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1 Introduction

This paper investigates the following discrete Dirichlet boundary value problem

∇∆yk

h2
+ f(tk, yk,

∆yk

h
) = 0, k = 1, . . . , n− 1;(1.1)

y0 = 0, yn = 0;(1.2)

where: f is a continuous, scalar-valued function; the step size is h = N/n with N a positive
constant and n ≥ 2; the grid points are tk = kh for k = 0, . . . , n. The differences are given
by:

∆yk =

{
yk+1 − yk, for k = 0, . . . , n− 1,
0, for k = n;

∇∆yk =

{
yk+1 − 2yk + yk−1, for k = 1, . . . , n− 1,
0, for k = 0 or k = n.

This paper addresses two questions of interest regarding the discrete BVP (1.1), (1.2):

• Under what conditions does the discrete BVP (1.1), (1.2) have at least one solution?

• In what sense, if any, will the above solutions to (1.1), (1.2) approximate solutions
to the continuous BVP

y′′ + f(t, y, y′) = 0, t ∈ [0, N ],(1.3)

y(0) = 0, y(N) = 0?(1.4)

Particular significance in these points lie in the fact that when a BVP is discretized,
strange and interesting changes can occur in the solutions. For example, properties such as
existence, uniqueness and multiplicity of solutions may not be shared between the “contin-
uous” differential equation and its related “discrete” difference equation [1, p.520]. More-
over, when investigating difference equations, as opposed to differential equations, basic
ideas from calculus are not necessarily available to use, such as the intermediate value
theorem; the mean value theorem and Rolle’s theorem. Thus, new challenges are faced
and innovation is required.

In this paper we will significantly extend the ideas from [12], where the solvability of
problem (1.1), (1.2) has been proved provided f(t, u, v) has sublinear or linear growth in
u and v. Here, using the lower and upper solutions method for our problem, we will prove
its solvability, even for nonlinearities f(t, u, v) growing superlinearly in u and v.

The paper is organised as follows.
In Section 2, a new discrete Nagumo condition for (1.1), (1.2) is formulated. The

condition is one of the main results of the paper. In short, we gain sufficient conditions, in
terms of a general, one-sided growth condition on f , so that all possible solutions to (1.1),
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(1.2) have an a priori bound on their first differences, with this bound being independent
of h but dependent on a bound on solutions.

In Section 3 we present the classical method of lower and upper solutions to (1.1), (1.2).
We also gain the existence of solutions to a certain “modified” version of (1.1), (1.2) where
the boundedness on the right-hand side of the modified difference equation is utilized.

In Section 4 the ideas from the two previous sections are combined and applied to
establish new solvability results for (1.1), (1.2). These existence results form another main
contribution of the paper.

In Section 5 the a priori bound results from Section 2 and 3 are applied to show that
solutions to the discrete BVP (1.1), (1.2) will converge to solutions of the continuous BVP
(1.3), (1.4). An example is presented to illustrate how the new theory advances existing
results from the literature.

For recent and classical results on difference equations and their comparison with dif-
ferential equations, including existence, uniqueness and spurious solutions, the reader is
referred to: [1]-[17].

A solution to equation (1.3) is a twice continuously differentiable function y = y(t) that
satisfies (1.3) for all t ∈ [0, N ].

A solution to equation (1.1) is a vector y = (y0, . . . , yn) ∈ Rn+1 satisfying (1.1) for
k = 1, . . . , n− 1.

2 A priori estimates

In this section we will prove a priori estimates on first differences of vectors, in terms of
an a priori bound on vectors themselves. The estimates on first differences do not depend
on the step-size h or on vectors y.

The following lemma contains one-sided growth conditions which imply the aforemen-
tioned estimates on differences.

