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1 Introduction
We consider the autonomous second-order difference equation
z(n+1) =2z(n) —x(n — 1) + h*f(z(n)), n €N, (1.1)

where h € (0,00) is a parameter. A sequence {x(n)}>, which satisfies (1.1) is
called a solution of equation (1.1). We assume that

Ly<0<L feC'Loll f(lo)=f0)=fL) =0,  (12)
zf(x) <0forz € (Lo, L)\ {0}, f'(Lo)>0, f(0)<0, f'(L)>0, (1.3)
3B € (Ly,0) such that /BL f(z)dz =0. (1.4)

Equation (1.1) represents an autonomous discrete case of some models arising in
hydrodynamics. See [7], [9], [13], [16]. For monographs dealing with difference
equations we refer to [1], [2], [3], [8], [12], [14]. We mention also some recent papers
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investigating the solvability of second-order discrete boundary value problems, for
example [4]-[6], [10], [11], [15], [17]-[24].

The main result of our paper is the existence of a homoclinic point of equa-
tion (1.1). The results presented here can be also useful when analysing the
discretization of corresponding boundary value problems for ordinary differential
equations, in particular, by finite-difference methods. To elucidate the geometry
of the dynamics of (1.1) it is convenient to convert it to an equivalent planar
map. To this end we let 2} = z(n — 1), 2% = z(n) and we obtain the equivalent
first-order system of difference equations

z5tt = 20 — ot + W2 (ah),

which can be written as the iteration of the map

<2> - <2x2 - xlxj h2f(x2)> : (1.5)

Let us choose B € (Ly,0) and denote

@=(5) =) F(0)= G Taera) 00

Then (1.5) has the form x — F(x), and the positive orbit y*(x?) is the sequence
THE) = (O FR), L F (),

The map F is invertible and

F-! (5131) _ <2$1 —$2+h2f(x1)) ’

i) T
Hence the negative orbit v~ (x°) is the sequence
7 (x%) = X% F1(x°),... . F"(x%),...},

and the orbit 7(x%) = 77(x%) U v~ (x°) is uniquely determined for each B €
(Lo,0). Under the assumption that A > 0 is sufficiently small we prove that
(L, L)T is a saddle point of F and that there exists B* € (Lg, L) such that
(B*, B*)T is a homoclinic point for F, that is the orbit y(x*), when x* = (B*, B*)T
satisfies

lim F*(x*) = lim F"(x) = (L) . (1.7)
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2 Fixed points

Due to (1.2) the map F given by (1.6) has three fixed points (Lo, Lo)T, (0,0)7
and (L, L)" in the set [Lg, L] x [Lg, L]. The Jacobian matrix of F has the form

DF(x) = (_01 2+ h;f/(xz)) '

The assumption (1.3) gives $h%f'(L) =: £ > 0, and hence

DF(IZ) - <—01 2+125>

has the eigenvalues \; o2 = 1+ ¢ + v/e? +2¢. So, for a sufficiently small » > 0,
one eigenvalue has modulus greater than 1 and the other less than 1. Therefore
(L, L)T is an unstable hyperbolic fixed point—a saddle point. The same is true
for (Lo, Ly)*. On the other hand, (1.3) yields %h2f’(0) =: —§ < 0, and hence

DF<8> - (—01 2—125>

has the eigenvalues A; o = 1—04i,/1 — (1 — §)? with moduli equal to 1. Therefore
(0,0)T is an elliptic fixed point which is a centre in the phase portrait of the

approximate linear map
x — DF <O> X.

0

The stability and type of the fixed point (0,0)” of the nonlinear map x — F(x)
cannot be determined solely from linearization and the effects of the nonlinear
terms in local dynamics must be accounted for.

