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1 Introduction

We consider the autonomous second-order difference equation

x(n + 1) = 2x(n)− x(n− 1) + h2f(x(n)), n ∈ N, (1.1)

where h ∈ (0,∞) is a parameter. A sequence {x(n)}∞n=0 which satisfies (1.1) is
called a solution of equation (1.1). We assume that

L0 < 0 < L, f ∈ C1[L0, L], f(L0) = f(0) = f(L) = 0, (1.2)

xf(x) < 0 for x ∈ (L0, L) \ {0}, f ′(L0) > 0, f ′(0) < 0, f ′(L) > 0, (1.3)

∃B̄ ∈ (L0, 0) such that
∫ L

B̄
f(z) dz = 0. (1.4)

Equation (1.1) represents an autonomous discrete case of some models arising in
hydrodynamics. See [7], [9], [13], [16]. For monographs dealing with difference
equations we refer to [1], [2], [3], [8], [12], [14]. We mention also some recent papers

1



investigating the solvability of second-order discrete boundary value problems, for
example [4]–[6], [10], [11], [15], [17]–[24].

The main result of our paper is the existence of a homoclinic point of equa-
tion (1.1). The results presented here can be also useful when analysing the
discretization of corresponding boundary value problems for ordinary differential
equations, in particular, by finite-difference methods. To elucidate the geometry
of the dynamics of (1.1) it is convenient to convert it to an equivalent planar
map. To this end we let xn

1 = x(n− 1), xn
2 = x(n) and we obtain the equivalent

first-order system of difference equations

xn+1
1 = xn

2

xn+1
2 = 2xn

2 − xn
1 + h2f(xn

2 ),

which can be written as the iteration of the map(
x1

x2

)
7→
(

x2

2x2 − x1 + h2f(x2)

)
. (1.5)

Let us choose B ∈ (L0, 0) and denote

x0 =
(

B
B

)
, x =

(
x1

x2

)
, F

(
x1

x2

)
=
(

x2

2x2 − x1 + h2f(x2)

)
. (1.6)

Then (1.5) has the form x 7→ F(x), and the positive orbit γ+(x0) is the sequence

γ+(x0) = {x0,F(x0), . . . ,Fn(x0), . . .}.

The map F is invertible and

F−1
(

x1

x2

)
=
(

2x1 − x2 + h2f(x1)
x1

)
.

Hence the negative orbit γ−(x0) is the sequence

γ−(x0) = {x0,F−1(x0), . . . ,F−n(x0), . . .},

and the orbit γ(x0) = γ+(x0) ∪ γ−(x0) is uniquely determined for each B ∈
(L0, 0). Under the assumption that h > 0 is sufficiently small we prove that
(L, L)T is a saddle point of F and that there exists B∗ ∈ (L0, L) such that
(B∗, B∗)T is a homoclinic point for F, that is the orbit γ(x∗), when x∗ = (B∗, B∗)T ,
satisfies

lim
n→∞

Fn(x∗) = lim
n→∞

F−n(x∗) =
(

L
L

)
. (1.7)
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2 Fixed points

Due to (1.2) the map F given by (1.6) has three fixed points (L0, L0)
T , (0, 0)T

and (L, L)T in the set [L0, L]× [L0, L]. The Jacobian matrix of F has the form

DF(x) =
(

0 1
−1 2 + h2f ′(x2)

)
.

The assumption (1.3) gives 1
2
h2f ′(L) =: ε > 0, and hence

DF
(

L
L

)
=
(

0 1
−1 2 + 2ε

)

has the eigenvalues λ1,2 = 1 + ε ±
√

ε2 + 2ε. So, for a sufficiently small h > 0,
one eigenvalue has modulus greater than 1 and the other less than 1. Therefore
(L, L)T is an unstable hyperbolic fixed point—a saddle point. The same is true
for (L0, L0)

T . On the other hand, (1.3) yields 1
2
h2f ′(0) =: −δ < 0, and hence

DF
(

0
0

)
=
(

0 1
−1 2− 2δ

)

has the eigenvalues λ1,2 = 1−δ±i
√

1− (1− δ)2 with moduli equal to 1. Therefore

(0, 0)T is an elliptic fixed point which is a centre in the phase portrait of the
approximate linear map

x 7→ DF
(

0
0

)
x.