Lemma 2.1 Let ε ∈ (0, 2], r ∈ (0,∞) and c, K ∈ [0,∞) be constants. Then there exists
a r∗ ∈ [1,∞) such that for each step-size h ∈ (0, N

2
] and each y = (y0, . . . , yn) ∈ Rn+1 that

satisfy:

(2.1)
∇∆yk

h2
sign yk ≥ −c

∣∣∣∣∆yk

h

∣∣∣∣2−ε

−K, k = 1, . . . , n− 1;

and

(2.2) max{|yi| : i = 1, . . . , n− 1} ≤ r, y0 = yn = 0;

the estimate

(2.3) max

{∣∣∣∣∆yi

h

∣∣∣∣ : i = 0, . . . , n− 1

}
≤ r∗

is valid.
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Proof Choose an arbitrary y = (y0, . . . , yn) ∈ Rn+1 that satisfies (2.1), (2.2) and denote

(2.4) max

{∣∣∣∣∆yi

h

∣∣∣∣ : i = 0, . . . , n− 1

}
=

∣∣∣∣∆yj

h

∣∣∣∣ = ρ.

If ρ < 1, then (2.3) holds for r∗ = 1. Now, assume that ρ ≥ 1. We will discuss four cases.

Case 1: ∆yj > 0 and yj < 0.

Then 0 < j ≤ n− 1 and we can find ` ∈ [0, j − 1] such that

(2.5) ∆y` ≤ 0 and ` < j − 1 =⇒ ∆y`+1 > 0, . . . , ∆yj−1 > 0.

Therefore, by (2.2) and (2.5),

(2.6)

j∑
i=`+1

|∆yi| =
j∑

i=`+1

∆yi = yj+1 − y`+1 ≤ 2r.

Further, if ` < j − 1, then we have yi < 0, i = ` + 1, . . . , j − 1, and hence (2.1) yields

(2.7)
1

h2
(∆yj −∆yj−1) ≤ (c + K)

∣∣∣∣∆yj

h

∣∣∣∣2−ε

,

1

h2
(∆yj−1 −∆yj−2) ≤

 (c + K)
∣∣∣∆yj−1

h

∣∣∣2−ε

if
|∆yj−1|

h
≥ 1

c + K if
|∆yj−1|

h
< 1,

...
...

...

1

h2
(∆y`+1 −∆y`) ≤

{
(c + K)

∣∣∣∆y`+1

h

∣∣∣2−ε

if |∆y`+1|
h

≥ 1

c + K if |∆y`+1|
h

< 1.

Hence, by (2.4), (2.5) and (2.6),

ρ =
∆yj

h
≤ 1

h
(∆yj −∆y`) =

1

h

j∑
i=`+1

(∆yi −∆yi−1)

< (c + K)

(
(j − `− 1)h + ρ1−ε

j∑
i=`+1

∆yi

)
.

Therefore,

(2.8) ρ <

{
(c + K)ρ1−ε(N + 2r) if ε ∈ (0, 1]

(c + K)(N + 2r) if ε ∈ (1, 2].
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If ` = j − 1, we have by (2.5) and (2.7)

ρ =
∆yj

h
≤ 1

h
(∆yj −∆yj−1) < (c + K)

(
h + ρ1−ε∆yj

)
,

which implies (2.8) again. So, we get (2.3) if we put

(2.9) r∗ = max{[(c + K)(N + 2r)]1/ε, (c + K)(N + 2r)}+ 1.

Case 2: ∆yj < 0 and yj > 0.

Then 0 < j ≤ n− 1 and we can find ` ∈ [0, j − 1] such that

(2.10) ∆y` ≥ 0 and ` < j − 1 =⇒ ∆y`+1 < 0, . . . , ∆yj−1 < 0.

So, if ` < j − 1, we have yi > 0, i = ` + 1, . . . , j − 1. Therefore, by (2.2) and (2.10),

(2.11)

j∑
i=`+1

|∆yi| =
j∑

i=`+1

−∆yi = −yj+1 + y`+1 ≤ 2r.

By (2.4), (2.10), (2.11) and similar arguments as in Case 1, we get (2.8). Consequently
(2.3) holds if we define r∗ by (2.9).

Case 3: ∆yj > 0 and yj ≥ 0.

Then 0 ≤ j < n− 1 and we can find ` ∈ [j + 1, n− 1] such that

(2.12) ∆y` ≤ 0 and ` > j + 1 =⇒ ∆yj+1 > 0, . . . , ∆y`−1 > 0.

Therefore, by (2.2) and (2.12),

(2.13)
∑̀

i=j+1

|∆yi| = −∆y` +
`−1∑

i=j+1

∆yi ≤ 2y` − y`+1 ≤ 3r.

