On a homoclinic point of an autonomous second-order difference equation

Lukáš Rachůnek and Irena Rachůnková

Department of Mathematics, Faculty of Science, Palacký University, Tomkova 40, 77900 Olomouc, Czech Republic, e-mail: rachunko@inf.upol.cz

Abstract

The paper deals with the second-order difference equation.

$$
x(n+1)=2 x(n)-x(n-1)+h^{2} f(x(n)), \quad n \in \mathbb{N},
$$

where $h>0$ is a parameter and f has continuous first derivative and three zeros on the real line. The main result is that for each sufficiently small h the above equation has a homoclinic point.

Keywords. Autonomous second-order difference equation, homoclinic point, strictly increasing solutions.

Mathematics Subject Classification 2000. 39A11, 39A12, 39A70

1 Introduction

We consider the autonomous second-order difference equation

$$
\begin{equation*}
x(n+1)=2 x(n)-x(n-1)+h^{2} f(x(n)), \quad n \in \mathbb{N}, \tag{1.1}
\end{equation*}
$$

where $h \in(0, \infty)$ is a parameter. A sequence $\{x(n)\}_{n=0}^{\infty}$ which satisfies (1.1) is called a solution of equation (1.1). We assume that

$$
\begin{gather*}
L_{0}<0<L, \quad f \in C^{1}\left[L_{0}, L\right], \quad f\left(L_{0}\right)=f(0)=f(L)=0, \tag{1.2}\\
x f(x)<0 \text { for } x \in\left(L_{0}, L\right) \backslash\{0\}, \quad f^{\prime}\left(L_{0}\right)>0, f^{\prime}(0)<0, f^{\prime}(L)>0, \tag{1.3}\\
\exists \bar{B} \in\left(L_{0}, 0\right) \text { such that } \int_{\bar{B}}^{L} f(z) \mathrm{d} z=0 . \tag{1.4}
\end{gather*}
$$

Equation (1.1) represents an autonomous discrete case of some models arising in hydrodynamics. See [7], [9], [13], [16]. For monographs dealing with difference equations we refer to [1], [2], [3], [8], [12], [14]. We mention also some recent papers
investigating the solvability of second-order discrete boundary value problems, for example [4]-[6], [10], [11], [15], [17]-[24].

The main result of our paper is the existence of a homoclinic point of equation (1.1). The results presented here can be also useful when analysing the discretization of corresponding boundary value problems for ordinary differential equations, in particular, by finite-difference methods. To elucidate the geometry of the dynamics of (1.1) it is convenient to convert it to an equivalent planar map. To this end we let $x_{1}^{n}=x(n-1), x_{2}^{n}=x(n)$ and we obtain the equivalent first-order system of difference equations

$$
\begin{aligned}
& x_{1}^{n+1}=x_{2}^{n} \\
& x_{2}^{n+1}=2 x_{2}^{n}-x_{1}^{n}+h^{2} f\left(x_{2}^{n}\right),
\end{aligned}
$$

which can be written as the iteration of the map

$$
\begin{equation*}
\binom{x_{1}}{x_{2}} \mapsto\binom{x_{2}}{2 x_{2}-x_{1}+h^{2} f\left(x_{2}\right)} . \tag{1.5}
\end{equation*}
$$

Let us choose $B \in\left(L_{0}, 0\right)$ and denote

$$
\begin{equation*}
\mathbf{x}^{\mathbf{0}}=\binom{B}{B}, \quad \mathbf{x}=\binom{x_{1}}{x_{2}}, \quad \mathbf{F}\binom{x_{1}}{x_{2}}=\binom{x_{2}}{2 x_{2}-x_{1}+h^{2} f\left(x_{2}\right)} . \tag{1.6}
\end{equation*}
$$

Then (1.5) has the form $\mathbf{x} \mapsto \mathbf{F}(\mathbf{x})$, and the positive orbit $\gamma^{+}\left(\mathbf{x}^{\mathbf{0}}\right)$ is the sequence

$$
\gamma^{+}\left(\mathbf{x}^{\mathbf{0}}\right)=\left\{\mathbf{x}^{\mathbf{0}}, \mathbf{F}\left(\mathbf{x}^{\mathbf{0}}\right), \ldots, \mathbf{F}^{n}\left(\mathbf{x}^{\mathbf{0}}\right), \ldots\right\} .
$$

The map \mathbf{F} is invertible and

$$
\mathbf{F}^{-1}\binom{x_{1}}{x_{2}}=\binom{2 x_{1}-x_{2}+h^{2} f\left(x_{1}\right)}{x_{1}} .
$$

Hence the negative orbit $\gamma^{-}\left(\mathbf{x}^{\mathbf{0}}\right)$ is the sequence

$$
\gamma^{-}\left(\mathbf{x}^{\mathbf{0}}\right)=\left\{\mathbf{x}^{\mathbf{0}}, \mathbf{F}^{-1}\left(\mathbf{x}^{\mathbf{0}}\right), \ldots, \mathbf{F}^{-n}\left(\mathbf{x}^{\mathbf{0}}\right), \ldots\right\},
$$

and the orbit $\gamma\left(\mathbf{x}^{\mathbf{0}}\right)=\gamma^{+}\left(\mathbf{x}^{\mathbf{0}}\right) \cup \gamma^{-}\left(\mathbf{x}^{\mathbf{0}}\right)$ is uniquely determined for each $B \in$ $\left(L_{0}, 0\right)$. Under the assumption that $h>0$ is sufficiently small we prove that $(L, L)^{T}$ is a saddle point of \mathbf{F} and that there exists $B^{*} \in\left(L_{0}, L\right)$ such that $\left(B^{*}, B^{*}\right)^{T}$ is a homoclinic point for \mathbf{F}, that is the orbit $\gamma\left(\mathbf{x}^{*}\right)$, when $\mathbf{x}^{*}=\left(B^{*}, B^{*}\right)^{T}$, satisfies