3 Increasing solutions

For each values Ay, Ay € [Lo, L] there exists a unique solution {z(n)}>2, of
equation (1.1) satisfying the initial conditions

2(0) = Ay, 2(1) = A,. (3.1)

Such sequence {z(n)}>2, is called a solution of problem (1.1), (3.1). In order
to find a point x* = (B*, B*)7 satisfying (1.7) we choose B € (Lg,0) and study
solutions of problem (1.1), (3.2), where

2(0) =B, z(1) = B. (3.2)



Lemma 3.1 Let B € (Ly,0) and let {z(n)}>2, be a solution of problem (1.1),
(3.2). Then there exists r € N, r > 1, such that

() <z@2)<---<z(r=1)<0<x(r) ifr>2, (3.3)
z(l) <0<x(2) ifr=2. (3.4)

Proof. Choose B € (Ly,0) and consider the solution {z(n)}°, of problem (1.1),
(3.2). Then {z(n)}5°, fulfils

Az(n) = Ax(n — 1) + h*f(x(n)), n €N, (3.5)

z(0) =B, Az(0)=0, (3.6)

where Az(n — 1) = x(n) — z(n — 1) is the forward difference operator. By (1.3)
and (3.2), we have f(z(0)) = f(z(1)) = f(B) > 0, and (3.5) yields Az(1) > 0.
Hence z(1) < z(2). If (2) > 0 we get (3.4). Otherwise z(1) < z(2) < 0 and we
repeat the above arguments to get Az(3) > Axz(2) and z(2) < z(3). If (3) > 0,
we put r = 3 and get (3.3). Otherwise we continue as before and prove that after
a finite number r of steps we get (3.3) and

Az(l) < Az(2) <--- < Azx(r—1). (3.7)

Assume on the contrary that r is not finite, that is x(n) < 0 for each n € N.
By (1.3), the inequality f(xz(n)) > 0 holds for each n € N, and the sequence
{Axz(n)}22, is positive and increasing. Therefore

lim Az(n) > 0. (3.8)
The positivity of {Az(n)}2 , implies that {x(n)}22, is increasing. Since {x(n)}>2
is bounded above by 0, there exists a finite lim,, .., z(n), contrary to (3.8). So,
we have proved that (3.3) holds for some r € N. O

Lemma 3.2 Let B € (Ly,0) and let {x(n)}>2, be a solution of problem (1.1),
(3.2). If {z(n)}2, is increasing and x(n) < L for n € N, then

lim z(n) =L, lim Az(n) = 0. (3.9)
Proof. Since {z(n)};°, is increasing and bounded above by L, there exists
lim, .o x(n) = L1 < L. Consequently lim,_,,, Az(n) = 0. By Lemma 3.1, we
have 0 < z(r) < z(r+ 1) and L; > 0. If L1 < L, then by virtue of (3.5),
lim, o Az(n) = lim, .o Az(n — 1) + A%lim,_ ., f(z(n)), and hence 0 = 0 +
h%f(L,) < 0, a contradiction. Therefore L; = L and (3.9) is proved. O

Definition 3.3 A solution satisfying the conditions of Lemma 3.2 is called a
homoclinic solution.



Remark 3.4 Our main task is to prove the existence of a homoclinic solution
{z*(n)}2, of (1.1), (3.2) for some B = B* € (Ly,0). Since Ly < B < z*(n) < L
for n € NU {0}, we may assume without loss of generality that

f(x) =0 forx € (—o0,Ly)U(L,0). (3.10)

Note that if we have the above homoclinic solution and put x* = (B*, B*)T,
then the map F given by (1.6) satisfies (1.7), and hence the point (B*, B*) is a
homoclinic point for F.

In what follows (Sec. 3-6) we assume that, in addition to (1.2)—(1.4), f fulfils
moreover (3.10).

Lemma 3.5 Let B € (Ly,0) and let {x(n)}>, be a solution of problem (1.1),
(3.2). Assume that there exists b € N, b > 1, such that {x(n)}o_, is increasing
and

z(b) <L <z(b+1) or xz(b)=L. (3.11)

Then {x(n)}22, is increasing and

lim z(n) = oo, lim Az(n)= Az(b) > 0. (3.12)
Proof. Choose B € (Ly,0) and consider the solution {z(n)}>°, of problem
(1.1), (3.2) which is increasing for 1 < n < b. If the first condition in (3.11)
holds, then Axz(b) > 0. Let x(b) = L. Then (3.5) yields Az(b) = Az(b —
1)+ h2f(L) = Az(b—1) > 0. Therefore (3.11) gives Az(b) > 0 in both cases.
By (3.10) and (3.11), f(z(b+ 1)) = 0. Consequently, by (3.5), Az(b+ 1) =
Az(b) + h2f(z(b+ 1)) = Ax(b), and similarly Az(n) = Az(b) for n > b+ 1.
This gives lim,, ., Az(n) = Axz(b) > 0. Therefore {z(n)}>, is increasing and
lim,, o z(n) = o0. O

Definition 3.6 A solution satisfying the conditions of Lemma 3.5 is called an
escape solution.

