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ation: 34B15, 34C25.1 Introdu
tionWe will study the periodi
 boundary value problemx00 + a(t)x0 + b(t)x = f(t; x; x0); (1.1)x(0) = x(2�); x0(0) = x0(2�); (1.2)where a; b are Lebesgue integrable fun
tions on J = [0; 2�℄ and f ful�ls theCarath�eodory 
onditions on J � R 2.Having values of the Leray-S
hauder topologi
al degree of an operator whi
h
orresponds to problem (1.1), (1.2) and whi
h is de�ned on proper sets, we 
ande
ide whether there are solutions of (1.1), (1.2) lying in these sets. In [5℄ and�Supported by grant no. 201/01/1451 of the Grant Agen
y of Cze
h Republi
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[6℄, where the spe
ial 
ase of equation (1.1) (with a = b = 0 on J and with fhaving an one-sided Lebesgue integrable bound) was 
onsidered, su
h sets werefound by means of lower and upper fun
tions of problem (1.1), (1.2).Here we extend results about the degreee of [5℄, [6℄ to equation (1.1) withnonzero a; b. Moreover we present theorems whi
h guarantee the existen
e of atleast three solutions to (1.1), (1.2).Throughout the paper we keep the following notations. L(J) is the Bana
hspa
e of Lebesgue integrable fun
tions on J equipped with the norm jjxjj1 =R 2�0 jx(t)jdt and L1(J) denotes the Bana
h spa
e of essentially bounded on Jfun
tions with the norm jjxjj1 = ess sup fjx(t)j : t 2 Jg. For k 2 N [ f0g,Ck(J) and ACk(J) are the Bana
h spa
es of fun
tions having 
ontinuous k�thderivatives on J and of fun
tions having absolutely 
ontinuous k�th derivativeson J , respe
tively. As usual, the 
orresponding norms are de�ned by jjxjjCk =Pki=0maxfjx(i)(t)j : t 2 Jg and jjxjjACk = jjxjjCk + jjx(k+1)jj1. The symbols C(J)or AC(J) are used instead of C0(J) or AC0(J). Car(J�R 2) is the set of fun
tionsf : J � R2 ! R satisfying the Carath�eodory 
onditions on J � R 2, i.e. (i) forea
h (x; y) 2 R 2 the fun
tion f(�; x; y) : J ! R is measurable, (ii) for a.e. t 2 Jthe fun
tion f(t; �; �) : R 2 ! R is 
ontinuous, (iii) sup(x;y)2K jf(t; x; y)j 2 L(J)for ea
h 
ompa
t set K � R 2. For a Bana
h spa
e X and a set M � X, 
l(M)stands for the 
losure of M and �M denotes the boundary of M . If 
 is anopen bounded subset in C1(J) and the operator T : 
l(
) ! C1(J) is 
ompa
t,then deg(I � T;
) denotes the Leray-S
hauder topologi
al degree of I � T withrespe
t to 
, where I stands for the identity operator on C1(J). For a de�nitonand properties of the degree see e.g. [1℄-[4℄.By a solution of problem (1.1), (1.2) we understand a fun
tion u 2 AC1(J)satisfying (1.1) for a.e. t 2 J and ful�lling 
onditions (1.2).A fun
tion �1 2 AC1(J) is said to be a lower fun
tion of (1.1), (1.2), if�001 + a(t)�01 + b(t)�1 � f(t; �1; �01) a.e. on J;�1(0) = �1(2�); �01(0) � �01(2�):A fun
tion �2 2 AC1(J) is 
alled an upper fun
tion of (1.1), (1.2), if�002 + a(t)�02 + b(t)�2 � f(t; �2; �02) a.e. on J;�2(0) = �2(2�); �02(0) � �02(2�):A lower fun
tion �1 of (1.1), (1.2) is 
alled stri
t, if �1 does not satisfy (1.1)a.e. on J and if there exists " 2 (0;1) su
h that�001 + a(t)y + b(t)x � f(t; x; y)holds a.e. on J and for all (x; y) 2 [�1(t); �1(t) + "℄� [�01(t)� "; �01(t) + "℄.2