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbf{F}^{n}\left(\mathbf{x}^{*}\right)=\lim _{n \rightarrow \infty} \mathbf{F}^{-n}\left(\mathbf{x}^{*}\right)=\binom{L}{L} . \tag{1.7}
\end{equation*}
$$

2 Fixed points

Due to (1.2) the map \mathbf{F} given by (1.6) has three fixed points $\left(L_{0}, L_{0}\right)^{T},(0,0)^{T}$ and $(L, L)^{T}$ in the set $\left[L_{0}, L\right] \times\left[L_{0}, L\right]$. The Jacobian matrix of \mathbf{F} has the form

$$
D \mathbf{F}(\mathbf{x})=\left(\begin{array}{cc}
0 & 1 \\
-1 & 2+h^{2} f^{\prime}\left(x_{2}\right)
\end{array}\right) .
$$

The assumption (1.3) gives $\frac{1}{2} h^{2} f^{\prime}(L)=: \varepsilon>0$, and hence

$$
D \mathbf{F}\binom{L}{L}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 2+2 \varepsilon
\end{array}\right)
$$

has the eigenvalues $\lambda_{1,2}=1+\varepsilon \pm \sqrt{\varepsilon^{2}+2 \varepsilon}$. So, for a sufficiently small $h>0$, one eigenvalue has modulus greater than 1 and the other less than 1 . Therefore $(L, L)^{T}$ is an unstable hyperbolic fixed point-a saddle point. The same is true for $\left(L_{0}, L_{0}\right)^{T}$. On the other hand, (1.3) yields $\frac{1}{2} h^{2} f^{\prime}(0)=:-\delta<0$, and hence

$$
D \mathbf{F}\binom{0}{0}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 2-2 \delta
\end{array}\right)
$$

has the eigenvalues $\lambda_{1,2}=1-\delta \pm i \sqrt{1-(1-\delta)^{2}}$ with moduli equal to 1 . Therefore $(0,0)^{T}$ is an elliptic fixed point which is a centre in the phase portrait of the approximate linear map

$$
\mathbf{x} \mapsto D \mathbf{F}\binom{0}{0} \mathbf{x} .
$$

The stability and type of the fixed point $(0,0)^{T}$ of the nonlinear map $\mathbf{x} \rightarrow \mathbf{F}(\mathbf{x})$ cannot be determined solely from linearization and the effects of the nonlinear terms in local dynamics must be accounted for.

3 Increasing solutions

For each values $A_{0}, A_{1} \in\left[L_{0}, L\right]$ there exists a unique solution $\{x(n)\}_{n=0}^{\infty}$ of equation (1.1) satisfying the initial conditions

$$
\begin{equation*}
x(0)=A_{0}, \quad x(1)=A_{1} . \tag{3.1}
\end{equation*}
$$

Such sequence $\{x(n)\}_{n=0}^{\infty}$ is called a solution of problem (1.1), (3.1). In order to find a point $\mathbf{x}^{*}=\left(B^{*}, B^{*}\right)^{T}$ satisfying (1.7) we choose $B \in\left(L_{0}, 0\right)$ and study solutions of problem (1.1), (3.2), where

$$
\begin{equation*}
x(0)=B, \quad x(1)=B . \tag{3.2}
\end{equation*}
$$

Lemma 3.1 Let $B \in\left(L_{0}, 0\right)$ and let $\{x(n)\}_{n=0}^{\infty}$ be a solution of problem (1.1), (3.2). Then there exists $r \in \mathbb{N}, r>1$, such that

$$
\begin{gather*}
x(1)<x(2)<\cdots<x(r-1)<0 \leq x(r) \quad \text { if } r>2, \tag{3.3}\\
x(1)<0 \leq x(2) \quad \text { if } r=2 . \tag{3.4}
\end{gather*}
$$

Proof. Choose $B \in\left(L_{0}, 0\right)$ and consider the solution $\{x(n)\}_{n=0}^{\infty}$ of problem (1.1), (3.2). Then $\{x(n)\}_{n=0}^{\infty}$ fulfils

$$
\begin{gather*}
\Delta x(n)=\Delta x(n-1)+h^{2} f(x(n)), \quad n \in \mathbb{N}, \tag{3.5}\\
x(0)=B, \quad \Delta x(0)=0, \tag{3.6}
\end{gather*}
$$

where $\Delta x(n-1)=x(n)-x(n-1)$ is the forward difference operator. By (1.3) and (3.2), we have $f(x(0))=f(x(1))=f(B)>0$, and (3.5) yields $\Delta x(1)>0$. Hence $x(1)<x(2)$. If $x(2) \geq 0$ we get (3.4). Otherwise $x(1)<x(2)<0$ and we repeat the above arguments to get $\Delta x(3)>\Delta x(2)$ and $x(2)<x(3)$. If $x(3) \geq 0$, we put $r=3$ and get (3.3). Otherwise we continue as before and prove that after a finite number r of steps we get (3.3) and

$$
\begin{equation*}
\Delta x(1)<\Delta x(2)<\cdots<\Delta x(r-1) \tag{3.7}
\end{equation*}
$$

Assume on the contrary that r is not finite, that is $x(n)<0$ for each $n \in \mathbb{N}$. By (1.3), the inequality $f(x(n))>0$ holds for each $n \in \mathbb{N}$, and the sequence $\{\Delta x(n)\}_{n=1}^{\infty}$ is positive and increasing. Therefore

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \Delta x(n)>0 \tag{3.8}
\end{equation*}
$$

The positivity of $\{\Delta x(n)\}_{n=1}^{\infty}$ implies that $\{x(n)\}_{n=1}^{\infty}$ is increasing. Since $\{x(n)\}_{n=1}^{\infty}$ is bounded above by 0 , there exists a finite $\lim _{n \rightarrow \infty} x(n)$, contrary to (3.8). So, we have proved that (3.3) holds for some $r \in \mathbb{N}$.