The stability and type of the fixed point (0, 0)T of the nonlinear map x → F(x)
cannot be determined solely from linearization and the effects of the nonlinear
terms in local dynamics must be accounted for.

3 Increasing solutions

For each values A0, A1 ∈ [L0, L] there exists a unique solution {x(n)}∞n=0 of
equation (1.1) satisfying the initial conditions

x(0) = A0, x(1) = A1. (3.1)

Such sequence {x(n)}∞n=0 is called a solution of problem (1.1), (3.1). In order
to find a point x∗ = (B∗, B∗)T satisfying (1.7) we choose B ∈ (L0, 0) and study
solutions of problem (1.1), (3.2), where

x(0) = B, x(1) = B. (3.2)
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Lemma 3.1 Let B ∈ (L0, 0) and let {x(n)}∞n=0 be a solution of problem (1.1),
(3.2). Then there exists r ∈ N, r > 1, such that

x(1) < x(2) < · · · < x(r − 1) < 0 ≤ x(r) if r > 2, (3.3)

x(1) < 0 ≤ x(2) if r = 2. (3.4)

Proof. Choose B ∈ (L0, 0) and consider the solution {x(n)}∞n=0 of problem (1.1),
(3.2). Then {x(n)}∞n=0 fulfils

∆x(n) = ∆x(n− 1) + h2f(x(n)), n ∈ N, (3.5)

x(0) = B, ∆x(0) = 0, (3.6)

where ∆x(n− 1) = x(n)− x(n− 1) is the forward difference operator. By (1.3)
and (3.2), we have f(x(0)) = f(x(1)) = f(B) > 0, and (3.5) yields ∆x(1) > 0.
Hence x(1) < x(2). If x(2) ≥ 0 we get (3.4). Otherwise x(1) < x(2) < 0 and we
repeat the above arguments to get ∆x(3) > ∆x(2) and x(2) < x(3). If x(3) ≥ 0,
we put r = 3 and get (3.3). Otherwise we continue as before and prove that after
a finite number r of steps we get (3.3) and

∆x(1) < ∆x(2) < · · · < ∆x(r − 1). (3.7)

Assume on the contrary that r is not finite, that is x(n) < 0 for each n ∈ N.
By (1.3), the inequality f(x(n)) > 0 holds for each n ∈ N, and the sequence
{∆x(n)}∞n=1 is positive and increasing. Therefore

lim
n→∞

∆x(n) > 0. (3.8)

The positivity of {∆x(n)}∞n=1 implies that {x(n)}∞n=1 is increasing. Since {x(n)}∞n=1

is bounded above by 0, there exists a finite limn→∞ x(n), contrary to (3.8). So,
we have proved that (3.3) holds for some r ∈ N. �

Lemma 3.2 Let B ∈ (L0, 0) and let {x(n)}∞n=0 be a solution of problem (1.1),
(3.2). If {x(n)}∞n=1 is increasing and x(n) < L for n ∈ N, then

lim
n→∞

x(n) = L, lim
n→∞

∆x(n) = 0. (3.9)

Proof. Since {x(n)}∞n=1 is increasing and bounded above by L, there exists
limn→∞ x(n) = L1 ≤ L. Consequently limn→∞ ∆x(n) = 0. By Lemma 3.1, we
have 0 < x(r) < x(r + 1) and L1 > 0. If L1 < L, then by virtue of (3.5),
limn→∞ ∆x(n) = limn→∞ ∆x(n − 1) + h2 limn→∞ f(x(n)), and hence 0 = 0 +
h2f(L1) < 0, a contradiction. Therefore L1 = L and (3.9) is proved. �

Definition 3.3 A solution satisfying the conditions of Lemma 3.2 is called a
homoclinic solution.
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Remark 3.4 Our main task is to prove the existence of a homoclinic solution
{x∗(n)}∞n=0 of (1.1), (3.2) for some B = B∗ ∈ (L0, 0). Since L0 < B ≤ x∗(n) < L
for n ∈ N ∪ {0}, we may assume without loss of generality that

f(x) = 0 for x ∈ (−∞, L0) ∪ (L,∞). (3.10)

Note that if we have the above homoclinic solution and put x∗ = (B∗, B∗)T ,
then the map F given by (1.6) satisfies (1.7), and hence the point (B∗, B∗)T is a
homoclinic point for F.