Theorem 3.7 (On three types of solutions)
Let B € (Lo,0) and let {x(n)}>2, be a solution of problem (1.1), (3.2). Then
{z(n)}2, is just one of the following three types:

(I) {z(n)}2, is a homoclinic solution;
(IT)  {z(n)}2, is an escape solution;

(IIT)  there exists b € N, b > 1, such that {x(n)}o_, is increasing and

0<z() <L, z(b+1)<xz). (3.13)



Proof. Choose B € (L, 0) and consider the solution {x(n)}22, of problem (1.1),
(3.2). By Lemma 3.1, there exists 7 € N, r > 1, such that {z(n)}}_, is increasing
and z(r) > 0. Let z(r) > L. Then, due to (3.3), (3.4) and Lemma 3.5, {z(n)}>2,
is an escape solution. Now, assume that z(r) < L and that {x(n)}2, is neither
a homoclinic solution nor an escape solution. Then, by Lemma 3.2 and Lemma
3.5, the sequence {z(n)}>; cannot be increasing and cannot fulfil (3.9) or (3.11).
Therefore there exists b > r such that {z(n)}’_, is increasing and z(b+1) < z(b).

n=1
Clearly z(b) < L. Otherwise (3.5) gets x(b+ 1) > z(b), a contradiction. We have
proved that {z(n)}>2, is a solution of the type (III). O

4 Estimates of solutions

Lemma 4.1 Let B € (Lg,0) and let {x(n)}>, be a solution of problem (1.1),
(3.2). If h > 0 is sufficiently small, then there exist constants r > 2, m > r and
L, € (0,L) such that

r(l)<z2)<---<z(r—1)<0<z(r)<---<xz(m)=Ly ifm>r,

4.1

r(l)<z(2)<---<z(r—1)<0<z(r)=L; ifm=r. (4.1)
Moreover

Ax(j) < h\/2|B|Mo + h*My, j=1,...,m—1, (4.2)

where My = max{|f(z)|: = € [Lo, L]}.

Proof. By Lemma 3.1 there exists » € N, r > 1 such that either (3.3) or
(3.4) holds. In particular, we have z(1) < x(2). By (3.2) and (3.5), z(2) =
B+ h?f(B) < B + h?M,. So, if we choose h such small that h?M, < |B|, we
have (1) < x(2) < 0. Consequently » > 2 holds, and inequalities in (3.3) are
fulfilled. Multiplying (3.5) by Az(n) + Az(n — 1), we obtain

(Az(n))? = (Az(n —1))> = K2f(z(n))(z(n+ 1) —xz(n — 1)), neN. (4.3)

Summing (4.3) from 1 to r — 2, we have

(A —2)) = h?ilf(x(j))(m(j 1)~ a(j — 1)) < 20| B|Mo,

and

Ax(r —2) < hy/2|B|M,. (4.4)

(i) Let z(r) = 0. By (3.5) we get Az(r) = Ax(r — 1) < Az(r — 2) + h*M,.
Hence, (4.4) implies

Ax(r — 1) < h\/ 2|B’MO + hQMo, iU(?” + 1) < h\/ 2‘B|M0 + hQMo. (45)
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(i) Let z(r) > 0. By (3.5) we get Az(r — 1) < Az(r — 2) + h®2M,. Using (3.3)
we get z(r) < z(r—1)+ Az(r —2) + h*My < Ax(r —2) +h®*M,. So, by (4.4), we
can choose h > 0 such small that z(r) < L and Az(r) = Az(r—1)+h*f(z(r)) <
Ax(r —1). Further, using (4.4), we obtain

Ax(r —1) < h\/2|B|My + h*My, x(r + 1) < 2hy/2|B|My + 2h*M,.  (4.6)

Estimates (4.5) and (4.6) imply that we can find A > 0 such small that z(r+1) <
L, as well. If z(r) > z(r + 1), we put m = r.