Lemma 3.2 Let $B \in\left(L_{0}, 0\right)$ and let $\{x(n)\}_{n=0}^{\infty}$ be a solution of problem (1.1), (3.2). If $\{x(n)\}_{n=1}^{\infty}$ is increasing and $x(n)<L$ for $n \in \mathbb{N}$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} x(n)=L, \quad \lim _{n \rightarrow \infty} \Delta x(n)=0 \tag{3.9}
\end{equation*}
$$

Proof. Since $\{x(n)\}_{n=1}^{\infty}$ is increasing and bounded above by L, there exists $\lim _{n \rightarrow \infty} x(n)=L_{1} \leq L$. Consequently $\lim _{n \rightarrow \infty} \Delta x(n)=0$. By Lemma 3.1, we have $0<x(r)<x(r+1)$ and $L_{1}>0$. If $L_{1}<L$, then by virtue of (3.5), $\lim _{n \rightarrow \infty} \Delta x(n)=\lim _{n \rightarrow \infty} \Delta x(n-1)+h^{2} \lim _{n \rightarrow \infty} f(x(n))$, and hence $0=0+$ $h^{2} f\left(L_{1}\right)<0$, a contradiction. Therefore $L_{1}=L$ and (3.9) is proved.

Definition 3.3 A solution satisfying the conditions of Lemma 3.2 is called a homoclinic solution.

Remark 3.4 Our main task is to prove the existence of a homoclinic solution $\left\{x^{*}(n)\right\}_{n=0}^{\infty}$ of (1.1), (3.2) for some $B=B^{*} \in\left(L_{0}, 0\right)$. Since $L_{0}<B \leq x^{*}(n)<L$ for $n \in \mathbb{N} \cup\{0\}$, we may assume without loss of generality that

$$
\begin{equation*}
f(x)=0 \quad \text { for } x \in\left(-\infty, L_{0}\right) \cup(L, \infty) \tag{3.10}
\end{equation*}
$$

Note that if we have the above homoclinic solution and put $\mathbf{x}^{*}=\left(B^{*}, B^{*}\right)^{T}$, then the map \mathbf{F} given by (1.6) satisfies (1.7), and hence the point $\left(B^{*}, B^{*}\right)^{T}$ is a homoclinic point for \mathbf{F}.

In what follows (Sec. 3-6) we assume that, in addition to (1.2)-(1.4), f fulfils moreover (3.10).

Lemma 3.5 Let $B \in\left(L_{0}, 0\right)$ and let $\{x(n)\}_{n=0}^{\infty}$ be a solution of problem (1.1), (3.2). Assume that there exists $b \in \mathbb{N}, b>1$, such that $\{x(n)\}_{n=1}^{b}$ is increasing and

$$
\begin{equation*}
x(b)<L<x(b+1) \quad \text { or } \quad x(b)=L . \tag{3.11}
\end{equation*}
$$

Then $\{x(n)\}_{n=1}^{\infty}$ is increasing and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} x(n)=\infty, \quad \lim _{n \rightarrow \infty} \Delta x(n)=\Delta x(b)>0 \tag{3.12}
\end{equation*}
$$

Proof. Choose $B \in\left(L_{0}, 0\right)$ and consider the solution $\{x(n)\}_{n=0}^{\infty}$ of problem (1.1), (3.2) which is increasing for $1 \leq n \leq b$. If the first condition in (3.11) holds, then $\Delta x(b)>0$. Let $x(b)=L$. Then (3.5) yields $\Delta x(b)=\Delta x(b-$ 1) $+h^{2} f(L)=\Delta x(b-1)>0$. Therefore (3.11) gives $\Delta x(b)>0$ in both cases. By (3.10) and (3.11), $f(x(b+1))=0$. Consequently, by (3.5), $\Delta x(b+1)=$ $\Delta x(b)+h^{2} f(x(b+1))=\Delta x(b)$, and similarly $\Delta x(n)=\Delta x(b)$ for $n>b+1$. This gives $\lim _{n \rightarrow \infty} \Delta x(n)=\Delta x(b)>0$. Therefore $\{x(n)\}_{n=1}^{\infty}$ is increasing and $\lim _{n \rightarrow \infty} x(n)=\infty$.

Definition 3.6 A solution satisfying the conditions of Lemma 3.5 is called an escape solution.

Theorem 3.7 (On three types of solutions)
Let $B \in\left(L_{0}, 0\right)$ and let $\{x(n)\}_{n=0}^{\infty}$ be a solution of problem (1.1), (3.2). Then $\{x(n)\}_{n=0}^{\infty}$ is just one of the following three types:
(I) $\{x(n)\}_{n=0}^{\infty}$ is a homoclinic solution;
(II) $\{x(n)\}_{n=0}^{\infty}$ is an escape solution;
(III) there exists $b \in \mathbb{N}, b>1$, such that $\{x(n)\}_{n=1}^{b}$ is increasing and

$$
\begin{equation*}
0<x(b)<L, \quad x(b+1) \leq x(b) \tag{3.13}
\end{equation*}
$$

Proof. Choose $B \in\left(L_{0}, 0\right)$ and consider the solution $\{x(n)\}_{n=0}^{\infty}$ of problem (1.1), (3.2). By Lemma 3.1, there exists $r \in \mathbb{N}, r>1$, such that $\{x(n)\}_{n=1}^{r}$ is increasing and $x(r) \geq 0$. Let $x(r) \geq L$. Then, due to (3.3), (3.4) and Lemma 3.5, $\{x(n)\}_{n=0}^{\infty}$ is an escape solution. Now, assume that $x(r)<L$ and that $\{x(n)\}_{n=0}^{\infty}$ is neither a homoclinic solution nor an escape solution. Then, by Lemma 3.2 and Lemma 3.5 , the sequence $\{x(n)\}_{n=1}^{\infty}$ cannot be increasing and cannot fulfil (3.9) or (3.11). Therefore there exists $b \geq r$ such that $\{x(n)\}_{n=1}^{b}$ is increasing and $x(b+1) \leq x(b)$. Clearly $x(b)<L$. Otherwise (3.5) gets $x(b+1)>x(b)$, a contradiction. We have proved that $\{x(n)\}_{n=0}^{\infty}$ is a solution of the type (III).

