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[6℄, where the speial ase of equation (1.1) (with a = b = 0 on J and with fhaving an one-sided Lebesgue integrable bound) was onsidered, suh sets werefound by means of lower and upper funtions of problem (1.1), (1.2).Here we extend results about the degreee of [5℄, [6℄ to equation (1.1) withnonzero a; b. Moreover we present theorems whih guarantee the existene of atleast three solutions to (1.1), (1.2).Throughout the paper we keep the following notations. L(J) is the Banahspae of Lebesgue integrable funtions on J equipped with the norm jjxjj1 =R 2�0 jx(t)jdt and L1(J) denotes the Banah spae of essentially bounded on Jfuntions with the norm jjxjj1 = ess sup fjx(t)j : t 2 Jg. For k 2 N [ f0g,Ck(J) and ACk(J) are the Banah spaes of funtions having ontinuous k�thderivatives on J and of funtions having absolutely ontinuous k�th derivativeson J , respetively. As usual, the orresponding norms are de�ned by jjxjjCk =Pki=0maxfjx(i)(t)j : t 2 Jg and jjxjjACk = jjxjjCk + jjx(k+1)jj1. The symbols C(J)or AC(J) are used instead of C0(J) or AC0(J). Car(J�R 2) is the set of funtionsf : J � R2 ! R satisfying the Carath�eodory onditions on J � R 2, i.e. (i) foreah (x; y) 2 R 2 the funtion f(�; x; y) : J ! R is measurable, (ii) for a.e. t 2 Jthe funtion f(t; �; �) : R 2 ! R is ontinuous, (iii) sup(x;y)2K jf(t; x; y)j 2 L(J)for eah ompat set K � R 2. For a Banah spae X and a set M � X, l(M)stands for the losure of M and �M denotes the boundary of M . If 
 is anopen bounded subset in C1(J) and the operator T : l(
) ! C1(J) is ompat,then deg(I � T;
) denotes the Leray-Shauder topologial degree of I � T withrespet to 
, where I stands for the identity operator on C1(J). For a de�nitonand properties of the degree see e.g. [1℄-[4℄.By a solution of problem (1.1), (1.2) we understand a funtion u 2 AC1(J)satisfying (1.1) for a.e. t 2 J and ful�lling onditions (1.2).A funtion �1 2 AC1(J) is said to be a lower funtion of (1.1), (1.2), if�001 + a(t)�01 + b(t)�1 � f(t; �1; �01) a.e. on J;�1(0) = �1(2�); �01(0) � �01(2�):A funtion �2 2 AC1(J) is alled an upper funtion of (1.1), (1.2), if�002 + a(t)�02 + b(t)�2 � f(t; �2; �02) a.e. on J;�2(0) = �2(2�); �02(0) � �02(2�):A lower funtion �1 of (1.1), (1.2) is alled strit, if �1 does not satisfy (1.1)a.e. on J and if there exists " 2 (0;1) suh that�001 + a(t)y + b(t)x � f(t; x; y)holds a.e. on J and for all (x; y) 2 [�1(t); �1(t) + "℄� [�01(t)� "; �01(t) + "℄.2



An upper funtion �2 of (1.1), (1.2) is alled strit, if �2 does not satisfy (1.1)a.e. on J and if there exists " 2 (0;1) suh that�002 + a(t)y + b(t)x � f(t; x; y) (1.3)holds a.e. on J and for all (x; y) 2 [�2(t)� "; �2(t)℄� [�02(t)� "; �02(t) + "℄.Now, let us de�ne operators whih will make possible to write problem (1.1), (1.2)in an operator form. DenotedomL = fx 2 AC1(J) : x satis�es (1.2) g: (1.4)We an see that L : domL! L(J); x 7! x00 + a(�)x0 + b(�)x (1.5)is a linear bounded operator andF : C1(J)! L(J); x 7! f(�; x(�); x0(�)) (1.6)is a ontinuous (nonlinear in general) operator, and problem (1.1), (1.2) is equiv-alent to the operator equation Lx = Fx: (1.7)To determine an operator the degree of whih will be studied we need to distin-guish two ases: KerL = f0g and KerL 6= f0g.We will say that problem (1.7) is resonane if KerL 6= f0g. If KerL = f0gthe problem is alled nonresonane.Both the ases are investigated in Setion 2.2 Nonresonane and resonane problemsI. First, let us onsider the nonresonane ase KerL = f0g. It means thatthe homogeneous linear boundary value problem orresponding to (1.1), (1.2)x00 + a(t)x0 + b(t)x = 0; x(0) = x(2�); x0(0) = x0(2�) (2.1)has the trivial solution, only. One lass of nonresonane problems (1.1), (1.2) isharaterized in the next lemma.Lemma 2.1 Let us suppose that a; b 2 L(J) and that b satis�esb(t) � 0 a.e. on J (2.2)and Z 2�0 b(t)dt 6= 0: (2.3)Then problem (2:1) has only the trivial solution, i.e. KerL = f0g.3