An upper fun
tion �2 of (1.1), (1.2) is 
alled stri
t, if �2 does not satisfy (1.1)a.e. on J and if there exists " 2 (0;1) su
h that�002 + a(t)y + b(t)x � f(t; x; y) (1.3)holds a.e. on J and for all (x; y) 2 [�2(t)� "; �2(t)℄� [�02(t)� "; �02(t) + "℄.Now, let us de�ne operators whi
h will make possible to write problem (1.1), (1.2)in an operator form. DenotedomL = fx 2 AC1(J) : x satis�es (1.2) g: (1.4)We 
an see that L : domL! L(J); x 7! x00 + a(�)x0 + b(�)x (1.5)is a linear bounded operator andF : C1(J)! L(J); x 7! f(�; x(�); x0(�)) (1.6)is a 
ontinuous (nonlinear in general) operator, and problem (1.1), (1.2) is equiv-alent to the operator equation Lx = Fx: (1.7)To determine an operator the degree of whi
h will be studied we need to distin-guish two 
ases: KerL = f0g and KerL 6= f0g.We will say that problem (1.7) is resonan
e if KerL 6= f0g. If KerL = f0gthe problem is 
alled nonresonan
e.Both the 
ases are investigated in Se
tion 2.2 Nonresonan
e and resonan
e problemsI. First, let us 
onsider the nonresonan
e 
ase KerL = f0g. It means thatthe homogeneous linear boundary value problem 
orresponding to (1.1), (1.2)x00 + a(t)x0 + b(t)x = 0; x(0) = x(2�); x0(0) = x0(2�) (2.1)has the trivial solution, only. One 
lass of nonresonan
e problems (1.1), (1.2) is
hara
terized in the next lemma.Lemma 2.1 Let us suppose that a; b 2 L(J) and that b satis�esb(t) � 0 a.e. on J (2.2)and Z 2�0 b(t)dt 6= 0: (2.3)Then problem (2:1) has only the trivial solution, i.e. KerL = f0g.3



Proof. Suppose on the 
ontrary that KerL 6= f0g. Then there exists a nontrivialsolution u of (2.1) and, having in mind 
ondition (1.2) and the fa
t that �u 2KerL, we 
an assume without loss of generality thatmaxt2J u(t) = u(t0) > 0; u0(t0) = 0; t0 2 [0; 2�): (2.4)Further, if we extend the fun
tions a; b and u to 2�-periodi
 on R fun
tions, weget for all t 2 R u0(t) = �e�A(t) Z tt0 b(s)u(s)eA(s)ds; (2.5)where A(t) = R tt0 a(s)ds. Conditions (2.4) and (2.5) yieldu(t) > 0 and u0(t) � 0 for all t 2 [t0;1): (2.6)On the other hand, in view of 
onditon (2.3) we see that u 
annot be a 
onstantfun
tion. This together with the periodi
ity of u imply that u0 has to 
hange itssign on ea
h interval of the length 2�, whi
h 
ontradi
ts (2.6). Thus problem(2.1) has only the trivial solution. 2Remark 2.2 Condition (2.3) in Lemma 2.1 
annot be omitted be
ause problem(2.1) with b(t) = 0 a.e. on J has 
onstant nontrivial solutions.If KerL = f0g, then the Green fun
tion G of (2.1) exists and we 
an �nd theinverse (to L) operatorL�1 : L(J)! domL; y 7! Z 2�0 G(t; s)y(s)ds: (2.7)If we denote L+ = iL�1 : L(J)! C1(J); (2.8)where i : AC1(J) ! C1(J) is the embedding operator, then the operator L+Fis absolutely 
ontinuous and problem (1.1), (1.2) is equivalent to the operatorequation (I � L+F )x = 0; x 2 domL. The degree theory implies that providedfor some open bounded set 
 � C1(J) the relationdeg(I � L+F;
) 6= 0 (2.9)is true, then the operator L+F has a �xed point in 
. This means, in view of(2.7), (2.8), that this �xed point belongs to domL and so problem (1.1), (1.2) hasa solution in 
. We will see in Se
tion 4 that su
h a set 
 
an be found by meansof stri
t lower and upper fun
tions of problem (1.1), (1.2).II. Now, we will 
onsider resonan
e problems having KerL 6= f0g. UsingLemma 2.1 we 
an transform su
h problems on nonresonan
e ones by means ofauxiliary operators L� and H�. 4