4 Estimates of solutions

Lemma 4.1 Let $B \in\left(L_{0}, 0\right)$ and let $\{x(n)\}_{n=0}^{\infty}$ be a solution of problem (1.1), (3.2). If $h>0$ is sufficiently small, then there exist constants $r>2, m \geq r$ and $L_{1} \in(0, L)$ such that

$$
\begin{gather*}
x(1)<x(2)<\cdots<x(r-1)<0 \leq x(r)<\cdots<x(m)=L_{1} \quad \text { if } m>r, \tag{4.1}\\
x(1)<x(2)<\cdots<x(r-1)<0<x(r)=L_{1} \quad \text { if } m=r .
\end{gather*}
$$

Moreover

$$
\begin{equation*}
\Delta x(j)<h \sqrt{2|B| M_{0}}+h^{2} M_{0}, \quad j=1, \ldots, m-1, \tag{4.2}
\end{equation*}
$$

where $M_{0}=\max \left\{|f(x)|: x \in\left[L_{0}, L\right]\right\}$.
Proof. By Lemma 3.1 there exists $r \in \mathbb{N}, r>1$ such that either (3.3) or (3.4) holds. In particular, we have $x(1)<x(2)$. By (3.2) and (3.5), $x(2)=$ $B+h^{2} f(B) \leq B+h^{2} M_{0}$. So, if we choose h such small that $h^{2} M_{0}<|B|$, we have $x(1)<x(2)<0$. Consequently $r>2$ holds, and inequalities in (3.3) are fulfilled. Multiplying (3.5) by $\Delta x(n)+\Delta x(n-1)$, we obtain

$$
\begin{equation*}
(\Delta x(n))^{2}-(\Delta x(n-1))^{2}=h^{2} f(x(n))(x(n+1)-x(n-1)), \quad n \in \mathbb{N} . \tag{4.3}
\end{equation*}
$$

Summing (4.3) from 1 to $r-2$, we have

$$
(\Delta x(r-2))^{2}=h^{2} \sum_{j=1}^{r-2} f(x(j))(x(j+1)-x(j-1))<2 h^{2}|B| M_{0},
$$

and

$$
\begin{equation*}
\Delta x(r-2)<h \sqrt{2|B| M_{0}} . \tag{4.4}
\end{equation*}
$$

(i) Let $x(r)=0$. By (3.5) we get $\Delta x(r)=\Delta x(r-1) \leq \Delta x(r-2)+h^{2} M_{0}$. Hence, (4.4) implies

$$
\begin{equation*}
\Delta x(r-1)<h \sqrt{2|B| M_{0}}+h^{2} M_{0}, \quad x(r+1)<h \sqrt{2|B| M_{0}}+h^{2} M_{0} \tag{4.5}
\end{equation*}
$$

(ii) Let $x(r)>0$. By (3.5) we get $\Delta x(r-1) \leq \Delta x(r-2)+h^{2} M_{0}$. Using (3.3) we get $x(r) \leq x(r-1)+\Delta x(r-2)+h^{2} M_{0}<\Delta x(r-2)+h^{2} M_{0}$. So, by (4.4), we can choose $h>0$ such small that $x(r)<L$ and $\Delta x(r)=\Delta x(r-1)+h^{2} f(x(r))<$ $\Delta x(r-1)$. Further, using (4.4), we obtain

$$
\begin{equation*}
\Delta x(r-1)<h \sqrt{2|B| M_{0}}+h^{2} M_{0}, \quad x(r+1)<2 h \sqrt{2|B| M_{0}}+2 h^{2} M_{0} \tag{4.6}
\end{equation*}
$$

Estimates (4.5) and (4.6) imply that we can find $h>0$ such small that $x(r+1)<$ L, as well. If $x(r) \geq x(r+1)$, we put $m=r$.

Let $x(r)<x(r+1)$. If $x(r+1) \geq x(r+2)$ or $x(r+2) \geq L$, we put $m=r+1$.
Let $x(r)<x(r+1)<x(r+2)<L$. If $x(r+2) \geq x(r+3)$ or $x(r+3) \geq L$, we put $m=r+2$. Otherwise we continue as before. Due to Theorem 3.7, after a finite number of steps, we get $m>r+2$ fulfilling (4.1).

According to (3.7), the finite sequence $\{\Delta x(j)\}_{j=1}^{r-1}$ is increasing. Similarly, by (1.3), $f(x(r)) \leq 0$ and $f(x(j))<0$ for $j=r+1, \ldots, m$, provided $m \geq r+1$. Therefore, by (3.5), $\Delta x(r-1) \geq \Delta x(r)$. If $m>r+1$, the finite sequence $\{\Delta x(j)\}_{j=r}^{m-1}$ is decreasing. Consequently (4.5) and (4.6) give (4.2).