Proof. Suppose on the ontrary that KerL 6= f0g. Then there exists a nontrivialsolution u of (2.1) and, having in mind ondition (1.2) and the fat that �u 2KerL, we an assume without loss of generality thatmaxt2J u(t) = u(t0) > 0; u0(t0) = 0; t0 2 [0; 2�): (2.4)Further, if we extend the funtions a; b and u to 2�-periodi on R funtions, weget for all t 2 R u0(t) = �e�A(t) Z tt0 b(s)u(s)eA(s)ds; (2.5)where A(t) = R tt0 a(s)ds. Conditions (2.4) and (2.5) yieldu(t) > 0 and u0(t) � 0 for all t 2 [t0;1): (2.6)On the other hand, in view of onditon (2.3) we see that u annot be a onstantfuntion. This together with the periodiity of u imply that u0 has to hange itssign on eah interval of the length 2�, whih ontradits (2.6). Thus problem(2.1) has only the trivial solution. 2Remark 2.2 Condition (2.3) in Lemma 2.1 annot be omitted beause problem(2.1) with b(t) = 0 a.e. on J has onstant nontrivial solutions.If KerL = f0g, then the Green funtion G of (2.1) exists and we an �nd theinverse (to L) operatorL�1 : L(J)! domL; y 7! Z 2�0 G(t; s)y(s)ds: (2.7)If we denote L+ = iL�1 : L(J)! C1(J); (2.8)where i : AC1(J) ! C1(J) is the embedding operator, then the operator L+Fis absolutely ontinuous and problem (1.1), (1.2) is equivalent to the operatorequation (I � L+F )x = 0; x 2 domL. The degree theory implies that providedfor some open bounded set 
 � C1(J) the relationdeg(I � L+F;
) 6= 0 (2.9)is true, then the operator L+F has a �xed point in 
. This means, in view of(2.7), (2.8), that this �xed point belongs to domL and so problem (1.1), (1.2) hasa solution in 
. We will see in Setion 4 that suh a set 
 an be found by meansof strit lower and upper funtions of problem (1.1), (1.2).II. Now, we will onsider resonane problems having KerL 6= f0g. UsingLemma 2.1 we an transform suh problems on nonresonane ones by means ofauxiliary operators L� and H�. 4



So, let KerL 6= f0g and let domL be given by (1.4). Then for a � 2 (�1; 0)we de�ne a linear operatorL� : domL! L(J); x 7! x00 + a(�)x0 + �x (2.10)and an operator H� : C1(J)! L(J); x 7! h�(�; x(�); x0(�)); (2.11)where h�(t; x; y) = f(t; x; y) + (�� b(t))x:We see that L� and H� are ontinuous and problem (1.1), (1.2) is equivalentto the operator equation L�x = H�x: (2.12)Aording to Lemma 2.1 problem (2.12) is nonresonane, i.e. KerL� = f0g:Therefore we an argue as in Part I and get the inverse (to L�) operatorL�1� : L(J)! domL; y 7! Z 2�0 G�(�; s)y(s)ds;where G� is the Green funtion ofx00 + a(t)x0 + �x = 0; x(0) = x(2�); x0(0) = x0(2�): (2.13)As before, denoting L+� = iL�1� : L(J)! C1(J); (2.14)we arrive to the operator equation(I � L+�H�)x = 0; x 2 domL; (2.15)whih is equivalent to (1.1), (1.2). Sine L+�H� is absolutely ontinuous, we anuse the degree theory again and dedue that ifdeg(I � L+�H�;
) 6= 0 (2.16)for some open bounded set 
 � C1(J), then equation (2.15) has a solution in
 \ domL whih implies that problem (1.1), (1.2) has a solution in 
.To summarize, for the existene of a solution to (1.1), (1.2) in 
 we need toprove:(I) deg(I � L+F;
) 6= 0 if KerL = f0g.(II) deg(I � L+�H�;
) 6= 0 for some negative � if KerL 6= f0g.