Let z(r) <z(r+1). Ifx(r+1) > x2(r+2) or 2(r+2) > L, we put m = r+ 1.

Let z(r) <z(r+1) <z(r+2) < L. fx(r+2) >xz(r+3)or x(r+3) > L,
we put m = r + 2. Otherwise we continue as before. Due to Theorem 3.7, after
a finite number of steps, we get m > r + 2 fulfilling (4.1).

According to (3.7), the finite sequence {Az(j)}/Z] is increasing. Similarly, by
(1.3), f(z(r)) < 0 and f(z(j)) <0 for j =r+1,...,m, provided m > r + 1.
Therefore, by (3.5), Ax(r — 1) > Ax(r). If m > r + 1, the finite sequence
{Az(j)}7" is decreasing. Consequently (4.5) and (4.6) give (4.2). O

Lemma 4.2 Choose an arbitrary ¢ > 0. Let By, By € (Lo, 0) and let {x(n)}>2,
and {y(n)}e2, be a solution of problem (1.1), (3.2) with B = By and B = Bs,
respectively. Then

[2(n) = y(n)| < |Bi = Bule”™™  forn €N, n< 5 +1, (4.7)
where K is the Lipschitz constant for f on [Lo, L].
Proof. By (3.5) we have Az(k) = Az(k — 1) + h*f(x(k)), kK € N. Summing it

from 1 to k, we get by (3.2), Az(k) = h? Z?Zl f(z(y)), k € N. Summing it again
from 1 ton — 1, we get

n—1 k
z(n) =B +h* Y > f(2(j), neN,
k=1 j=1
and similarly
n—1 k
y(n) = By+h*> 3 fy(i), neN
k=1 j=1
Therefore
n—1 k
j2(n) —y(n)| < By — Bo| + 123 Y | f((4)) = fy(h))|
k=1 j=1
< B - Bal + (n = DI 3. |2(i) (i), mEN.
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By the discrete analogue of the Gronwall-Bellman inequality (see e.g. [8], Lemma
4.34), we get

1z(n) — y(n)| < | By — Bo|e™ V7" Ko for p € N.

So, (4.7) is proved. O

5 Existence of non-monotonous solutions

Definition 5.1 A solution of problem (1.1), (3.2) satisfying conditions (III) of
Theorem 3.7 is called a non-monotonous solution.

Lemma 5.2 Let {x(n)}>2, be a non-monotonous solution. Then there exists
c €N, ¢ >b, such that {x(n)}¢t} is decreasing and

z(c) >0>x(c+1) or z(c)=0. (5.1)

Proof. Consider b of Theorem 3.7 (III). If (b4 1) < 0, we put b = ¢ and (3.13)
yields z(c) > 0 > x(c+ 1). Clearly {z(n)}°} is decreasing. If z(b+ 1) = 0,
then for b +1 = ¢ we have z(b) > z(c¢) = 0. Further, by (3.5) and (3.13),
Az(c) = Ax(c—1)+h*f(z(c)) = Az(c—1) < 0. So, x(c—i— 1) < 0 and {x(n)}ct}
is decreasing. Let xz(b+ 1) > 0. Then (3.5) and (3.13) yield Az(b+ 1) =
Az(b) + R f(z(b+1)) < Az(b) <0, and hence z(b+2) < x(b+ 1). We see that
{x(n)}ct) and {Ax(n)}e_, are decreasing as long as z(c) > 0. If 2(n) > 0 for all
n > b, then lim,, ., Az(n) < 0 which gives lim,_,,, x(n) = —o0, a contradiction.
Therefore a finite ¢ fulfilling (5.1) must exist. O

Theorem 5.3 Let B € (B,0). There exists hg > 0 such that if h € (0, hp], then
the corresponding solution {x(n)}2, of problem (1.1), (3.2) is non-monotonous.