Lemma 4.2 Choose an arbitrary $c>0$. Let $B_{1}, B_{2} \in\left(L_{0}, 0\right)$ and let $\{x(n)\}_{n=0}^{\infty}$ and $\{y(n)\}_{n=0}^{\infty}$ be a solution of problem (1.1), (3.2) with $B=B_{1}$ and $B=B_{2}$, respectively. Then

$$
\begin{equation*}
|x(n)-y(n)| \leq\left|B_{1}-B_{2}\right| e^{c^{2} K_{0}} \quad \text { for } n \in \mathbb{N}, n \leq \frac{c}{h}+1 \tag{4.7}
\end{equation*}
$$

where K_{0} is the Lipschitz constant for f on $\left[L_{0}, L\right]$.
Proof. By (3.5) we have $\Delta x(k)=\Delta x(k-1)+h^{2} f(x(k)), k \in \mathbb{N}$. Summing it from 1 to k, we get by (3.2), $\Delta x(k)=h^{2} \sum_{j=1}^{k} f(x(j)), k \in \mathbb{N}$. Summing it again from 1 to $n-1$, we get

$$
x(n)=B_{1}+h^{2} \sum_{k=1}^{n-1} \sum_{j=1}^{k} f(x(j)), \quad n \in \mathbb{N},
$$

and similarly

$$
y(n)=B_{2}+h^{2} \sum_{k=1}^{n-1} \sum_{j=1}^{k} f(y(j)), \quad n \in \mathbb{N} .
$$

Therefore

$$
\begin{aligned}
& |x(n)-y(n)| \leq\left|B_{1}-B_{2}\right|+h^{2} \sum_{k=1}^{n-1} \sum_{j=1}^{k}|f(x(j))-f(y(j))| \\
& \quad \leq\left|B_{1}-B_{2}\right|+(n-1) h^{2} K_{0} \sum_{j=1}^{n-1}|x(j)-y(j)|, \quad n \in \mathbb{N} .
\end{aligned}
$$

By the discrete analogue of the Gronwall-Bellman inequality (see e.g. [8], Lemma 4.34), we get

$$
|x(n)-y(n)| \leq\left|B_{1}-B_{2}\right| e^{(n-1)^{2} h^{2} K_{0}} \quad \text { for } n \in \mathbb{N}
$$

So, (4.7) is proved.

5 Existence of non-monotonous solutions

Definition 5.1 A solution of problem (1.1), (3.2) satisfying conditions (III) of Theorem 3.7 is called a non-monotonous solution.

Lemma 5.2 Let $\{x(n)\}_{n=0}^{\infty}$ be a non-monotonous solution. Then there exists $c \in \mathbb{N}, c \geq b$, such that $\{x(n)\}_{n=b}^{c+1}$ is decreasing and

$$
\begin{equation*}
x(c)>0>x(c+1) \quad \text { or } \quad x(c)=0 . \tag{5.1}
\end{equation*}
$$

Proof. Consider b of Theorem 3.7 (III). If $x(b+1)<0$, we put $b=c$ and (3.13) yields $x(c)>0>x(c+1)$. Clearly $\{x(n)\}_{n=b}^{c+1}$ is decreasing. If $x(b+1)=0$, then for $b+1=c$ we have $x(b)>x(c)=0$. Further, by (3.5) and (3.13), $\Delta x(c)=\Delta x(c-1)+h^{2} f(x(c))=\Delta x(c-1)<0$. So, $x(c+1)<0$ and $\{x(n)\}_{n=b}^{c+1}$ is decreasing. Let $x(b+1)>0$. Then (3.5) and (3.13) yield $\Delta x(b+1)=$ $\Delta x(b)+h^{2} f(x(b+1))<\Delta x(b) \leq 0$, and hence $x(b+2)<x(b+1)$. We see that $\{x(n)\}_{n=b}^{c+1}$ and $\{\Delta x(n)\}_{n=b}^{c}$ are decreasing as long as $x(c) \geq 0$. If $x(n)>0$ for all $n>b$, then $\lim _{n \rightarrow \infty} \Delta x(n)<0$ which gives $\lim _{n \rightarrow \infty} x(n)=-\infty$, a contradiction. Therefore a finite c fulfilling (5.1) must exist.

Theorem 5.3 Let $B \in(\bar{B}, 0)$. There exists $h_{B}>0$ such that if $h \in\left(0, h_{B}\right]$, then the corresponding solution $\{x(n)\}_{n=0}^{\infty}$ of problem (1.1), (3.2) is non-monotonous.

Proof. Choose $B \in(\bar{B}, 0)$. Then, by (1.3) and (1.4), we can find $\varepsilon>0$ such that

$$
\begin{equation*}
\int_{B}^{L} f(z) \mathrm{d} z+\varepsilon<0 \tag{5.2}
\end{equation*}
$$

Let $\{x(n)\}_{n=0}^{\infty}$ be a solution of problem (1.1), (3.2) with this B.
(i) Assume that $\{x(n)\}_{n=0}^{\infty}$ is an escape solution. Then there exists $b \in \mathbb{N}$, $b>1$, such that $\{x(n)\}_{n=1}^{b}$ is increasing and (3.11) holds. Therefore, summing (4.3) from 1 to $b-1$ and multiplying by $\frac{1}{2}$, we get

$$
\begin{equation*}
0<\frac{1}{2}\left(\frac{\Delta x(b-1)}{h}\right)^{2}=\sum_{j=1}^{b-1} f(x(j)) \frac{x(j+1)-x(j-1)}{2} . \tag{5.3}
\end{equation*}
$$

By (1.2), f integrable on $\left[L_{0}, L\right]$ and hence there exists $\delta>0$ such that if $(x(j+$ 1) $-x(j-1)) / 2<\delta$, then

$$
\begin{equation*}
\left|\sum_{j=1}^{b-1} f(x(j)) \frac{x(j+1)-x(j-1)}{2}-\int_{B}^{L} f(z) \mathrm{d} z\right|<\varepsilon \tag{5.4}
\end{equation*}
$$