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3 Values of the Leray-Shauder degreeIn this setion we prove several theorems with statements of the type (2.9)or (2.16). For de�nitions of operators see (1.5), (1.6), (2.8), (2.10), (2.11) and(2.14).Proposition 3.1 Let Ker L = f0g. Further suppose that there exist numbers; r1 2 (0;1) suh that for any � 2 [0; 1℄ eah solution u of the equation(I � �L+F )x = 0; x 2 domL (3.1)satis�es ju(tu)j <  for some tu 2 J; jju0jjC < r1: (3.2)Denote r0 = + 2�r1 and
 = fx 2 C1(J) : jjxjjC < r0; jjx0jjC < r1g: (3.3)Then deg(I � L+F;
) = 1:Proof. Let us hoose � 2 [0; 1℄ and let u be a orresponding solution of (3.1) withthis �. Then u ful�ls (3.2) and so ju(t)j � ju(tu)j + j R ttu u0(s)dsj < +R 2�0 ju0(s)jds< r0 for eah t 2 J . Therefore u 62 �
 and so the operator I � �L+F is thehomotopy on l(
)� [0; 1℄ whih implies that deg(I�L+F;
)=deg(I;
) = 1. 2Proposition 3.2 Let Ker L 6= f0g and let � 2 (�1; 0):Moreover, let us supposethat there are positive numbers ; r1 suh that for any � 2 [0; 1℄ eah solution uof the equation (I � �L+�H�)x = 0; x 2 domLsatis�es (3:2). Then deg(I � L+�H�;
) = 1;where 
 is given by (3:3) and r0 = + 2�r1.Proof. We an argue as in the proof of Proposition 3.1. 2Using the homotopy argument as before we get the following modi�ation ofProposition 3.1.Proposition 3.3 Let Ker L = f0g and let there exist �� 2 (0;1) suh that forany � 2 [0; 1℄ eah solution u of (3:1) satis�es jjujjC1 � ��. Then for eah � > ��deg(I � L+F;K(�)) = 1; (3.4)where K(�) = fx 2 C1(J) : jjxjjC1 < �g: (3.5)6



We see that a priori estimates of solutions of problems under onsideration areessential for the determination of 
 and for the degree omputation. In ontrastto Propositions 3.1{3.3, where we assumed suh estimates diretly, now, we willshow onditions whih an be imposed on f to ensure the needed estimates.Theorem 3.4 Let Ker L= f0g and let there exist e 2L(J) suh thatjf(t; x; y)j � e(t) for a:e: t 2 J and eah x; y 2 R : (3.6)Then there exists �� 2 (0;1) suh that (3:4); (3:5) are true for eah � > ��.Proof. Let u be a solution of (3.1) for some � 2 [0; 1℄. Thenu(t) = � Z 2�0 G(t; s)f(s; u(s); u0(s))ds;where G is the Green funtion of (2.1). Denote = maxfjG(t; s)j : t; s 2 Jg; Æ = maxf������G(t; s)�t ����� : t; s 2 Jg:Then jjujjC1 � ( + Æ)jjejj1 = �� and we an use Proposition 3.3. 2Remark 3.5 In the ase KerL 6= f0g, ondition (3.6) need not be suÆient forthe existene of solutions of (1.1), (1.2), whih is obvious if we hoose (1.1) inthe form x00 = 1. (Clearly problem x00 = 0; x(0) = x(2�); x0(0) = x0(2�) hasnontrivial solutions and problem x00 = 1; x(0) = x(2�); x0(0) = x0(2�) is notsolvable.) Moreover, having KerL 6= f0g, the Green funtion G of (2.1) does notexist and we annot argue as in the proof of Theorem 3.4 and hene, withoutadditional assumptions, we are not able to get an assertion about the degree asbefore. In this ase it may be the method of lower and upper funtions, whih isused in Setion 4, an pro�table instrument.4 The Leray-Shauder degree and lower and up-per funtionsLet us onsider problem (1.1), (1.2) and funtions �1, �2 2 AC1(J). Further,for any � 2 (�1; 0) let G� be the Green funtion of (2.13) and let the operatorsL�, L+� , H� be given by (2.10), (2.14) and (2.11). We denoteri = maxfjj�(i)1 jjC; jj�(i)2 jjCg; i = 0; 1; � = maxJ�J j�G�(t; s)�t j: (4.1)