Further, if ` > j + 1, then we have yi > 0, i = j + 1, . . . , `, and hence (2.1) yields

(2.14)
1

h2
(∆yj+1 −∆yj) ≥ −

 (c + K)
∣∣∣∆yj+1

h

∣∣∣2−ε

if
|∆yj+1|

h
≥ 1

c + K if
|∆yj+1|

h
< 1,

1

h2
(∆yj+2 −∆yj+1) ≥ −

 (c + K)
∣∣∣∆yj+2

h

∣∣∣2−ε

if
|∆yj+2|

h
≥ 1

c + K if
|∆yj+2|

h
< 1,
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...
...

...

1

h2
(∆y` −∆y`−1) ≥ −

{
(c + K)

∣∣∆y`

h

∣∣2−ε
if |∆y`|

h
≥ 1

c + K if |∆y`|
h

< 1.

Hence, by (2.4), (2.12) and (2.13),

ρ =
∆yj

h
≤ −1

h
(∆y` −∆yj) =

−1

h

∑̀
i=j+1

(∆yi −∆yi−1)

< (c + K)

(
(`− j − 1)h + ρ1−ε

∑̀
i=j+1

|∆yi|

)
.

Therefore

(2.15) ρ <

{
(c + K)ρ1−ε(N + 3r) if ε ∈ (0, 1]

(c + K)(N + 3r) if ε ∈ (1, 2].

If ` = j + 1, we have by (2.14),

ρ =
∆yj

h
≤ −1

h
(∆yj+1 −∆yj) ≤ (c + K)

(
h + ρ1−ε∆yj+1

)
,

which implies (2.15) again. We see that (2.3) is true if we put

(2.16) r∗ = max{[(c + K)(N + 3r)]1/ε, (c + K)(N + 3r)}+ 1.

Case 4: ∆yj < 0 and yj ≤ 0.

Then 0 ≤ j < n− 1 and we can find ` ∈ [j + 1, n− 1] such that

(2.17) ∆y` ≥ 0 and ` > j + 1 =⇒ ∆yj+1 < 0, . . . , ∆y`−1 < 0.

So, if ` > j − 1, then we have yi < 0, i = j + 1, . . . , `. Therefore, by (2.2) and (2.17),

(2.18)
∑̀

i=j+1

|∆yi| = ∆y` −
`−1∑

i=j+1

∆yi ≤ −2y` + y`+1 ≤ 3r.

By (2.4), (2.17), (2.18) and similar arguments as in Case 3, we get (2.15). Therefore (2.3)
is satisfied in all the four cases provided r∗ is given by (2.16). 2
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3 Lower and upper solutions

Lower and upper solutions are important tools in the investigation of solvability of bound-
ary value problems. We now state their definition for problem (1.1), (1.2).

Assume that α(t) and β(t) are continuous functions on [0, N ]. For n ≥ 2 and h = N
n

denote tk = kh, αk = α(tk), βk = β(tk), k = 0, . . . , n.
We call (α0, . . . , αn) ∈ Rn+1 a lower solution to problem (1.1), (1.2) if

(3.1)
∇∆αk

h2
+ f(tk, αk,

∆αk

h
) ≥ 0, k = 1, . . . , n− 1,

(3.2) α0 ≤ 0, αn ≤ 0.

We call (β0, . . . , βn) ∈ Rn+1 an upper solution of problem (1.1), (1.2) if

(3.3)
∇∆βk

h2
+ f(tk, βk,

∆βk

h
) ≤ 0, k = 1, . . . , n− 1,

(3.4) β0 ≥ 0, βn ≥ 0.

The next theorem yields solvability of problem (1.1), (1.2) in presence of lower and
upper solutions, where we will let

(3.5) r := max{ max
i∈{0,...,n}

{|αi|, |βi|}}, rh :=
2r

h
.

Theorem 3.1 (Lower and upper solutions method I) Let (α0, . . . , αn) and (β0, . . . , βn)
be, respectively, a lower and an upper solution of (1.1), (1.2) with αk ≤ βk, k = 1, . . . , n−1.
Further, for each fixed t ∈ [0, N ] and u ∈ [α(t), β(t)] assume

(3.6) f(t, u, v) is nondecreasing in v for v ∈ [−rh, rh],

where rh is given by (3.5). Then problem (1.1), (1.2) has at least one solution y =
(y0, . . . , yn) satisfying

(3.7) αk ≤ yk ≤ βk, k = 0, . . . , n.