So, let KerL 6= f0g and let domL be given by (1.4). Then for a � 2 (�1; 0)we de�ne a linear operatorL� : domL! L(J); x 7! x00 + a(�)x0 + �x (2.10)and an operator H� : C1(J)! L(J); x 7! h�(�; x(�); x0(�)); (2.11)where h�(t; x; y) = f(t; x; y) + (�� b(t))x:We see that L� and H� are 
ontinuous and problem (1.1), (1.2) is equivalentto the operator equation L�x = H�x: (2.12)A

ording to Lemma 2.1 problem (2.12) is nonresonan
e, i.e. KerL� = f0g:Therefore we 
an argue as in Part I and get the inverse (to L�) operatorL�1� : L(J)! domL; y 7! Z 2�0 G�(�; s)y(s)ds;where G� is the Green fun
tion ofx00 + a(t)x0 + �x = 0; x(0) = x(2�); x0(0) = x0(2�): (2.13)As before, denoting L+� = iL�1� : L(J)! C1(J); (2.14)we arrive to the operator equation(I � L+�H�)x = 0; x 2 domL; (2.15)whi
h is equivalent to (1.1), (1.2). Sin
e L+�H� is absolutely 
ontinuous, we 
anuse the degree theory again and dedu
e that ifdeg(I � L+�H�;
) 6= 0 (2.16)for some open bounded set 
 � C1(J), then equation (2.15) has a solution in
 \ domL whi
h implies that problem (1.1), (1.2) has a solution in 
.To summarize, for the existen
e of a solution to (1.1), (1.2) in 
 we need toprove:(I) deg(I � L+F;
) 6= 0 if KerL = f0g.(II) deg(I � L+�H�;
) 6= 0 for some negative � if KerL 6= f0g.
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3 Values of the Leray-S
hauder degreeIn this se
tion we prove several theorems with statements of the type (2.9)or (2.16). For de�nitions of operators see (1.5), (1.6), (2.8), (2.10), (2.11) and(2.14).Proposition 3.1 Let Ker L = f0g. Further suppose that there exist numbers
; r1 2 (0;1) su
h that for any � 2 [0; 1℄ ea
h solution u of the equation(I � �L+F )x = 0; x 2 domL (3.1)satis�es ju(tu)j < 
 for some tu 2 J; jju0jjC < r1: (3.2)Denote r0 = 
+ 2�r1 and
 = fx 2 C1(J) : jjxjjC < r0; jjx0jjC < r1g: (3.3)Then deg(I � L+F;
) = 1:Proof. Let us 
hoose � 2 [0; 1℄ and let u be a 
orresponding solution of (3.1) withthis �. Then u ful�ls (3.2) and so ju(t)j � ju(tu)j + j R ttu u0(s)dsj < 
+R 2�0 ju0(s)jds< r0 for ea
h t 2 J . Therefore u 62 �
 and so the operator I � �L+F is thehomotopy on 
l(
)� [0; 1℄ whi
h implies that deg(I�L+F;
)=deg(I;
) = 1. 2Proposition 3.2 Let Ker L 6= f0g and let � 2 (�1; 0):Moreover, let us supposethat there are positive numbers 
; r1 su
h that for any � 2 [0; 1℄ ea
h solution uof the equation (I � �L+�H�)x = 0; x 2 domLsatis�es (3:2). Then deg(I � L+�H�;
) = 1;where 
 is given by (3:3) and r0 = 
+ 2�r1.Proof. We 
an argue as in the proof of Proposition 3.1. 2Using the homotopy argument as before we get the following modi�
ation ofProposition 3.1.Proposition 3.3 Let Ker L = f0g and let there exist �� 2 (0;1) su
h that forany � 2 [0; 1℄ ea
h solution u of (3:1) satis�es jjujjC1 � ��. Then for ea
h � > ��deg(I � L+F;K(�)) = 1; (3.4)where K(�) = fx 2 C1(J) : jjxjjC1 < �g: (3.5)6