Proof. Choose B € (B,0). Then, by (1.3) and (1.4), we can find ¢ > 0 such
that

/BL f2)dz+e <0, (5.2)

Let {z(n)}2, be a solution of problem (1.1), (3.2) with this B.

(i) Assume that {z(n )}n—O is an escape solution. Then there exists b € N,
b > 1, such that {z(n)}>_, is increasing and (3.11) holds. Therefore, summing
(4.3) from 1 to b — 1 and multiplying by %, we get




By (1.2), f integrable on [Lg, L] and hence there exists § > 0 such that if (z(j +
1) —z(j —1))/2 < 0, then

S () UENH D a;

B

<e. (5.4)

Let hp € (0,1) be such that
)
J2|B| My + My

where My = max{|f(z)|: x € [Lo, L]}. Now, choose h € (0,hp|. Then (4.2)
implies (z(j + 1) — z(j — 1))/2 < 0 and we obtain (5.4). Consequently, by (5.2),
(5.3) and (5.4), we get

hp < (55)

0</ 2)dz+e <0,

a contradiction. So, {x(n)}22, is not an escape solution provided B € (B, 0) and
h e (0,hp].

(ii) Assume that {z(n)}>°, is a homoclinic solution, that is {x(n)}>, is in-
creasing, x(n) < L for n € N, and (3.9) holds. Summing (4.3) from 1 to n and
multiplying by %, we get

0<2<M> z;f (*7“);5'7(]_1), neN.  (5.6)

Let 6, hp and h be as in part (i). By (3.9), we can choose ny € N such that
|z(n+1) — L] < for n > ng. Then, as in part (i), we conclude that

> fn DD ),

5 <&, n>n. (5.7)

By (5.2), (5.6) and (5.7) we get a contradiction as in (i). We have proved that
{z(n)}°, is not a homoclinic solution provided B € (B,0) and h € (0, hp|.

Therefore, by virtue of Theorem 3.7, {x(n)}72, has to be a non-monotonous
solution provided B € (B,0) and h € (0, hg]. O

6 Existence of escape solutions

Theorem 6.1 Let B, € (Lo, B). There exists hg,, > 0 such that if h € (0, hp,,],
then the corresponding solution {x(n)}>, of problem (1.1), (3.2) with B = B
18 an escape solution.



Proof. Choose B, € (Lg, B). Then, by (1.3) and (1.4), we can find € > 0 and
co > 0 such that

L
/ f(z)dz —e=c}. (6.1)
Bes
Let {z(n)}2, be a solution of problem (1.1), (3.2) with B = Bs.

(i) Assume that {z(n )}n o is a non-monotonous solution. Then there exists
b € N such that {z(n)}’_, is increasing and (3.13) holds. As in the proof of
Theorem 5.3 we can ﬁnd d > 0 such that (5.4) holds with B = B,s. Choose
hg € (0,1) such that (5.5) is valid. Assume that h € (0, hp]. We derive (5.3) as
in the proof of Theorem 5.3. Consequently we get

Az(b—1) JZ w(j+1) —z(j—1)
flz
BEI = ’ (6.2)

\// z)dz —e=1¢y > 0.

Further, by (1.3) and (3.13) it holds f(x(b)) < 0, Az(b—1) > 0 and Axz(b) < 0.
Therefore (3.5) leads to |Ax( )|+ Ax(b—1) = h?|f(z(b))| and

Azx(b—1
h

) < hMy, My =max{|f(z)|: z € [Lo, L]}.

Choose hp,, € (0,hp] such that hg, My < c¢o. Then for each h € (0, hp,,] we
get Az(b—1)/h < ¢, contrary to (6.2). So, {z(n)};2, is not a non-monotonous
solution provided B.s € (Lg, B) and h € (0, hp,.].

(ii) Assume that {z(n)}32, is a homoclinic solution. We choose hp € (0,1)
and ny € N as in the proof of Theorem 5.3 part (ii) and arguing similarly we get

(5.6) and (5.7) with B = B,s. Using (6.1) we obtain

Ax(n n z(j+1)—x(j—1)
h\/_ J;f 2

\// z)dz —e=1¢y >0 forn >ny.