Let $h_{B} \in(0,1)$ be such that

$$
\begin{equation*}
h_{B}<\frac{\delta}{\sqrt{2|B| M_{0}}+M_{0}} \tag{5.5}
\end{equation*}
$$

where $M_{0}=\max \left\{|f(x)|: x \in\left[L_{0}, L\right]\right\}$. Now, choose $h \in\left(0, h_{B}\right]$. Then (4.2) implies $(x(j+1)-x(j-1)) / 2<\delta$ and we obtain (5.4). Consequently, by (5.2), (5.3) and (5.4), we get

$$
0<\int_{B}^{L} f(z) \mathrm{d} z+\varepsilon<0
$$

a contradiction. So, $\{x(n)\}_{n=0}^{\infty}$ is not an escape solution provided $B \in(\bar{B}, 0)$ and $h \in\left(0, h_{B}\right]$.
(ii) Assume that $\{x(n)\}_{n=0}^{\infty}$ is a homoclinic solution, that is $\{x(n)\}_{n=1}^{\infty}$ is increasing, $x(n)<L$ for $n \in \mathbb{N}$, and (3.9) holds. Summing (4.3) from 1 to n and multiplying by $\frac{1}{2}$, we get

$$
\begin{equation*}
0<\frac{1}{2}\left(\frac{\Delta x(n)}{h}\right)^{2}=\sum_{j=1}^{n} f(x(j)) \frac{x(j+1)-x(j-1)}{2}, \quad n \in \mathbb{N} \tag{5.6}
\end{equation*}
$$

Let δ, h_{B} and h be as in part (i). By (3.9), we can choose $n_{0} \in \mathbb{N}$ such that $|x(n+1)-L|<\delta$ for $n \geq n_{0}$. Then, as in part (i), we conclude that

$$
\begin{equation*}
\left|\sum_{j=1}^{n} f(x(j)) \frac{x(j+1)-x(j-1)}{2}-\int_{B}^{L} f(z) \mathrm{d} z\right|<\varepsilon, \quad n \geq n_{0} \tag{5.7}
\end{equation*}
$$

By (5.2), (5.6) and (5.7) we get a contradiction as in (i). We have proved that $\{x(n)\}_{n=0}^{\infty}$ is not a homoclinic solution provided $B \in(\bar{B}, 0)$ and $h \in\left(0, h_{B}\right]$.

Therefore, by virtue of Theorem 3.7, $\{x(n)\}_{n=0}^{\infty}$ has to be a non-monotonous solution provided $B \in(\bar{B}, 0)$ and $h \in\left(0, h_{B}\right]$.

6 Existence of escape solutions

Theorem 6.1 Let $B_{e s} \in\left(L_{0}, \bar{B}\right)$. There exists $h_{B_{e s}}>0$ such that if $h \in\left(0, h_{B_{e s}}\right]$, then the corresponding solution $\{x(n)\}_{n=0}^{\infty}$ of problem (1.1), (3.2) with $B=B_{\text {es }}$ is an escape solution.

Proof. Choose $B_{e s} \in\left(L_{0}, \bar{B}\right)$. Then, by (1.3) and (1.4), we can find $\varepsilon>0$ and $c_{0}>0$ such that

$$
\begin{equation*}
\int_{B_{e s}}^{L} f(z) \mathrm{d} z-\varepsilon=c_{0}^{2} . \tag{6.1}
\end{equation*}
$$

Let $\{x(n)\}_{n=0}^{\infty}$ be a solution of problem (1.1), (3.2) with $B=B_{e s}$.
(i) Assume that $\{x(n)\}_{n=0}^{\infty}$ is a non-monotonous solution. Then there exists $b \in \mathbb{N}$ such that $\{x(n)\}_{n=1}^{b}$ is increasing and (3.13) holds. As in the proof of Theorem 5.3 we can find $\delta>0$ such that (5.4) holds with $B=B_{e s}$. Choose $h_{B} \in(0,1)$ such that (5.5) is valid. Assume that $h \in\left(0, h_{B}\right]$. We derive (5.3) as in the proof of Theorem 5.3. Consequently we get

$$
\begin{gather*}
\frac{\Delta x(b-1)}{h \sqrt{2}}=\sqrt{\sum_{j=1}^{b-1} f(x(j)) \frac{x(j+1)-x(j-1)}{2}} \tag{6.2}\\
\quad>\sqrt{\int_{B_{e s}}^{L} f(z) \mathrm{d} z-\varepsilon}=c_{0}>0
\end{gather*}
$$

Further, by (1.3) and (3.13) it holds $f(x(b))<0, \Delta x(b-1)>0$ and $\Delta x(b) \leq 0$. Therefore (3.5) leads to $|\Delta x(b)|+\Delta x(b-1)=h^{2}|f(x(b))|$ and

$$
\frac{\Delta x(b-1)}{h} \leq h M_{0}, \quad M_{0}=\max \left\{|f(x)|: x \in\left[L_{0}, L\right]\right\}
$$

Choose $h_{B_{e s}} \in\left(0, h_{B}\right]$ such that $h_{B_{e s}} M_{0}<c_{0}$. Then for each $h \in\left(0, h_{B_{e s}}\right]$ we get $\Delta x(b-1) / h<c_{0}$, contrary to (6.2). So, $\{x(n)\}_{n=0}^{\infty}$ is not a non-monotonous solution provided $B_{\text {es }} \in\left(L_{0}, \bar{B}\right)$ and $h \in\left(0, h_{B_{e s}}\right]$.
(ii) Assume that $\{x(n)\}_{n=0}^{\infty}$ is a homoclinic solution. We choose $h_{B} \in(0,1)$ and $n_{0} \in \mathbb{N}$ as in the proof of Theorem 5.3 part (ii) and arguing similarly we get (5.6) and (5.7) with $B=B_{\text {es }}$. Using (6.1) we obtain

$$
\begin{align*}
& \frac{\Delta x(n)}{h \sqrt{2}}=\sqrt{\sum_{j=1}^{n} f(x(j)) \frac{x(j+1)-x(j-1)}{2}} \tag{6.3}\\
& >\sqrt{\int_{B_{e s}}^{L} f(z) \mathrm{d} z-\varepsilon}=c_{0}>0 \quad \text { for } n \geq n_{0} .
\end{align*}
$$

By (3.9), for any fixed $h \in\left(0, h_{B}\right]$, we have

$$
\lim _{n \rightarrow \infty} \frac{\Delta x(n)}{h}=0
$$

contrary to (6.3). Put $h_{B_{e s}}=h_{B}$. Then $\{x(n)\}_{n=0}^{\infty}$ cannot be a homoclinic solution provided $B_{\text {es }} \in\left(L_{0}, \bar{B}\right)$ and $h \in\left(0, h_{B_{e s}}\right]$.