If, moreover, there exists M > 0 such that

(3.8) |f(t, u, v)| ≤ M for t ∈ [0, N ], α(t) ≤ u ≤ β(t), v ∈ R,

then

(3.9)

∣∣∣∣∆yk

h

∣∣∣∣ ≤ NM

2
, k = 0, . . . , n− 1.
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Proof Step 1. Solvability of an auxiliary problem. For t ∈ [0, N ], x, z ∈ R, we define
functions

σ(t, z) :=


β(t + h) if z > β(t + h),
z if α(t + h) ≤ z ≤ β(t + h),
α(t + h) if z < α(t + h);

f̃(t, x,
z − x

h
) :=



f
(
t, β(t),

σ(t, z)− β(t)

h

)
− x− β(t)

x− β(t) + 1
if x > β(t),

f
(
t, x,

σ(t, z)− x

h

)
if α(t) ≤ x ≤ β(t),

f(t, α(t),
σ(t, z)− α(t)

h

)
+

α(t)− x

α(t)− x + 1
if x < α(t);

and we obtain the auxiliary difference equation

(3.10)
∇∆yk

h2
+ f̃
(
tk, yk,

∆yk

h

)
= 0, k = 1, . . . , n− 1.

We see that f̃ is continuous on [0, N ]× R2 and there exists M̃ > 0 such that

(3.11) |f̃(t, u, v)| ≤ M̃, for t ∈ [0, N ], u, v ∈ R.

By [12, Corollary 2.3], problem (3.10), (1.2) has at least one solution.

Step 2. Solvability of problem (1.1), (1.2). Let y = (y0, . . . , yn) be an arbitrary solution to
(3.10), (1.2). We prove that this solution y of (3.10), (1.2) satisfies (3.7). Put vk = yk−βk,
k = 0, . . . , n, and assume that

(3.12) max{vk : k = 0, . . . , n} = v` > 0.

Conditions (1.2) and (3.4) imply ` ∈ {1, . . . , n − 1}. Thus we have v`+1 ≤ v`, v`−1 ≤ v`,
and consequently ∆y` ≤ ∆β`, ∆y`−1 ≥ ∆β`−1. This leads to

(3.13) ∇∆y` ≤ ∇∆β`.

On the other hand, since f is nondecreasing in its third variable on [−rh, rh], we get by
(3.10) and (3.12)

1

h2
(∇∆y` −∇∆β`) = −f̃(t`, y`,

∆y`

h
)− ∇∆β`

h2
= −f(t`, β`,

σ(t`, y`+1)− β`

h
)

(3.14) +
y` − β`

y` − β` + 1
− ∇∆β`

h2
≥ −f(t`, β`,

∆β`

h
) +

v`

v` + 1
− ∇∆β`

h2
≥ v`

v` + 1
> 0,

which contradicts (3.13). So, we have proved yk ≤ βk, for k = 0, . . . , n. The inequality
αk ≤ yk, for k = 0, . . . , n, can be proved similarly. Therefore y satisfies (3.7) and hence y
is a solution of problem (1.1), (1.2).
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Step 3. Estimates of differences. Now assume that there exists M > 0 satisfying (3.8).
By the proof of [12, Theorem 2.1], problem (1.1), (1.2) is equivalent to the summation
equation

(3.15) yk = h
n−1∑
i=1

G(tk, si)f(si, yi,
∆yi

h
), k = 0, . . . , n;

where G is the Green function of the homogeneous problem ∇∆yk

h2 = 0, (1.2) and

n−1∑
i=1

|∆G(tk, si)| ≤
N

2
, k = 0, . . . , n− 1.

Therefore, by (3.8) and (3.15), we get (3.9). 2

Theorem 3.1 is valid for an arbitrary fixed step size h ∈ (0, N/2]. Section 5 deals with
convergence results and so our consideration there can be restricted on small steps. To
this purpose it will be useful to formulate a modification of Theorem 3.1, which is valid
for each sufficiently small step size h and where the monotonicity assumption (3.6) can be
omitted.