We see that a priori estimates of solutions of problems under 
onsideration areessential for the determination of 
 and for the degree 
omputation. In 
ontrastto Propositions 3.1{3.3, where we assumed su
h estimates dire
tly, now, we willshow 
onditions whi
h 
an be imposed on f to ensure the needed estimates.Theorem 3.4 Let Ker L= f0g and let there exist e 2L(J) su
h thatjf(t; x; y)j � e(t) for a:e: t 2 J and ea
h x; y 2 R : (3.6)Then there exists �� 2 (0;1) su
h that (3:4); (3:5) are true for ea
h � > ��.Proof. Let u be a solution of (3.1) for some � 2 [0; 1℄. Thenu(t) = � Z 2�0 G(t; s)f(s; u(s); u0(s))ds;where G is the Green fun
tion of (2.1). Denote
 = maxfjG(t; s)j : t; s 2 Jg; Æ = maxf������G(t; s)�t ����� : t; s 2 Jg:Then jjujjC1 � (
 + Æ)jjejj1 = �� and we 
an use Proposition 3.3. 2Remark 3.5 In the 
ase KerL 6= f0g, 
ondition (3.6) need not be suÆ
ient forthe existen
e of solutions of (1.1), (1.2), whi
h is obvious if we 
hoose (1.1) inthe form x00 = 1. (Clearly problem x00 = 0; x(0) = x(2�); x0(0) = x0(2�) hasnontrivial solutions and problem x00 = 1; x(0) = x(2�); x0(0) = x0(2�) is notsolvable.) Moreover, having KerL 6= f0g, the Green fun
tion G of (2.1) does notexist and we 
annot argue as in the proof of Theorem 3.4 and hen
e, withoutadditional assumptions, we are not able to get an assertion about the degree asbefore. In this 
ase it may be the method of lower and upper fun
tions, whi
h isused in Se
tion 4, an pro�table instrument.4 The Leray-S
hauder degree and lower and up-per fun
tionsLet us 
onsider problem (1.1), (1.2) and fun
tions �1, �2 2 AC1(J). Further,for any � 2 (�1; 0) let G� be the Green fun
tion of (2.13) and let the operatorsL�, L+� , H� be given by (2.10), (2.14) and (2.11). We denoteri = maxfjj�(i)1 jjC; jj�(i)2 jjCg; i = 0; 1; 
� = maxJ�J j�G�(t; s)�t j: (4.1)
7



Proposition 4.1 Let �1, �2 be stri
t lower and upper fun
tions of (1:1); (1:2)su
h that �1 < �2 on J; (4.2)and let there exist e 2 L(J) satisfyingjf(t; x; y)j < e(t) for a:e: t 2 J and ea
h (x; y) 2 [�1(t); �2(t)℄� R : (4.3)Then for any � 2 (�1; 0) deg(I � L+�H�;
�) = 1; (4.4)where 
� = fx 2 C1(J) : �1 < x < �2 on J; jjx0jjC < M�g; (4.5)and M� � 
�(3jjejj1 + (jjbjj1 � 2��)r0 + jjajj1).Proof. Let us 
hoose � 2 (�1; 0) and put for a.e. t 2 J and for ea
h (x; y) 2 R 2q�(t; x; y) = f(t; �(x); y) + (�� b(t))�(x);where �(x) = 8><>: �2(t) if �2(t) < xx if �1(t) � x � �2(t)�1(t) if x < �1(t):Further, de�nep�(t; x; y) = 8>><>>: q�(t; x; y) + ! �t; x��2(t)x��2(t)+1� if �2(t) < xq�(t; x; y) if �1(t) � x � �2(t)q�(t; x; y)� ! �t; �1(t)�x�1(t)�x+1� if x < �1(t); (4.6)and for " 2 [0; 1℄!(t; ") = sup(x;y;z)2Dt;"fjf(t; x; y)� f(t; x; z)j+ ja(t)(y � z)jg;where Dt;" = f(x; y; z) 2 R 3 : �1(t) � x � �2(t); jyj � 1+j�01(t)j+j�02(t)j; jy�zj �"g. We 
an see that ! 2 Car(J� [0; 1℄) is non-negative and non-de
reasing in these
ond variable, !(t; 0) = 0 a.e. on J . Moreover, for a.e. t 2 J and any y 2 Rsatisfying jy � �0i(t)j � 1 the inequalityjf(t; �i; �0i)� f(t; �i; y)j+ ja(t)(y � �0i)j � !(t; jy � �0ij); i = 1; 2; (4.7)is true. In view of (4.6), for a.e. t 2 J and for all (x; y) 2 R 2, we havejp�(t; x; y)j < 3e(t) + (jb(t)j � �)r0 + ja(t)j: (4.8)8



