
r(x)x’ € CH((0,T)\ {to}), x fulfils (1.2) and finally there exists p > 0 such that
(1.1) with p = py is satisfied on (0,7") \ {¢o}. Multiplicity results for w-solutions
of problem (1.1), (1.2) are presented in the following Theorems 3.7, 3.8 and 3.10.
Note, that the first two theorems give exact multiplicity results while the third
one affords a lower bound of a number of w-solutions.

Theorem 3.7. Suppose that assumptions (H1)-(H3) hold. Let A > 0. Then for
each ty € (0,T) problem (1.1), (1.2) has just two w-solutions vanishing at ty and
having their mazimum value on [0,T] equal to A.

Proof. Choose ty € (0,7') and put

Qo =sup{lq(t)|: 0 <t <to}, Qr =sup{[g(t)|:to <t <T}

and, according to (2.4), denote

2(/0Ar(s) d5)2

Ao [ r(s)g(s) ds

2(/()Ar(s) d3)2
(T = t0)*Qr /OA r(s)g(s) ds‘

By Lemma 2.1, for a = 0, b = ¢, there exists just one value pg € [m4(0,%9; A), 00)
of the parameter p such that problem (1.1),(2.1) with g = po has a (unique)
solution u, satisfying

m+(07 to; A) =

?

my (t07 T7 A) =

max{ui(t) : 0 <t <ty} = A. (3.12)

Further, by Lemma 2.2, for a = t, b = T', problem (1.1), (2.2) with p = o has a
(unique) solution v;. Now, we can simply put

uy(t) for t € [0, ]
21 (t) = { v (t) for t € (ty, T].

The function z; need not have a continuous first derivative at ¢, but there exist
finite lim, - (1), lim, .+ o) (t), and so x; is a w-solution of problem (1.1), (1.2).
Since v; < 0 on [tg, 1], we get from (3.12) that max{z(¢) : 0 <t < T} = A,

To get the second w-solution of problem (1.1), (1.2) with a zero at ¢, and with
the maximum value A, we can use Lemma 2.1 for a = ¢y, b = T. Then there
exists just one value pgp € [my(to, T; A), 00) of the parameter p such that problem
(1.1),(2.1) with g = py has a (unique) solution wus satisfying max{us(t) : ty <
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t < T} = A. Finally, by Lemma 2.2 for a = 0, b = ¢,, problem (1.1), (2.2) with
p = pr has a (unique) solution vy and therefore the function

_ [wlt) foree(0.n)
(1) = { uy(t) for t € (to, T

is our second w-solution of problem (1.1), (1.2) with max{zy(t) : 0 <t < T} = A.
]
In a similar way we can prove the next theorem:.
Theorem 3.8. Let B < 0 and let assumptions (H1)-(H3) hold. Then for each
to € (0,7) problem (1.1), (1.2) has just two w-solutions vanishing at ty and having
their minimum value on [0,T] equal to B.
Example 3.9. By Theorems 3.7 and 3.8, for A > 0, B < 0 and ¢, € (0,7
given, there exist just two w—solutions u; and just two w-solutions v; of problem
(1.7),(1.2) such that w;(ty) = vi(tp) = 0 and max{u;(t) : 0 < t < T} = A,
min{v;(t) :0<t<T}=B,i=1,2.
Theorem 3.10. Suppose that (H1)-(H3) hold. Then for each A > 0, B < 0 there
exist at least two w—solutions of problem (1.1), (1.2) having their mazimum value
on [0,T] equal to A and their minimum value on [0,T] equal to B.
Proof. Fix A > 0, B < 0 and consider the function A4 : (0,7") — (—o0, 0) which
is defined by (2.9). By Lemmas 2.5-2.7, A4 is continuous and nondecreasing on
(0,7), lim.,p- Aa(c) = 0 and lim, ,o+ Ay(c) = —oo. Hence there exists at
least one solution of the equation A(c) = B in (0,7), say c¢.. Now, taking the
notation u, for the unique solution of problem (2.7) and v, for the unique solution
of problem (2.8), we see that

_ [ uel) foreefoc
w1 (t) = { v, (t) fort e (c,,T]

is a w-solution x of problem (1.1),(1.2) such that
max{z;(t) : 0 <t < T} =max{u. (t):0<t<ec}=A4,

min{z;(t) : 0 <t < T} =min{v., (t) : c. <t <T} = B.

To get the second w-solution we consider the differential equation (2.10) in-
stead of (1.1) and use relations between solutions of both the differential equations
given in the proof of Lemma 2.5. Then there is a ¢y € (0,7") such that

_[valt) forteoql
(1) = { Ueo(t) for t € (co, T

is a w-solution x of problem (1.1),(1.2) such that

max{zy(t) : 0 <t < T} =max{ug(t) :co <t < T} =A,
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min{zy(t) : 0 <t < T} =min{v,(t) : 0 <t < ¢} = B.

O

Remark 3.11. Summarizing our results for solutions and w-solutions of problem
(1.1),(1.2) which are given in Theorems 1.1-1.4 and Theorems 3.3 and 3.5 for
solutions and in Theorems 3.7, 3.8 and 3.10 for w-solutions we get:

1) If f has the one-sided strong singularity at © = 0, then problem (1.1), (1.2)
has no solution and no w-solution;

2) If f has the week singularity at £ = 0 then in the case of solutions we yield:

(i) for each A > 0, (resp. B < 0) there exists at least one solution having
its maximum value on [0,7] which is < A (resp. minimum value on
[0, 7] which is > B)

(ii) zeros of solutions on (0,7) are not precisely localized
and in the case of w-solutions we receive:

(j) for each A > 0, B < 0 and t; € (0,7 there exist precisely two w-
solutions having zero at ¢t = t, with the maximum value on [0, 7] equals
A and there exist precisely two w-solutions having zero at t = ¢, with
the minimum value on [0, 7] equals B

(jj) for each A > 0, B < 0 there exist at least two w-solutions with the
maximum value on [0,7] equals A and with the minimum value on
[0,7] equals B. Zeros of these w-solutions on [0,7’] are not precisely
localized.
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