By (3.9), for any fixed h € (0, hp], we have
Ax(n)

lim

n—oo

=0,

contrary to (6.3). Put hp, = hp. Then {x(n)}>2, cannot be a homoclinic
solution provided B, € (Lo, B) and h € (0, hp,,].

Therefore, by virtue of Theorem 3.7, {x(n)};%, has to be an escape solution
provided B, € (Lo, B) and h € (0, hp,_]. O
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7 Existence of homoclinic solutions

Theorem 7.1 Let f fulfil (1.2)—(1.4). There exists hg > 0 such that for each h* €
(0, ho| there exists B* € (Lg,0) such that the corresponding solution {x(n)}>, of
problem (1.1), (3.2) with B = B* is a homoclinic solution.

Proof. First, assume that, in addition, f fulfils (3.10). By Theorems 5.3 and
6.1 there exists hy € (0,1) such that if we choose an arbitrary h € (0, hg], then it
holds:

(a) Let Bpon € (B,0). Then the corresponding solution {Z,e,(n)}%, of
problem (1.1), (3.2) with B = B,,, is a non-monotonous solution.

(b) Let Bes € (Lo, B). Then the corresponding solution {z.s(n)}ee, of
problem (1.1), (3.2) with B = B, is an escape solution.

Choose h € (0, hg], Bpon € (B,0) and the solution {,0,(n)}>,. By Lemma 5.2
there exists ¢ € N satisfying (5.1) for © = x,,,. That is Z,.,(c + 1) < 0. Let
B € (Lo, Bpon) and {x(n)}22, be the corresponding solution of problem (1.1),
(3.2). By Lemma 4.2,

(Znon (1) — 2(n)| < |Buon — Ble? ™, neN, n< % ey (7.1)

Since h < 1, (7.1) yields for n = c+ 1

Zpon(c + 1) — z(c + 1)| < |Bpon — Ble K.
Therefore we can find 6 > 0 such small that if B € (B, —9, Bnon|, then z(c+1) <
0. Consequently {x(n)}22, is a non-monotonous solution. According to (b) there
exists the minimal number B* € (Lg, B,o,) such that for B € (B*, B,,,] the
corresponding solution {x(n)}>2, is a non-monotonous.

Let {z*(n)}>2, be a solution of problem (1.1), (3.2) with B = B*. Assume
that {z*(n)}72, is non-monotonous. Then using the same arguments as above
we can find 6 > 0 such small that for B € (B* — 4§, B*] the corresponding solution
{z(n)}22, is also non-monotonous. This contradicts the minimality of B*.

Assume that {z*(n)}°, is an escape solution. By Lemma 3.5 there exists
b € N satisfying (3.11) for = z*. That is 2*(b+ 1) > L. Consider a solution
{z(n)}, of problem (1.1), (3.2) for B € (B*,0). We can use Lemma 4.2 again
and get

b
z*(n) — xz(n SB*—BebQKO, neN, n<—-+1. 7.2
h
Since h < 1, (7.2) yields forn = b+ 1
|z*(b+ 1) — z(b + 1)| < |B* — Ble" X,

Therefore we can find 6 > 0 such small that if B € [B*, B*40) then z(b+1) > L.
This yields that {x(n)}32, is an escape solution, contrary to the definition of B*.
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We have proved that {z*(n)}>, is a homoclinic solution of equation (1.1).
Since Ly < z*(n) < L for n € N, we can omit the assumption (3.10). O

Remark 7.2 The proof of Theorem 7.1 implies that the homoclinic point x* =
(B*, B*)T of equation (1.1) can be found in the following way. Choose h € (0, hg).
We have two subsets M., and Mg of the interval (Lg,0). M,,, consists of
all B such that the corresponding solutions {x(n)}>°, of problem (1.1), (3.2) are
non-monotonous. M,,, is non-empty by Theorem 5.3 and open by Lemma 4.2.
M consists of all B such that the corresponding solutions {z(n)}5°, of problem
(1.1), (3.2) are escape solutions. M. is non-empty by Theorem 6.1 and open by
Lemma 4.2. Each B* lying on the common boundary of M,,, and M., forms
the homoclinic point x* = (B*, B*)T satisfying (1.7).
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