Re
all that L� is de�ned by (2.10) and de�ne an operatorP� : C1(J)! L(J); x 7! p�(�; x(�); x0(�)):With respe
t to Lemma 2.1 we have KerL� = f0g. Therefore, a

ording to (4.8),Theorem 3.4 ensures the existen
e of �� 2 (r0+M�;1) su
h that for ea
h � > ��deg(I � L+�P�; K(�)) = 1; (4.9)where K(�) = fx 2 C1(J) : jjxjjC1 < �g. Let us 
onsider an arbitrary solutionu 2 domL of the equation (I � L+�P�)x = 0 and let us prove that u 2 
�. Sin
eu(t) = R 2�0 G�(t; s)p�(s; u(s); u0(s))ds for all t 2 J , we have thatu00 + a(t)u0 + �u = p�(t; u; u0)for a.e. t 2 J . By (4.1) and (4.8), we getjju0jjC � maxt2J Z 2�0 ������G�(t; s)�t ����� jp�(s; u(s); u0(s))jds < M�: (4.10)Let us show that �1 < u < �2 on J: (4.11)Put v = u� �2 on J and assume on the 
ontrary thatmaxt2J fv(t)g = v(t0) � 0:Then, having in mind 
onditions (1.2), we 
an assume without loss of generalitythat v0(t0) = 0 and t0 2 [0; 2�).First, let v(t0) > 0. Then there is Æ > 0 su
h that for a.e. t 2 (t0; t0 + Æ)v(t) > 0; jv0(t)j < v(t)v(t) + 1 < 1: (4.12)Therefore we have for a.e. t 2 (t0; t0 + Æ)v00(t) = u00(t)� �002 (t) � f(t; �2; u0) + (�� b(t))�2 + ! �t; x� �2x� �2 + 1��a(t)u0 � �u� f(t; �2; �02) + a(t)�02 + b(t)�2;and using (4.7), (4.12), we get v00(t) > 0 for a.e. t 2 (t0; t0 + Æ). Hen
e,0 < Z tt0 v00(s)ds � v0(t) for all t 2 (t0; t0 + Æ);whi
h 
ontradi
ts the fa
t that v(t0) is the maximal value of v on J . Thus, u � �2on J . The inequality �1 � u on J 
an be proved analogously putting v = �1 � uon J . So, we have �1 � u � �2 on J: (4.13)9



It remains to prove that the inequalities in (4.13) must be stri
t. Suppose thatv(t0) = 0. Sin
e �2 is a stri
t upper fun
tion of (1.1), (1.2), there is " > 0 su
hthat (1.3) is valid a.e. on J and for all x 2 [�2(t)�"; �2(t)℄, y 2 [�02(t)�"; �02(t)+"℄.Moreover, sin
e �2 is not a solution of (1.1), there is Æ > 0 su
h that for ea
ht 2 [t0; t0 + Æ) the inequalities �" � v(t) � 0, jv0(t)j � " are satis�ed and we
an assume without loss of generality that there exists � 2 (t0; t0 + Æ) su
h thatv0(�) < 0. On the other hand, a

ording to (1.3), we havev00(t) = u00(t)� �002 (t) = f(t; u; u0)� a(t)u0(t)� b(t)u(t)� �002 (t) � 0for a.e. t 2 (t0; t0 + Æ), thus0 � Z �t0 v00(s)ds = v0(�) < 0;a 
ontradi
tion. Therefore u < �2 on J . The inequality �1 < u on J 
an beproved similarly for v = �1 � u on J . Thus, we have proved (4.10) and (4.11),whi
h means that u belongs to 
�. But then, by (4.9) and the ex
ission propertyof the degree, we get deg(I � L+�P�;
�) = 1;and sin
e P� = H� on 
l(
�), assertion (4.4) is valid. 2Corollary 4.2 Let the assumptions of Proposition 4.1 be ful�lled and moreoverlet Ker L= f0g. Further, suppose that G is the Green fun
tion of (2:1) and theoperators L+, F are given by by (1:5); (1:6). Thendeg(I � L+F;
) = 1; (4.14)where 
 = fx 2 C1(J) : �1 < x < �2 on J; jjx0jjC < Mgand M = maxJ�Jfj�G(t;s)�t jgjjejj1:Proof. We 
an argue similarly as in the proof of Proposition 4.1, working withG;L; F and q(t; x; y) = f(t; �(x); y) instead of G�; L�; H� and q�. 2Remark 4.3 Comparing Theorem 3.4 and Corollary 4.2 we see that we have useddi�erent sets in their assertions (3.5) and (4.14) about degree values. In (3.5) wework with a ball K(�) the radius of whi
h is not spe
i�ed, it is suÆ
iently large,only, while the set 
 in (4.14) is des
ribed by means of lower and upper fun
tions�1 and �2. Su
h spe
i�
ation of the set 
 will be useful for the multipli
ity resultin Se
tion 5.Using a proper lemma on a priori estimates, we 
an weaken 
ondition (4.3)in Proposition 4.1. Let us show one of su
h lemmas.10