In what follows (Sec. 3–6) we assume that, in addition to (1.2)–(1.4), f fulfils
moreover (3.10).

Lemma 3.5 Let B ∈ (L0, 0) and let {x(n)}∞n=0 be a solution of problem (1.1),
(3.2). Assume that there exists b ∈ N, b > 1, such that {x(n)}b

n=1 is increasing
and

x(b) < L < x(b + 1) or x(b) = L. (3.11)

Then {x(n)}∞n=1 is increasing and

lim
n→∞

x(n) = ∞, lim
n→∞

∆x(n) = ∆x(b) > 0. (3.12)

Proof. Choose B ∈ (L0, 0) and consider the solution {x(n)}∞n=0 of problem
(1.1), (3.2) which is increasing for 1 ≤ n ≤ b. If the first condition in (3.11)
holds, then ∆x(b) > 0. Let x(b) = L. Then (3.5) yields ∆x(b) = ∆x(b −
1) + h2f(L) = ∆x(b − 1) > 0. Therefore (3.11) gives ∆x(b) > 0 in both cases.
By (3.10) and (3.11), f(x(b + 1)) = 0. Consequently, by (3.5), ∆x(b + 1) =
∆x(b) + h2f(x(b + 1)) = ∆x(b), and similarly ∆x(n) = ∆x(b) for n > b + 1.
This gives limn→∞ ∆x(n) = ∆x(b) > 0. Therefore {x(n)}∞n=1 is increasing and
limn→∞ x(n) = ∞. �

Definition 3.6 A solution satisfying the conditions of Lemma 3.5 is called an
escape solution.

Theorem 3.7 (On three types of solutions)
Let B ∈ (L0, 0) and let {x(n)}∞n=0 be a solution of problem (1.1), (3.2). Then
{x(n)}∞n=0 is just one of the following three types:

(I) {x(n)}∞n=0 is a homoclinic solution;

(II) {x(n)}∞n=0 is an escape solution;

(III) there exists b ∈ N, b > 1, such that {x(n)}b
n=1 is increasing and

0 < x(b) < L, x(b + 1) ≤ x(b). (3.13)
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Proof. Choose B ∈ (L0, 0) and consider the solution {x(n)}∞n=0 of problem (1.1),
(3.2). By Lemma 3.1, there exists r ∈ N, r > 1, such that {x(n)}r

n=1 is increasing
and x(r) ≥ 0. Let x(r) ≥ L. Then, due to (3.3), (3.4) and Lemma 3.5, {x(n)}∞n=0

is an escape solution. Now, assume that x(r) < L and that {x(n)}∞n=0 is neither
a homoclinic solution nor an escape solution. Then, by Lemma 3.2 and Lemma
3.5, the sequence {x(n)}∞n=1 cannot be increasing and cannot fulfil (3.9) or (3.11).
Therefore there exists b ≥ r such that {x(n)}b

n=1 is increasing and x(b+1) ≤ x(b).
Clearly x(b) < L. Otherwise (3.5) gets x(b+1) > x(b), a contradiction. We have
proved that {x(n)}∞n=0 is a solution of the type (III). �

4 Estimates of solutions

Lemma 4.1 Let B ∈ (L0, 0) and let {x(n)}∞n=0 be a solution of problem (1.1),
(3.2). If h > 0 is sufficiently small, then there exist constants r > 2, m ≥ r and
L1 ∈ (0, L) such that

x(1) < x(2) < · · · < x(r − 1) < 0 ≤ x(r) < · · · < x(m) = L1 if m > r,

x(1) < x(2) < · · · < x(r − 1) < 0 < x(r) = L1 if m = r.
(4.1)

Moreover
∆x(j) < h

√
2|B|M0 + h2M0, j = 1, . . . ,m− 1, (4.2)

where M0 = max{|f(x)|: x ∈ [L0, L]}.