Theorem 3.2 (Lower and upper solutions method II) Let (α0, . . . , αn) and (β0, . . . , βn)
be, respectively, a lower and an upper solution of (1.1), (1.2) with αk ≤ βk, k = 1, . . . , n−1,
and let there exist ρ > 0 such that for each n ∈ N, n ≥ 2 and h = N/n

(3.16)

∣∣∣∣∆αk

h

∣∣∣∣ ≤ ρ,

∣∣∣∣∆βk

h

∣∣∣∣ ≤ ρ, k = 0, . . . , n− 1.

Further, assume that there exists M > 0 satisfying (3.8). Then there exists n∗ ≥ 2 such
that for each n ∈ N, n ≥ n∗, problem (1.1), (1.2) has at least one solution y = (y0, . . . , yn)
satisfying (3.7) and (3.9).

Note that if functions α(t) and β(t) have continuous derivatives on [0, N ], the condition
(3.16) is satisfied.

Proof We argue as in the proof of Theorem 3.1 and get (3.10) – (3.13). By (3.12) we
have y` > β` which yields c > 0 such that y` = c+β`. In order to prove (3.14) we will show
that for a sufficiently large n ∈ N

y` > β` =⇒ y`+1 ≥ β`+1.

Using (3.9), (3.12) and (3.16), we have

y`+1 = y` + ∆y` = c + β` + ∆y` = c + β`+1 −∆β` + ∆y`

≥ c + β`+1 − |∆β`| − |∆y`| ≥ c + β`+1 − ρh− NM

2
h ≥ β`+1,

if n ≥ n∗ and n∗ = 1
c
(ρN + N2M

2
), h = N/n. Therefore σ(t`, y`+1) = β`+1 and we get (3.14)

without using (3.6). The rest can be proved as for Theorem 3.1. 2
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4 Solvability

In this section we prove the solvability of problem (1.1), (1.2) for those f that can have
a superlinear growth in its second and third variables. The proofs are based on the a
priori estimates furnished by Lemma ?? and on the lower and upper solutions method of
Theorem 3.1 or Theorem 3.2. The first existence result holds for each step size h ∈ (0, N/2]
and follows from Theorem 3.1.

Theorem 4.1 Let (α0, . . . , αn) and (β0, . . . , βn) be, respectively, a lower and an upper
solution of (1.1), (1.2) with αk ≤ βk, for k = 1, . . . , n − 1. Further, let r and rh be
given by (3.5) and for each fixed t ∈ [0, N ] and u ∈ [α(t), β(t)] let the function f(t, u, v)
be nondecreasing in v for v ∈ [−rh, rh]. Moreover, assume that there exist ε ∈ (0, 2] and
c, K ∈ [0,∞) such that

(4.1) f(t, u, v) sign u ≤ c|v|2−ε + K for t ∈ [0, N ], α(t) ≤ u ≤ β(t), v ∈ R.

Then problem (1.1), (1.2) has a solution y = (y0, . . . , yn) satisfying (3.7) and (2.3), where
r∗ is from Lemma 2.1.

Proof Denote Rh := max{r∗, rh} and for t ∈ [0, N ], u, v ∈ R define

χ(|v|, Rh) :=


1 if |v| ≤ Rh,
2Rh − |v|

Rh

if Rh < |v| < 2Rh,

0 if |v| ≥ 2Rh;

and

(4.2) f ∗(t, u, v) := χ(|v|, Rh)f(t, u, v).

We will consider the auxiliary difference equation

(4.3)
∇∆yk

h2
+ f ∗(tk, yk,

∆yk

h
) = 0, k = 1, . . . , n− 1.

We see that (α0, . . . , αn) and (β0, . . . , βn) are lower and upper functions of (4.3), (1.2),
respectively. Further f ∗ is continuous on [0, N ]× R2 and there exists M∗ > 0 such that

(4.4) |f ∗(t, u, v)| ≤ M∗, for t ∈ [0, N ], α(t) ≤ u ≤ β(t), v ∈ R.