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Proposition 4.1 Let �1, �2 be strit lower and upper funtions of (1:1); (1:2)suh that �1 < �2 on J; (4.2)and let there exist e 2 L(J) satisfyingjf(t; x; y)j < e(t) for a:e: t 2 J and eah (x; y) 2 [�1(t); �2(t)℄� R : (4.3)Then for any � 2 (�1; 0) deg(I � L+�H�;
�) = 1; (4.4)where 
� = fx 2 C1(J) : �1 < x < �2 on J; jjx0jjC < M�g; (4.5)and M� � �(3jjejj1 + (jjbjj1 � 2��)r0 + jjajj1).Proof. Let us hoose � 2 (�1; 0) and put for a.e. t 2 J and for eah (x; y) 2 R 2q�(t; x; y) = f(t; �(x); y) + (�� b(t))�(x);where �(x) = 8><>: �2(t) if �2(t) < xx if �1(t) � x � �2(t)�1(t) if x < �1(t):Further, de�nep�(t; x; y) = 8>><>>: q�(t; x; y) + ! �t; x��2(t)x��2(t)+1� if �2(t) < xq�(t; x; y) if �1(t) � x � �2(t)q�(t; x; y)� ! �t; �1(t)�x�1(t)�x+1� if x < �1(t); (4.6)and for " 2 [0; 1℄!(t; ") = sup(x;y;z)2Dt;"fjf(t; x; y)� f(t; x; z)j+ ja(t)(y � z)jg;where Dt;" = f(x; y; z) 2 R 3 : �1(t) � x � �2(t); jyj � 1+j�01(t)j+j�02(t)j; jy�zj �"g. We an see that ! 2 Car(J� [0; 1℄) is non-negative and non-dereasing in theseond variable, !(t; 0) = 0 a.e. on J . Moreover, for a.e. t 2 J and any y 2 Rsatisfying jy � �0i(t)j � 1 the inequalityjf(t; �i; �0i)� f(t; �i; y)j+ ja(t)(y � �0i)j � !(t; jy � �0ij); i = 1; 2; (4.7)is true. In view of (4.6), for a.e. t 2 J and for all (x; y) 2 R 2, we havejp�(t; x; y)j < 3e(t) + (jb(t)j � �)r0 + ja(t)j: (4.8)8



Reall that L� is de�ned by (2.10) and de�ne an operatorP� : C1(J)! L(J); x 7! p�(�; x(�); x0(�)):With respet to Lemma 2.1 we have KerL� = f0g. Therefore, aording to (4.8),Theorem 3.4 ensures the existene of �� 2 (r0+M�;1) suh that for eah � > ��deg(I � L+�P�; K(�)) = 1; (4.9)where K(�) = fx 2 C1(J) : jjxjjC1 < �g. Let us onsider an arbitrary solutionu 2 domL of the equation (I � L+�P�)x = 0 and let us prove that u 2 
�. Sineu(t) = R 2�0 G�(t; s)p�(s; u(s); u0(s))ds for all t 2 J , we have thatu00 + a(t)u0 + �u = p�(t; u; u0)for a.e. t 2 J . By (4.1) and (4.8), we getjju0jjC � maxt2J Z 2�0 ������G�(t; s)�t ����� jp�(s; u(s); u0(s))jds < M�: (4.10)Let us show that �1 < u < �2 on J: (4.11)Put v = u� �2 on J and assume on the ontrary thatmaxt2J fv(t)g = v(t0) � 0:Then, having in mind onditions (1.2), we an assume without loss of generalitythat v0(t0) = 0 and t0 2 [0; 2�).First, let v(t0) > 0. Then there is Æ > 0 suh that for a.e. t 2 (t0; t0 + Æ)v(t) > 0; jv0(t)j < v(t)v(t) + 1 < 1: (4.12)Therefore we have for a.e. t 2 (t0; t0 + Æ)v00(t) = u00(t)� �002 (t) � f(t; �2; u0) + (�� b(t))�2 + ! �t; x� �2x� �2 + 1��a(t)u0 � �u� f(t; �2; �02) + a(t)�02 + b(t)�2;and using (4.7), (4.12), we get v00(t) > 0 for a.e. t 2 (t0; t0 + Æ). Hene,0 < Z tt0 v00(s)ds � v0(t) for all t 2 (t0; t0 + Æ);whih ontradits the fat that v(t0) is the maximal value of v on J . Thus, u � �2on J . The inequality �1 � u on J an be proved analogously putting v = �1 � uon J . So, we have �1 � u � �2 on J: (4.13)9