Proof. By Lemma 3.1 there exists r ∈ N, r > 1 such that either (3.3) or
(3.4) holds. In particular, we have x(1) < x(2). By (3.2) and (3.5), x(2) =
B + h2f(B) ≤ B + h2M0. So, if we choose h such small that h2M0 < |B|, we
have x(1) < x(2) < 0. Consequently r > 2 holds, and inequalities in (3.3) are
fulfilled. Multiplying (3.5) by ∆x(n) + ∆x(n− 1), we obtain

(∆x(n))2 − (∆x(n− 1))2 = h2f(x(n))(x(n + 1)− x(n− 1)), n ∈ N. (4.3)

Summing (4.3) from 1 to r − 2, we have

(∆x(r − 2))2 = h2
r−2∑
j=1

f(x(j))(x(j + 1)− x(j − 1)) < 2h2|B|M0,

and
∆x(r − 2) < h

√
2|B|M0. (4.4)

(i) Let x(r) = 0. By (3.5) we get ∆x(r) = ∆x(r − 1) ≤ ∆x(r − 2) + h2M0.
Hence, (4.4) implies

∆x(r − 1) < h
√

2|B|M0 + h2M0, x(r + 1) < h
√

2|B|M0 + h2M0. (4.5)
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(ii) Let x(r) > 0. By (3.5) we get ∆x(r − 1) ≤ ∆x(r − 2) + h2M0. Using (3.3)
we get x(r) ≤ x(r− 1)+∆x(r− 2)+h2M0 < ∆x(r− 2)+h2M0. So, by (4.4), we
can choose h > 0 such small that x(r) < L and ∆x(r) = ∆x(r−1)+h2f(x(r)) <
∆x(r − 1). Further, using (4.4), we obtain

∆x(r − 1) < h
√

2|B|M0 + h2M0, x(r + 1) < 2h
√

2|B|M0 + 2h2M0. (4.6)

Estimates (4.5) and (4.6) imply that we can find h > 0 such small that x(r+1) <
L, as well. If x(r) ≥ x(r + 1), we put m = r.

Let x(r) < x(r +1). If x(r +1) ≥ x(r +2) or x(r +2) ≥ L, we put m = r +1.
Let x(r) < x(r + 1) < x(r + 2) < L. If x(r + 2) ≥ x(r + 3) or x(r + 3) ≥ L,

we put m = r + 2. Otherwise we continue as before. Due to Theorem 3.7, after
a finite number of steps, we get m > r + 2 fulfilling (4.1).

According to (3.7), the finite sequence {∆x(j)}r−1
j=1 is increasing. Similarly, by

(1.3), f(x(r)) ≤ 0 and f(x(j)) < 0 for j = r + 1, . . . ,m, provided m ≥ r + 1.
Therefore, by (3.5), ∆x(r − 1) ≥ ∆x(r). If m > r + 1, the finite sequence
{∆x(j)}m−1

j=r is decreasing. Consequently (4.5) and (4.6) give (4.2). �

Lemma 4.2 Choose an arbitrary c > 0. Let B1, B2 ∈ (L0, 0) and let {x(n)}∞n=0

and {y(n)}∞n=0 be a solution of problem (1.1), (3.2) with B = B1 and B = B2,
respectively. Then

|x(n)− y(n)| ≤ |B1 −B2|ec2K0 for n ∈ N, n ≤ c

h
+ 1, (4.7)

where K0 is the Lipschitz constant for f on [L0, L].