Lemma 4.4 Suppose that r 2 (0;1), q 2 L1(J), a; b; p 2 L(J), q; p positive a.e.on J. Further, let a 
onstant r� satisfy r� � (eM � A)A, where A = exp(jjajj1)and M = r(2jjqjj1 + jjbjj1) +jjajj1 + jjpjj1. Then for ea
h x 2 AC1(J) ful�lling
onditions (1:2), jjxjjC < r (4.15)and x00 + a(t)x0 + b(t)x � (1 + jx0j)(q(t)jx0j+ p(t)) for a.e. t 2 J; (4.16)the estimate jjx0jjC < r� (4.17)is valid.Proof. Suppose that x 2 AC1(J) satis�es 
onditions (1.2), (4.15) and (4.16) andextend x; q; a; b; p on R as 2�-periodi
 fun
tions. Let us assume that maxfx0(t) :t 2 Jg = x0(t0) > 0: Then we 
an �nd �0 < t0 su
h that t0 � �0 < 2�, x0(�0) = 0and x0(t) > 0 on (�0; t0℄. With respe
t to (4.16) we have for a.e. t 2 [�0; t0℄x00 + a(t)x0 � (1 + x0)(q(t)x0 + p(t) + jb(t)jr):Multiply this inequality by exp(R t�0 a(s)ds) and put z(t) = x0(t) exp(R t�0 a(s)ds).Then, integrating from �0 to t0, we getZ t0�0 z0(t)dtA+ z(t) < 2rjjqjj1 + jjpjj1 + jjbjj1r:Therefore z(t0) < eM � A and so x0(t0) < r�.Similarly, if we assume that minfx0(t) : t 2 Jg = x0(t1) < 0, we 
an �nd�1 > t1 with �1 � t1 < 2�, x0(�1) = 0, x0(t) < 0 on [t1; �1). Then (4.16) yields a.e.on [t1; �1℄ x00 + a(t)x0 � (1� x0)(�q(t)x0 + p(t) + jb(t)jr):Multiply this inequality by exp(R t�1 a(s)ds) and put z(t) = �x0(t) exp(R t�1 a(s)ds).Then, integrating from t1 to �1, we get� Z �1t1 z0(t)dtA+ z(t) < 2rjjqjj1 + jjpjj1 + jjbjj1r:Therefore z(t1) < eM � A, and so x0(t1) > �r�. 2Consider the 
onstant r� from Lemma 4.4 and pute�(t) = supfjf(t; x; y)j : x 2 [�1(t); �2(t)℄; y 2 [�2r�; 2r�℄g: (4.18)Clearly e� 2 L(J) and using Proposition 4.1 and Lemma 4.4 we 
an prove thefollowing theorem. 11



Theorem 4.5 Let �1 and �2 be stri
t lower and upper fun
tions of (1:1); (1:2)satisfying (4:2). Further, suppose that there exist fun
tions q 2 L1(J), d 2 L(J)whi
h are positive a.e. on J and su
h that for a.e. t 2 J and for all x 2[�1(t); �2(t)℄; y 2 R f(t; x; y) � (1 + jyj)(q(t)jyj+ d(t)): (4.19)Then for any � 2 (�1; 0) deg(I � L+�H�;
�) = 1; (4.20)where 
� = fx 2 C1(J) : �1 < x < �2 on J; jjx0jjC < r�g; (4.21)with r� from Lemma 4.4. (For L+� and H� see (2:14) and (2:11).)Proof. Let us take r0 and r1 a