It remains to prove that the inequalities in (4.13) must be strit. Suppose thatv(t0) = 0. Sine �2 is a strit upper funtion of (1.1), (1.2), there is " > 0 suhthat (1.3) is valid a.e. on J and for all x 2 [�2(t)�"; �2(t)℄, y 2 [�02(t)�"; �02(t)+"℄.Moreover, sine �2 is not a solution of (1.1), there is Æ > 0 suh that for eaht 2 [t0; t0 + Æ) the inequalities �" � v(t) � 0, jv0(t)j � " are satis�ed and wean assume without loss of generality that there exists � 2 (t0; t0 + Æ) suh thatv0(�) < 0. On the other hand, aording to (1.3), we havev00(t) = u00(t)� �002 (t) = f(t; u; u0)� a(t)u0(t)� b(t)u(t)� �002 (t) � 0for a.e. t 2 (t0; t0 + Æ), thus0 � Z �t0 v00(s)ds = v0(�) < 0;a ontradition. Therefore u < �2 on J . The inequality �1 < u on J an beproved similarly for v = �1 � u on J . Thus, we have proved (4.10) and (4.11),whih means that u belongs to 
�. But then, by (4.9) and the exission propertyof the degree, we get deg(I � L+�P�;
�) = 1;and sine P� = H� on l(
�), assertion (4.4) is valid. 2Corollary 4.2 Let the assumptions of Proposition 4.1 be ful�lled and moreoverlet Ker L= f0g. Further, suppose that G is the Green funtion of (2:1) and theoperators L+, F are given by by (1:5); (1:6). Thendeg(I � L+F;
) = 1; (4.14)where 
 = fx 2 C1(J) : �1 < x < �2 on J; jjx0jjC < Mgand M = maxJ�Jfj�G(t;s)�t jgjjejj1:Proof. We an argue similarly as in the proof of Proposition 4.1, working withG;L; F and q(t; x; y) = f(t; �(x); y) instead of G�; L�; H� and q�. 2Remark 4.3 Comparing Theorem 3.4 and Corollary 4.2 we see that we have useddi�erent sets in their assertions (3.5) and (4.14) about degree values. In (3.5) wework with a ball K(�) the radius of whih is not spei�ed, it is suÆiently large,only, while the set 
 in (4.14) is desribed by means of lower and upper funtions�1 and �2. Suh spei�ation of the set 
 will be useful for the multipliity resultin Setion 5.Using a proper lemma on a priori estimates, we an weaken ondition (4.3)in Proposition 4.1. Let us show one of suh lemmas.10



Lemma 4.4 Suppose that r 2 (0;1), q 2 L1(J), a; b; p 2 L(J), q; p positive a.e.on J. Further, let a onstant r� satisfy r� � (eM � A)A, where A = exp(jjajj1)and M = r(2jjqjj1 + jjbjj1) +jjajj1 + jjpjj1. Then for eah x 2 AC1(J) ful�llingonditions (1:2), jjxjjC < r (4.15)and x00 + a(t)x0 + b(t)x � (1 + jx0j)(q(t)jx0j+ p(t)) for a.e. t 2 J; (4.16)the estimate jjx0jjC < r� (4.17)is valid.Proof. Suppose that x 2 AC1(J) satis�es onditions (1.2), (4.15) and (4.16) andextend x; q; a; b; p on R as 2�-periodi funtions. Let us assume that maxfx0(t) :t 2 Jg = x0(t0) > 0: Then we an �nd �0 < t0 suh that t0 � �0 < 2�, x0(�0) = 0and x0(t) > 0 on (�0; t0℄. With respet to (4.16) we have for a.e. t 2 [�0; t0℄x00 + a(t)x0 � (1 + x0)(q(t)x0 + p(t) + jb(t)jr):Multiply this inequality by exp(R t�0 a(s)ds) and put z(t) = x0(t) exp(R t�0 a(s)ds).Then, integrating from �0 to t0, we getZ t0�0 z0(t)dtA+ z(t) < 2rjjqjj1 + jjpjj1 + jjbjj1r:Therefore z(t0) < eM � A and so x0(t0) < r�.Similarly, if we assume that minfx0(t) : t 2 Jg = x0(t1) < 0, we an �nd�1 > t1 with �1 � t1 < 2�, x0(�1) = 0, x0(t) < 0 on [t1; �1). Then (4.16) yields a.e.on [t1; �1℄ x00 + a(t)x0 � (1� x0)(�q(t)x0 + p(t) + jb(t)jr):Multiply this inequality by exp(R t�1 a(s)ds) and put z(t) = �x0(t) exp(R t�1 a(s)ds).Then, integrating from t1 to �1, we get� Z �1t1 z0(t)dtA+ z(t) < 2rjjqjj1 + jjpjj1 + jjbjj1r:Therefore z(t1) < eM � A, and so x0(t1) > �r�. 2Consider the onstant r� from Lemma 4.4 and pute�(t) = supfjf(t; x; y)j : x 2 [�1(t); �2(t)℄; y 2 [�2r�; 2r�℄g: (4.18)Clearly e� 2 L(J) and using Proposition 4.1 and Lemma 4.4 we an prove thefollowing theorem. 11



Theorem 4.5 Let �1 and �2 be strit lower and upper funtions of (1:1); (1:2)satisfying (4:2). Further, suppose that there exist funtions q 2 L1(J), d 2 L(J)whih are positive a.e. on J and suh that for a.e. t 2 J and for all x 2[�1(t); �2(t)℄; y 2 R f(t; x; y) � (1 + jyj)(q(t)jyj+ d(t)): (4.19)Then for any � 2 (�1; 0) deg(I � L+�H�;
�) = 1; (4.20)where 
� = fx 2 C1(J) : �1 < x < �2 on J; jjx0jjC < r�g; (4.21)with r� from Lemma 4.4. (For L+� and H� see (2:14) and (2:11).)Proof. Let us take r0 and r1 aording to (4.1), putr = r0; p = d a.e. on J (4.22)and assume that r� from Lemma 4.4 satis�es r� > r1. For y 2 R de�ne�(y; r�) = 8><>: 1 if jyj � r�2� jyj=r� if r� < jyj < 2r�0 if jyj � 2r�;and onsider the equationx00 + a(t)x0 + b(t)x = f �(t; x; x0); (4.23)where f �(t; x; y) = �(y; r�)f(t; x; y) for a.e. t 2 J and all x; y 2 R . We an seethat �1 and �2 are strit lower and upper funtions for (4.23), (1.2), and thatjf �(t; x; y)j < e�(t) for a.e. t 2 J and for all x 2 [�1(t); �2(t)℄; y 2 R ;where e� is given by (4.18). So, for any � 2 (�1; 0), we an de�ne an operatorH�� : C1(J)! L(J); x 7! f �(�; x(�); x0(�)) + (�� b(�))xand a set 
� by (4.5) with M� = r�+�(3jje�jj1+(jjbjj1� 2��)r0+ jjajj1). Then,applying Proposition 4.1 on problem (4.23), (1.2), we getdeg(I � L+�H��;
�) = 1: (4.24)Let u 2 
� be a solution of (4.23), (1.2). Then, by (4.22), (4.19), we havejjujjC < r andu00 + a(t)u0 + b(t)u = �(u0; r�)f(t; u; u0) � (1 + ju0j)(q(t)ju0j+ p(t)) a.e. on J:Therefore, by Lemma 4.4, jju0jjC < r� and so, in view of (4.21), u 2 
�. Using(4.24) and the exission property of the degree we get deg(I � L+�H��;
�) = 1,whih together with the fat that H� = H�� on l(
�) imply (4.20). 212



Corollary 4.6 Let the assertions of Theorem 4.5 be ful�lled and moreover letKer L= f0g. Further, suppose that the operators L+, F are given by (1:5); (1:6).Then deg(I � L+F;