Finally, for each fixed t ∈ [0, N ] and u ∈ [α(t), β(t)] the function f ∗(t, u, v) is nonincreasing
in v for v ∈ [−rh, rh]. Therefore, by Theorem 3.1, problem (1.1), (1.2) has at least one
solution y = (y0, . . . , yn) satisfying (3.7). Moreover, by (4.1) and (4.3),

∇∆yk

h2
sign yk = −χ

(
|∆yk|

h
, Rh

)
f(tk, yk,

∆yk

h
) sign yk
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≥ χ

(
|∆yk|

h
, Rh

)(
−c

∣∣∣∣∆yk

h

∣∣∣∣2−ε

−K

)
≥ −c

∣∣∣∣∆yk

h

∣∣∣∣2−ε

−K, k = 1, . . . , n− 1.

So, we can use Lemma 2.1 and get the estimate (2.3). Therefore, by (4.2), y is a solution
of problem (1.1), (1.2). 2

The second existence result relies upon Theorem 3.2 and hence it holds for small steps
only.

Theorem 4.2 Let (α0, . . . , αn) and (β0, . . . , βn) be, respectively, a lower and an upper
solution of (1.1), (1.2) with αk ≤ βk, for k = 1, . . . , n − 1, and let there exist ρ > 0 such
that (2.4) holds for each n ∈ N, n ≥ 2 and h = N/n. Moreover, assume that there exist
ε ∈ (0, 2] and c, K ∈ [0,∞) such that (4.1) is satisfied. Then there exists n∗ ≥ 2 such that
for each n ∈ N, n ≥ n∗, problem (1.1), (1.2) has a solution y = (y0, . . . , yn) satisfying
(3.7) and (2.3), where r∗ is from Lemma 2.1.

Proof We define r and rh by (3.5) and argue similarly as in the proof of Theorem 4.1
using Theorem 3.2 instead of Theorem 3.1. 2

Consider a, b ∈ [0,∞) and put α(t) = −a, β(t) = b for t ∈ [0, N ]. Then we see that
conditions (3.1) – (3.4) are satisfied, i.e. (α0, . . . , αn) and (β0, . . . , βn) are lower and upper
solutions of (1.1), (1.2), respectively. Moreover (2.4) is valid for an arbitrary ρ > 0.
Therefore Theorem 4.2 yields the following corollary.

Corollary 4.3 Assume that there exist a, b ∈ (0,∞) such that

(4.5) f(t,−a, 0) ≥ 0, f(t, b, 0) ≤ 0 for t ∈ [0, N ].

Moreover, assume that there exist ε ∈ (0, 2] and c, K ∈ [0,∞) such that

(4.6) f(t, u, v) sign u ≤ c|v|2−ε + K for t ∈ [0, N ], u ∈ [−a, b], v ∈ R.

Then there exists n∗ ≥ 2 such that for each n ≥ n∗, problem (1.1), (1.2) has a solution
y = (y0, . . . , yn) satisfying

−a ≤ yk ≤ b, k = 0, . . . , n,

and (2.3), where r∗ is from Lemma 2.1.

5 Convergence of Solutions

In this section the results of Section 2, 3 and 4 are applied to formulate some convergence
theorems. The convergence ideas rely on the work of Robert Gaines [3].

We will need the following definition.
Assume that α(t) and β(t) are twice continuously differentiable functions on [0, N ] and

µ > 0.
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We call α a lower µ solution to problem (1.3), (1.4) if

(5.1) α′′ + f(t, α, α′) ≥ µ, t ∈ [0, N ],

(5.2) α(0) ≤ −µ, α(N) ≤ −µ.

We call β an upper µ solution of problem (1.3), (1.4) if

(5.3) β′′ + f(t, β, β′) ≤ −µ, t ∈ [0, N ],

(5.4) β(0) ≥ µ, β(N) ≥ µ.

The following theorem answers the second question from the Introduction concerning
the convergence of solutions for the discrete problem.

Theorem 5.1 Let α and β be lower and upper µ solutions, respectively, to (1.3), (1.4) with
α ≤ β. Let f be continuous. Moreover, assume that there exist ε ∈ (0, 2] and c, K ∈ [0,∞)
such that

(5.5) f(t, u, v) sign u ≤ c|v|2−ε + K for t ∈ [0, N ], α(t) ≤ u ≤ β(t), v ∈ R.