Proof. By (3.5) we have ∆x(k) = ∆x(k − 1) + h2f(x(k)), k ∈ N. Summing it
from 1 to k, we get by (3.2), ∆x(k) = h2∑k

j=1 f(x(j)), k ∈ N. Summing it again
from 1 to n− 1, we get

x(n) = B1 + h2
n−1∑
k=1

k∑
j=1

f(x(j)), n ∈ N,

and similarly

y(n) = B2 + h2
n−1∑
k=1

k∑
j=1

f(y(j)), n ∈ N.

Therefore

|x(n)− y(n)| ≤ |B1 −B2|+ h2
n−1∑
k=1

k∑
j=1

|f(x(j))− f(y(j))|

≤ |B1 −B2|+ (n− 1)h2K0

n−1∑
j=1

|x(j)− y(j)|, n ∈ N.
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By the discrete analogue of the Gronwall-Bellman inequality (see e.g. [8], Lemma
4.34), we get

|x(n)− y(n)| ≤ |B1 −B2|e(n−1)2h2K0 for n ∈ N.

So, (4.7) is proved. �

5 Existence of non-monotonous solutions

Definition 5.1 A solution of problem (1.1), (3.2) satisfying conditions (III) of
Theorem 3.7 is called a non-monotonous solution.

Lemma 5.2 Let {x(n)}∞n=0 be a non-monotonous solution. Then there exists
c ∈ N, c ≥ b, such that {x(n)}c+1

n=b is decreasing and

x(c) > 0 > x(c + 1) or x(c) = 0. (5.1)

Proof. Consider b of Theorem 3.7 (III). If x(b + 1) < 0, we put b = c and (3.13)
yields x(c) > 0 > x(c + 1). Clearly {x(n)}c+1

n=b is decreasing. If x(b + 1) = 0,
then for b + 1 = c we have x(b) > x(c) = 0. Further, by (3.5) and (3.13),
∆x(c) = ∆x(c− 1) + h2f(x(c)) = ∆x(c− 1) < 0. So, x(c + 1) < 0 and {x(n)}c+1

n=b

is decreasing. Let x(b + 1) > 0. Then (3.5) and (3.13) yield ∆x(b + 1) =
∆x(b) + h2f(x(b + 1)) < ∆x(b) ≤ 0, and hence x(b + 2) < x(b + 1). We see that
{x(n)}c+1

n=b and {∆x(n)}c
n=b are decreasing as long as x(c) ≥ 0. If x(n) > 0 for all

n > b, then limn→∞ ∆x(n) < 0 which gives limn→∞ x(n) = −∞, a contradiction.
Therefore a finite c fulfilling (5.1) must exist. �

Theorem 5.3 Let B ∈ (B̄, 0). There exists hB > 0 such that if h ∈ (0, hB], then
the corresponding solution {x(n)}∞n=0 of problem (1.1), (3.2) is non-monotonous.

Proof. Choose B ∈ (B̄, 0). Then, by (1.3) and (1.4), we can find ε > 0 such
that ∫ L

B
f(z) dz + ε < 0. (5.2)

Let {x(n)}∞n=0 be a solution of problem (1.1), (3.2) with this B.

(i) Assume that {x(n)}∞n=0 is an escape solution. Then there exists b ∈ N,
b > 1, such that {x(n)}b

n=1 is increasing and (3.11) holds. Therefore, summing
(4.3) from 1 to b− 1 and multiplying by 1

2
, we get

0 <
1

2

(
∆x(b− 1)

h

)2

=
b−1∑
j=1

f(x(j))
x(j + 1)− x(j − 1)

2
. (5.3)
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By (1.2), f integrable on [L0, L] and hence there exists δ > 0 such that if (x(j +
1)− x(j − 1))/2 < δ, then∣∣∣∣∣∣

b−1∑
j=1

f(x(j))
x(j + 1)− x(j − 1)

2
−
∫ L

B
f(z) dz

∣∣∣∣∣∣ < ε. (5.4)

Let hB ∈ (0, 1) be such that

hB <
δ√

2|B|M0 + M0

, (5.5)

where M0 = max{|f(x)|: x ∈ [L0, L]}. Now, choose h ∈ (0, hB]. Then (4.2)
implies (x(j + 1)− x(j − 1))/2 < δ and we obtain (5.4). Consequently, by (5.2),
(5.3) and (5.4), we get

0 <
∫ L

B
f(z) dz + ε < 0,

a contradiction. So, {x(n)}∞n=0 is not an escape solution provided B ∈ (B̄, 0) and
h ∈ (0, hB].