�) = 1;with 
� by Theorem 4.5.Proof. We an argue similarly as in the proof of Theorem 4.5, working with L; F ,F � : C1(J)! L(J); x 7! f �(�; x(�); x0(�)) and Corollary 4.2 instead of L�; H�, H��and Proposition 4.1, respetively. 25 Main resultsUsing properties of the Leray-Shauder degree we get the following existeneresult as the diret onsequene of Theorem 4.5 or Corollary 4.6.Theorem 5.1 Let �1 and �2 be strit lower and upper funtions of (1:1); (1:2)satisfying (4:2). Further, suppose that there exist funtions q 2 L1(J), d 2 L(J)whih are positive a.e. on J and suh that for a.e. t 2 J and for all x 2[�1(t); �2(t)℄; y 2 R ondition (4:19) is satis�ed. Then problem (1:1); (1:2) has atleast one solution x suh that �1 < x < �2 on J .Remark 5.2 The existene of a solution to (1.1), (1.2) an be proved underweaker assumptions than those in Theorem 5.1. Partiularly, �1 and �2 need notbe strit and we an assume that �1 � �2 on J . Then (1.1), (1.2) has a solution xsatisfying �1 � x � �2 on J . For the proof of this generalization we an modifyorresponding proofs in [6℄.Now, we will prove our main result about the existene of three solutions ofproblem (1.1), (1.2). To this aim we will onsider reverse ordered lower and upperfuntions �1 and �2 of this problem , i.e. we will suppose�2 < �1 on J: (5.1)Theorem 5.3 Let �1 and �2 be strit lower and upper funtions of (1:1); (1:2)satisfying (5:1). Let the inequalitieslim infx!1 (f(t; x; 0)� b(t)x) > 0; lim supx!�1 (f(t; x; 0)� b(t)x) < 0 (5.2)be ful�lled uniformly for a.e. t 2 J . Finally, suppose that there exist funtionsq 2 L1(J), d 2 L(J) whih are positive a.e. on J and suh that ondition (4:19)holds for a.e. t 2 J and for all x; y 2 R . Then problem (1:1); (1:2) has at leastthree di�erent solutions. 13



Proof. Aording to inequalities (5.2) we an �nd a number � > maxfjj�1jjC; jj�2jjCgsuh that f(t; �; 0)� b(t)� > 0 f(t;��; 0) + b(t)� < 0; a.e. on J: (5.3)For a.e. t 2 J and for all x; y 2 R de�ne funtionsg(t; x; y) = f(t; x; y)� a(t)y � b(t)x;h(t; x; y) = 8><>: g(t;��; y)� !1(t; ���x���x+1) if x < ��g(t; x; y) if jxj � �g(t; �; y) + !2(t; x��x��+1) if x > �;and for " > 0 put!i(t; ") = supz2[�";"℄fjg(t; (�1)i�; 0)� g(t; (�1)i�; z)jg; i = 1; 2:We will study the auxiliary equationx00 = h(t; x; x0): (5.4)Choose an arbitrary number � > 0 and put ~�2(t) = � + �, ~�1(t) = � � � for allt 2 J . Then, in view of (5.3),h(t; �+ �; 0) = g(t; �; 0) + !2(t; �� + 1) > 0is valid for a.e. t 2 J . This means that ~�2 is an upper funtion of (5.4), (1.2) andthat it is not a solution of (5.4). Further, put " = (�=2)(�=2 + 1)�1 and hoosearbitrary x 2 [~�2 � "; ~�2℄, y 2 [~�02 � "; ~�02 + "℄. Thenx 2 (�+ �2 ; �+ �℄; y 2 [�"; "℄; jyj < x� �x� � + 1 ; (5.5)wherefrom !2(jyj) � !2(t; x� �x� �+ 1):Thus, aording to (5.5), we haveh(t; x; y) = g(t; �; y)+!2(t; x� �x� � + 1) � g(t; �; 0)� jg(t; �; y)� g(t; �; 0)j+ !2(t; jyj) > 0;and we proved that ~�2 is a strit upper funtion of (5.4), (1.2). Similarly we anget that ~�1 is a strit lower funtion of (5.4), (1.2).14