ording to (4.1), putr = r0; p = d a.e. on J (4.22)and assume that r� from Lemma 4.4 satis�es r� > r1. For y 2 R de�ne�(y; r�) = 8><>: 1 if jyj � r�2� jyj=r� if r� < jyj < 2r�0 if jyj � 2r�;and 
onsider the equationx00 + a(t)x0 + b(t)x = f �(t; x; x0); (4.23)where f �(t; x; y) = �(y; r�)f(t; x; y) for a.e. t 2 J and all x; y 2 R . We 
an seethat �1 and �2 are stri
t lower and upper fun
tions for (4.23), (1.2), and thatjf �(t; x; y)j < e�(t) for a.e. t 2 J and for all x 2 [�1(t); �2(t)℄; y 2 R ;where e� is given by (4.18). So, for any � 2 (�1; 0), we 
an de�ne an operatorH�� : C1(J)! L(J); x 7! f �(�; x(�); x0(�)) + (�� b(�))xand a set 
� by (4.5) with M� = r�+
�(3jje�jj1+(jjbjj1� 2��)r0+ jjajj1). Then,applying Proposition 4.1 on problem (4.23), (1.2), we getdeg(I � L+�H��;
�) = 1: (4.24)Let u 2 
� be a solution of (4.23), (1.2). Then, by (4.22), (4.19), we havejjujjC < r andu00 + a(t)u0 + b(t)u = �(u0; r�)f(t; u; u0) � (1 + ju0j)(q(t)ju0j+ p(t)) a.e. on J:Therefore, by Lemma 4.4, jju0jjC < r� and so, in view of (4.21), u 2 
�. Using(4.24) and the ex
ission property of the degree we get deg(I � L+�H��;
�) = 1,whi
h together with the fa
t that H� = H�� on 
l(
�) imply (4.20). 212



Corollary 4.6 Let the assertions of Theorem 4.5 be ful�lled and moreover letKer L= f0g. Further, suppose that the operators L+, F are given by (1:5); (1:6).Then deg(I � L+F;
�) = 1;with 
� by Theorem 4.5.Proof. We 
an argue similarly as in the proof of Theorem 4.5, working with L; F ,F � : C1(J)! L(J); x 7! f �(�; x(�); x0(�)) and Corollary 4.2 instead of L�; H�, H��and Proposition 4.1, respe
tively. 25 Main resultsUsing properties of the Leray-S
hauder degree we get the following existen
eresult as the dire
t 
onsequen
e of Theorem 4.5 or Corollary 4.6.Theorem 5.1 Let �1 and �2 be stri
t lower and upper fun
tions of (1:1); (1:2)satisfying (4:2). Further, suppose that there exist fun
tions q 2 L1(J), d 2 L(J)whi
h are positive a.e. on J and su
h that for a.e. t 2 J and for all x 2[�1(t); �2(t)℄; y 2 R 
ondition (4:19) is satis�ed. Then problem (1:1); (1:2) has atleast one solution x su
h that �1 < x < �2 on J .Remark 5.2 The existen
e of a solution to (1.1), (1.2) 
an be proved underweaker assumptions than those in Theorem 5.1. Parti
ularly, �1 and �2 need notbe stri
t and we 
an assume that �1 � �2 on J . Then (1.1), (1.2) has a solution xsatisfying �1 � x � �2 on J . For the proof of this generalization we 
an modify
orresponding proofs in [6℄.Now, we will prove our main result about the existen
e of three solutions ofproblem (1.1), (1.2). To this aim we will 
onsider reverse ordered lower and upperfun
tions �1 and �2 of this problem , i.e. we will suppose�2 < �1 on J: (5.1)Theorem 5.3 Let �1 and �2 be stri
t lower and upper fun
tions of (1:1); (1:2)satisfying (5:1). Let the inequalitieslim infx!1 (f(t; x; 0)� b(t)x) > 0; lim supx!�1 (f(t; x; 0)� b(t)x) < 0 (5.2)be ful�lled uniformly for a.e. t 2 J . Finally, suppose that there exist fun
tionsq 2 L1(J), d 2 L(J) whi
h are positive a.e. on J and su
h that 
ondition (4:19)holds for a.e. t 2 J and for all x; y 2 R . Then problem (1:1); (1:2) has at leastthree di�erent solutions. 13



Proof. A

ording to inequalities (5.2) we 
an �nd a number � > maxfjj�1jjC; jj�2jjCgsu
h that f(t; �; 0)� b(t)� > 0 f(t;��; 0) + b(t)� < 0; a.e. on J: (5.3)For a.e. t 2 J and for all x; y 2 R de�ne fun
tionsg(t; x; y) = f(t; x; y)� a(t)y � b(t)x;h(t; x; y) = 8><>: g(t;��; y)� !1(t; ���x���x+1) if x < ��g(t; x; y) if jxj � �g(t; �; y) + !2(t; x��x��+1) if x > �;and for " > 0 put!i(t; ") = supz2[�";"℄fjg(t; (�1)i�; 0)� g(t; (�1)i�; z)jg; i = 1; 2:We will study the auxiliary equationx00 = h(t; x; x0): (5.4)Choose an arbitrary number � > 0 and put ~�2(t) = � + �, ~�1(t) = � � � for allt 2 J . Then, in view of (5.3),h(t; �+ �; 0) = g(t; �; 0) + !2(t; �� + 1) > 0is valid for a.e. t 2 J . This means that ~�2 is an upper fun
tion of (5.4), (1.2) andthat it is not a solution of (5.4). Further, put " = (�=2)(�=2 + 1)�1 and 
hoosearbitrary x 2 [~�2 � "; ~�2℄, y 2 [~�02 � "; ~�02 + "℄. Thenx 2 (�+ �2 ; �+ �℄; y 2 [�"; "℄; jyj < x� �x� � + 1 ; (5.5)wherefrom !2(jyj) � !2(t; x� �x� �+ 1):Thus, a