Therefore, by virtue of Theorem 3.7, $\{x(n)\}_{n=0}^{\infty}$ has to be an escape solution provided $B_{e s} \in\left(L_{0}, \bar{B}\right)$ and $h \in\left(0, h_{B_{e s}}\right]$.

7 Existence of homoclinic solutions

Theorem 7.1 Let f fulfil (1.2)-(1.4). There exists $h_{0}>0$ such that for each $h^{*} \in$ $\left(0, h_{0}\right]$ there exists $B^{*} \in\left(L_{0}, 0\right)$ such that the corresponding solution $\{x(n)\}_{n=0}^{\infty}$ of problem (1.1), (3.2) with $B=B^{*}$ is a homoclinic solution.

Proof. First, assume that, in addition, f fulfils (3.10). By Theorems 5.3 and 6.1 there exists $h_{0} \in(0,1)$ such that if we choose an arbitrary $h \in\left(0, h_{0}\right]$, then it holds:
(a) Let $B_{n o n} \in(\bar{B}, 0)$. Then the corresponding solution $\left\{x_{n o n}(n)\right\}_{n=0}^{\infty}$ of problem (1.1), (3.2) with $B=B_{\text {non }}$ is a non-monotonous solution.
(b) Let $B_{e s} \in\left(L_{0}, \bar{B}\right)$. Then the corresponding solution $\left\{x_{e s}(n)\right\}_{n=0}^{\infty}$ of problem (1.1), (3.2) with $B=B_{\text {es }}$ is an escape solution.
Choose $h \in\left(0, h_{0}\right], B_{\text {non }} \in(\bar{B}, 0)$ and the solution $\left\{x_{n o n}(n)\right\}_{n=0}^{\infty}$. By Lemma 5.2 there exists $c \in \mathbb{N}$ satisfying (5.1) for $x=x_{\text {non }}$. That is $x_{n o n}(c+1)<0$. Let $B \in\left(L_{0}, B_{n o n}\right)$ and $\{x(n)\}_{n=0}^{\infty}$ be the corresponding solution of problem (1.1), (3.2). By Lemma 4.2,

$$
\begin{equation*}
\left|x_{n o n}(n)-x(n)\right| \leq\left|B_{n o n}-B\right| e^{c^{2} K_{0}}, \quad n \in \mathbb{N}, n \leq \frac{c}{h}+1 \tag{7.1}
\end{equation*}
$$

Since $h<1,(7.1)$ yields for $n=c+1$

$$
\left|x_{n o n}(c+1)-x(c+1)\right| \leq\left|B_{n o n}-B\right| e^{c^{2} K_{0}} .
$$

Therefore we can find $\delta>0$ such small that if $B \in\left(B_{\text {non }}-\delta, B_{n o n}\right]$, then $x(c+1)<$ 0 . Consequently $\{x(n)\}_{n=0}^{\infty}$ is a non-monotonous solution. According to (b) there exists the minimal number $B^{*} \in\left(L_{0}, B_{n o n}\right)$ such that for $B \in\left(B^{*}, B_{n o n}\right]$ the corresponding solution $\{x(n)\}_{n=0}^{\infty}$ is a non-monotonous.

Let $\left\{x^{*}(n)\right\}_{n=0}^{\infty}$ be a solution of problem (1.1), (3.2) with $B=B^{*}$. Assume that $\left\{x^{*}(n)\right\}_{n=0}^{\infty}$ is non-monotonous. Then using the same arguments as above we can find $\delta>0$ such small that for $B \in\left(B^{*}-\delta, B^{*}\right]$ the corresponding solution $\{x(n)\}_{n=0}^{\infty}$ is also non-monotonous. This contradicts the minimality of B^{*}.

Assume that $\left\{x^{*}(n)\right\}_{n=0}^{\infty}$ is an escape solution. By Lemma 3.5 there exists $b \in \mathbb{N}$ satisfying (3.11) for $x=x^{*}$. That is $x^{*}(b+1)>L$. Consider a solution $\{x(n)\}_{n=0}^{\infty}$ of problem (1.1), (3.2) for $B \in\left(B^{*}, 0\right)$. We can use Lemma 4.2 again and get

$$
\begin{equation*}
\left|x^{*}(n)-x(n)\right| \leq\left|B^{*}-B\right| e^{b^{2} K_{0}}, \quad n \in \mathbb{N}, n \leq \frac{b}{h}+1 \tag{7.2}
\end{equation*}
$$

Since $h<1,(7.2)$ yields for $n=b+1$

$$
\left|x^{*}(b+1)-x(b+1)\right| \leq\left|B^{*}-B\right| e^{b^{2} K_{0}}
$$

Therefore we can find $\delta>0$ such small that if $B \in\left[B^{*}, B^{*}+\delta\right)$ then $x(b+1)>L$. This yields that $\{x(n)\}_{n=0}^{\infty}$ is an escape solution, contrary to the definition of B^{*}.