Equation (5.4) an be written in the formx00 + a(t)x0 + b(t)x = ~f(t; x; x0);where ~f(t; x; y) = h(t; x; y) + a(t)y + b(t)x. Put p(t) = d(t) + jb(t)j� + !2( ��+1)a.e. on J . Then, by (4.19), for a.e. t 2 J and for all (x; y) 2 [~�1; ~�2℄ � R theinequality ~f(t; x; y) � (1 + jyj)(q(t)jyj+ p(t)) is satis�ed. Therefore any solutionx of problem (5.4), (1.2) whih ful�ls jjxjjC � �+�, satis�es ondition (4.16). So,if we put r = � + �, we an use Lemma 4.4 and get r� suh that estimate (4.17)is valid. Aording to this r� we de�ne setsD = fx 2 C1(J) : jjxjjC < � + �; jjx0jjC < r�g;D1 = fx 2 D : �1 < x on Jg; D2 = fx 2 D : x < �2 on Jg;and D3 = fx 2 D : �2(tx) < x(tx) < �1(tx) for a tx 2 Jg:Choose � 2 (�1; 0) and de�ne an operator~H� : C1(J)! L(J); x 7! ~f(�; x(�); x0(�)) + (�� b(�))x:Then Theorem 4.5 guarantees thatdeg(I � L+� ~H�; D1) = 1; deg(I � L+� ~H�; D2) = 1; (5.6)and deg(I � L+� ~H�; D) = 1:(For L+� see (2.14).) Now, we use the aditivity of the degree. Sine D3 = D �l(D1 [D2), where D1; D2 � D are disjoint sets, we havedeg(I�L+� ~H�; D) = deg(I�L+� ~H�; D1)+deg(I�L+� ~H�; D2)+deg(I�L+� ~H�; D3):Therefore deg(I � L+� ~H�; D3) = �1: (5.7)Conditions (5.6) and (5.7) imply that problem (5.4), (1.2) has solutions xi 2Di; i = 1; 2; 3. Sine D1; D2 and D3 are disjoint, solutions x1; x2 and x3 aredi�erent.It remains to prove that any solution x of (5.4), (1.2) satis�esjjxjjC � �: (5.8)Suppose that x is an arbitrary solution of (5.4), (1.2) and that maxt2J x(t) =x(t0) > �. Without loss of generality we an suppose that there is an interval[t0; � ℄ � [0; 2�) suh thatx0(t0) = 0; x(t) > � and jx0(t)j < x(t)� �x(t)� �+ 1 for all t 2 [t0; � ℄:15



Then for a.e. t 2 [t0; � ℄ x00 = h(t; x; x0) = g(t; �; x0)+!2(t; x(t)� �x(t)� �+ 1) > g(t; �; 0)� jg(t; �; x0)� g(t; �; 0)j+ !2(t; jx0j) > 0;whih implies that x0(t) > 0 for all t 2 (t0; � ℄. But this ontradits the fat thatx(t0) is the maximum value on J . The estimate x � �� on J an be provedanalogously. Thus the solutions x1; x2 and x3 satisfy estimate (5.8) and so theyare solutions of problem (1.1), (1.2), as well. This ompletes the proof. 2Referenes[1℄ J. Cronin, Fixed Points and Topologial Degree in Nonlinear Analysis, AMS,1964.[2℄ N. G. Lloyd, Degree Theory, Cambridge University Press, Cambridge 1978.[3℄ J. Mawhin, Topologial Degree and Boundary Value Problems for NonlinearDi�erential Equations, Springer LNM 1537, 1993.[4℄ J. Mawhin, Topologial Degree Methods in Nonlinear Boundary Value Prob-lems, CBMS 40, Providene RI, 1979.[5℄ I. Rah�unkov�a, Lower and Upper Solutions and Topologial Degree, JournalMath. Anal. Appl. 234 (1999), 311-327.[6℄ I. Rah�unkov�a and M. Tvrd�y, Systems of Di�erential Inequalities and Solv-ability of Certain Boundary Value Problems, Journal Inequal. Appl. 6 (2001),199-226.
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