Then:
(A) The continuous BVP (1.3), (1.4) has at least one twice continuously differentiable

solution y with α ≤ y ≤ β;
(B) There exists a δ(µ) such that for h < δ(µ), the discrete BVP (1.1), (1.2) has at

least one solution y with α(tk) ≤ yk ≤ β(tk), for k = 0, . . . , n;
(C) Those solutions y to (1.1), (1.2) with α(tk) ≤ yk ≤ β(tk), for k = 0, . . . , n will

converge to solutions of (1.3), (1.4) in the following sense:
For any ε1 > 0 there exists a h(ε1) such that if h ≤ h(ε1) and y is a solution to (1.1),

(1.2), then there is a solution y to (1.3), (1.4) such that

max
[0,N ]

|y(t,y)− y(t)| ≤ ε1,

max
[0,N ]

|v(t,y)− y′(t)| ≤ ε1,

where

y(t,y) := yk + (yk+1 − yk)h
−1(t− tk), tk ≤ t ≤ tk+1,

v(t,y) :=

{
(yk − yk−1)/h + (yk+1 − 2yk + yk−1)h

−2(t− tk), tk ≤ t ≤ tk+1,
(y1 − y0)/h, 0 ≤ t ≤ t1.
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Proof The proof of conclusion (A) follows from [8, Theorem 3.3] and so is omitted.
For conclusion (B), it follows from [3, Lemma 5.1] that since α and β are, respectively,

lower and upper µ solutions for (1.3), (1.4), there exists a δ(µ) such that for h < δ(µ) we
have

(α0, . . . , αn) := (α(t0), . . . , α(tn))

(β0, . . . , βn) := (β(t0), . . . , β(tn))

being, respectively, lower and upper solutions for (1.1), (1.2). Further, since α and β have
continuous derivatives on [0, N ], we see that (2.4) is fulfilled with

ρ = max{max
t∈[0,N ]

|α′(t)|, max
t∈[0,N ]

|β′(t)|}.

In conjunction with (5.5) holding, all of the conditions of Theorem 4.2 are satisfied and
conclusion (B) follows from there.

Conclusion (C) follows in a straightforward manner from [3, Theorem 2.5] and is omitted
for brevity. 2

Example Let ci, i = 1, 2, 3, 4, be continuous functions on [0, N ], c1, c2 be nonpositive and
let c1(t) + c2(t) < 0 for t ∈ [0, N ]. Then we can find a, b ∈ (0,∞) such that the function

(5.6) f(t, u, v) = c1(t)uev + c2(t)u
3 + c3(t)v

√
|v|+ c4(t)

satisfies (4.5). It follows from the fact that

lim
u→−∞

f(t, u, 0) = ∞, lim
u→∞

f(t, x, 0) = −∞ uniformly on [0, N ].

Further, f satisfies (4.6), because on [0, N ]×R2,

f(t, u, v) sign u = c1(t)|u|ev + c2(t)|u|u2 + (c3(t)v
√
|v|+ c4(t)) sign u ≤ c|v|3/2 + K,

where c = maxt∈[0,N ]{|c3(t)|} and K = maxt∈[0,N ]{|c4(t)|}. Therefore, by Corollary 4.3,
problem (1.1), (1.2) with f by (5.6) and with an arbitrary sufficiently small step size h
has a solution y lying between −a and b. Moreover, if we put α(t) = −a and β(t) = b
for t ∈ [0, N ], then all assumptions of Theorem 5.1 are satisfied and the corresponding
convergence result holds.

Note that f in (5.6) need not fulfill the monotonicity condition (3.6). Therefore we
cannot use Theorem 4.1 here. Thus we can assure the solvability of problem (1.1), (1.2)
with f by (5.6) only for small steps.

Now, assume moreover that c2 < 0 and c3 ≥ 0 on [0, N ]. Then we can find a, b ∈ (0,∞)
such that the function

(5.7) f(t, u, v) = c1(t)(u− |u|)e−uv + c2(t)u
3 + c3(t)v

√
|v|+ c4(t)

satisfies both (4.5), (4.6) and (3.6). Thus, we can apply Theorems 4.1, 4.2 and Theorem
5.1 on problem (1.1), (1.2) with f by (5.7). Consequently this problem is solvable for each
step size h ∈ (0, N/2].
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