We have proved that $\left\{x^{*}(n)\right\}_{n=0}^{\infty}$ is a homoclinic solution of equation (1.1). Since $L_{0}<x^{*}(n)<L$ for $n \in \mathbb{N}$, we can omit the assumption (3.10).

Remark 7.2 The proof of Theorem 7.1 implies that the homoclinic point $\mathbf{x}^{*}=$ $\left(B^{*}, B^{*}\right)^{T}$ of equation (1.1) can be found in the following way. Choose $h \in\left(0, h_{0}\right]$. We have two subsets $\mathcal{M}_{\text {non }}$ and $\mathcal{M}_{\text {es }}$ of the interval $\left(L_{0}, 0\right)$. $\mathcal{M}_{\text {non }}$ consists of all B such that the corresponding solutions $\{x(n)\}_{n=0}^{\infty}$ of problem (1.1), (3.2) are non-monotonous. $\mathcal{M}_{\text {non }}$ is non-empty by Theorem 5.3 and open by Lemma 4.2. $\mathcal{M}_{e s}$ consists of all B such that the corresponding solutions $\{x(n)\}_{n=0}^{\infty}$ of problem (1.1), (3.2) are escape solutions. $\mathcal{M}_{e s}$ is non-empty by Theorem 6.1 and open by Lemma 4.2. Each B^{*} lying on the common boundary of $\mathcal{M}_{\text {non }}$ and $\mathcal{M}_{\text {es }}$ forms the homoclinic point $\mathbf{x}^{*}=\left(B^{*}, B^{*}\right)^{T}$ satisfying (1.7).

Acknowledgments

The paper was supported by the Council of Czech Government MSM 6198959214.
The authors thank the referees for valuable comments.

References

[1] R. P. Agarwal. Difference Equations and Inequalities. Theory, Methods and Applications. Second edition, revised and expanded. Marcel Dekker, New York 2000.
[2] R. P. Agarwal, D. O'Regan, P. J. Y. Wong. Positive Solutions of Differential, Difference and Integral Equations. Kluwer, Dordrecht 1999.
[3] R. P. Agarwal, P. J. Y. Wong. Advanced Topics in Difference Equations. Kluwer, Dordrecht 1997.
[4] A. M. Amleh, E. Camouzis, G. Ladas. On second-order rational difference equations. J. Difference Equ. Appl. 13 (2007), 969-1004.
[5] D. R. Anderson, I. Rachůnková, C. C. Tisdell. Solvability of discrete Neumann boundary value problems. J. Math. Anal. Appl. 331 (2007), 736741.
[6] F. M. Atici, A. Cabada, V. Otero-Espinar. Criteria for existence and nonexistence of positive solutions to a discrete periodic boundary value problem. J. Difference Equ. Appl. 9 (2003), 765-775.
[7] G. H. Derrick. Comments on nonlinear wave equations as models for elementary particles. J. Math. Physics 5 (1965), 1252-1254.
[8] S. N. Elaydi. An Introduction to Difference Equations. 2nd ed. Springer, New York 1999.
[9] H. Gouin, G. Rotoli. An analytical approximation of density profile and surface tension of microscopic bubbles for Van der Waals fluids. Mech. Research Communic. 24 (1997), 255-260.
[10] Z. He. On the existence of positive solutions of p-Laplacian difference equations. J. Comp. Appl. Math. 161 (2003), 193-201.
[11] L. X. Hu, W. T. Li, S. Stević. Global asymptotic stability of a second order rational difference equation. J. Difference Equ. Appl. 14 (2008), 779797.
[12] W. G. Kelley, A. C. Peterson. Difference equations. An introduction with applications. 2nd ed. Academic Press, San Diego 2001.
[13] G. Kitzhofer, O. Косh, P. Lima, E. Weinmüller. Efficient numerical solution of the density profile equation in hydrodynamics. J. Sci. Comput. 32 (2007), 411-424.
[14] M. R. S. Kulenović, G. Ladas. Dynamics of Second Order Rational Difference Equations. Chapman E Hall/CRC, Boca Raton 2002.
[15] Y. Li. The existence of solutions for second-order difference equations. J. Difference Equ. Appl. 12 (2006), 209-212.
[16] P. M. Lima, N. V. Chemetov, N. B. Konyukhova, A. I. Sukov. Analytical-numerical investigation of bubble-type solutions of nonlinear singular problems. J. Comp. Appl. Math. 189 (2006), 260-273.
[17] R. Ma, Y. N. Reffoul. Positive solutions of three-point nonlinear discrete second order boundary value problem. J. Difference Equ. Appl. 10 (2004), 129-138.
[18] J. Mawhin, H. B. Thompson, E. Tonkes. Uniqueness for boundary value problems for second order finite difference equations. J. Difference Equ. Appl. 10 (2004), 749-757.
[19] I. Rachůnková, L. Rachůnek. Singular discrete second order BVPs with p-Laplacian. J. Difference Equ. Appl. 12 (2006), 811-819.
[20] I. Rachůnková, L. Rachůnek. Solvability of discrete Dirichlet problem via lower and upper functions method. J. Difference Equ. Appl. 13 (2007), 423-429.
[21] I. Rachůnková, L. Rachůnek. Singular discrete problem arising in the theory of shallow membrane caps. J. Difference Equ. Appl. 14 (2008), 747767.
[22] I. RachŮnková, L. Rachůnek. Singular discrete and continuous mixed boundary value problems. Math. Comp. Modelling 49 (2009), 413-422.
[23] I. Rachưnková, C. Tisdell. Existence of non-spurious solutions to discrete boundary value problems. Australian J. Math. Anal. Appl. 3 (2006), $1-9$.
[24] B. D. Rouhani, H. Khatibzadeh. A note on the asymptotic behavior of solutions to a second order difference equation. J. Difference Equ. Appl. 14 (2008), 429-432.