ording to (5.5), we haveh(t; x; y) = g(t; �; y)+!2(t; x� �x� � + 1) � g(t; �; 0)� jg(t; �; y)� g(t; �; 0)j+ !2(t; jyj) > 0;and we proved that ~�2 is a stri
t upper fun
tion of (5.4), (1.2). Similarly we 
anget that ~�1 is a stri
t lower fun
tion of (5.4), (1.2).14



Equation (5.4) 
an be written in the formx00 + a(t)x0 + b(t)x = ~f(t; x; x0);where ~f(t; x; y) = h(t; x; y) + a(t)y + b(t)x. Put p(t) = d(t) + jb(t)j� + !2( ��+1)a.e. on J . Then, by (4.19), for a.e. t 2 J and for all (x; y) 2 [~�1; ~�2℄ � R theinequality ~f(t; x; y) � (1 + jyj)(q(t)jyj+ p(t)) is satis�ed. Therefore any solutionx of problem (5.4), (1.2) whi
h ful�ls jjxjjC � �+�, satis�es 
ondition (4.16). So,if we put r = � + �, we 
an use Lemma 4.4 and get r� su
h that estimate (4.17)is valid. A

ording to this r� we de�ne setsD = fx 2 C1(J) : jjxjjC < � + �; jjx0jjC < r�g;D1 = fx 2 D : �1 < x on Jg; D2 = fx 2 D : x < �2 on Jg;and D3 = fx 2 D : �2(tx) < x(tx) < �1(tx) for a tx 2 Jg:Choose � 2 (�1; 0) and de�ne an operator~H� : C1(J)! L(J); x 7! ~f(�; x(�); x0(�)) + (�� b(�))x:Then Theorem 4.5 guarantees thatdeg(I � L+� ~H�; D1) = 1; deg(I � L+� ~H�; D2) = 1; (5.6)and deg(I � L+� ~H�; D) = 1:(For L+� see (2.14).) Now, we use the aditivity of the degree. Sin
e D3 = D �
l(D1 [D2), where D1; D2 � D are disjoint sets, we havedeg(I�L+� ~H�; D) = deg(I�L+� ~H�; D1)+deg(I�L+� ~H�; D2)+deg(I�L+� ~H�; D3):Therefore deg(I � L+� ~H�; D3) = �1: (5.7)Conditions (5.6) and (5.7) imply that problem (5.4), (1.2) has solutions xi 2Di; i = 1; 2; 3. Sin
e D1; D2 and D3 are disjoint, solutions x1; x2 and x3 aredi�erent.It remains to prove that any solution x of (5.4), (1.2) satis�esjjxjjC � �: (5.8)Suppose that x is an arbitrary solution of (5.4), (1.2) and that maxt2J x(t) =x(t0) > �. Without loss of generality we 
an suppose that there is an interval[t0; � ℄ � [0; 2�) su
h thatx0(t0) = 0; x(t) > � and jx0(t)j < x(t)� �x(t)� �+ 1 for all t 2 [t0; � ℄:15



Then for a.e. t 2 [t0; � ℄ x00 = h(t; x; x0) = g(t; �; x0)+!2(t; x(t)� �x(t)� �+ 1) > g(t; �; 0)� jg(t; �; x0)� g(t; �; 0)j+ !2(t; jx0j) > 0;whi
h implies that x0(t) > 0 for all t 2 (t0; � ℄. But this 
ontradi
ts the fa
t thatx(t0) is the maximum value on J . The estimate x � �� on J 
an be provedanalogously. Thus the solutions x1; x2 and x3 satisfy estimate (5.8) and so theyare solutions of problem (1.1), (1.2), as well. This 
ompletes the proof. 2Referen
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al Degree Methods in Nonlinear Boundary Value Prob-lems, CBMS 40, Providen
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