(ii) Assume that {x(n)}∞n=0 is a homoclinic solution, that is {x(n)}∞n=1 is in-
creasing, x(n) < L for n ∈ N, and (3.9) holds. Summing (4.3) from 1 to n and
multiplying by 1

2
, we get

0 <
1

2

(
∆x(n)

h

)2

=
n∑

j=1

f(x(j))
x(j + 1)− x(j − 1)

2
, n ∈ N. (5.6)

Let δ, hB and h be as in part (i). By (3.9), we can choose n0 ∈ N such that
|x(n + 1)− L| < δ for n ≥ n0. Then, as in part (i), we conclude that∣∣∣∣∣∣

n∑
j=1

f(x(j))
x(j + 1)− x(j − 1)

2
−
∫ L

B
f(z) dz

∣∣∣∣∣∣ < ε, n ≥ n0. (5.7)

By (5.2), (5.6) and (5.7) we get a contradiction as in (i). We have proved that
{x(n)}∞n=0 is not a homoclinic solution provided B ∈ (B̄, 0) and h ∈ (0, hB].

Therefore, by virtue of Theorem 3.7, {x(n)}∞n=0 has to be a non-monotonous
solution provided B ∈ (B̄, 0) and h ∈ (0, hB]. �

6 Existence of escape solutions

Theorem 6.1 Let Bes ∈ (L0, B̄). There exists hBes > 0 such that if h ∈ (0, hBes ],
then the corresponding solution {x(n)}∞n=0 of problem (1.1), (3.2) with B = Bes

is an escape solution.
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Proof. Choose Bes ∈ (L0, B̄). Then, by (1.3) and (1.4), we can find ε > 0 and
c0 > 0 such that ∫ L

Bes

f(z) dz − ε = c2
0. (6.1)

Let {x(n)}∞n=0 be a solution of problem (1.1), (3.2) with B = Bes .

(i) Assume that {x(n)}∞n=0 is a non-monotonous solution. Then there exists
b ∈ N such that {x(n)}b

n=1 is increasing and (3.13) holds. As in the proof of
Theorem 5.3 we can find δ > 0 such that (5.4) holds with B = Bes . Choose
hB ∈ (0, 1) such that (5.5) is valid. Assume that h ∈ (0, hB]. We derive (5.3) as
in the proof of Theorem 5.3. Consequently we get

∆x(b− 1)

h
√

2
=

√√√√√b−1∑
j=1

f(x(j))
x(j + 1)− x(j − 1)

2

>

√∫ L

Bes

f(z) dz − ε = c0 > 0.

(6.2)

Further, by (1.3) and (3.13) it holds f(x(b)) < 0, ∆x(b− 1) > 0 and ∆x(b) ≤ 0.
Therefore (3.5) leads to |∆x(b)|+ ∆x(b− 1) = h2|f(x(b))| and

∆x(b− 1)

h
≤ hM0, M0 = max{|f(x)|: x ∈ [L0, L]}.

Choose hBes ∈ (0, hB] such that hBesM0 < c0. Then for each h ∈ (0, hBes ] we
get ∆x(b− 1)/h < c0, contrary to (6.2). So, {x(n)}∞n=0 is not a non-monotonous
solution provided Bes ∈ (L0, B̄) and h ∈ (0, hBes ].

(ii) Assume that {x(n)}∞n=0 is a homoclinic solution. We choose hB ∈ (0, 1)
and n0 ∈ N as in the proof of Theorem 5.3 part (ii) and arguing similarly we get
(5.6) and (5.7) with B = Bes . Using (6.1) we obtain

∆x(n)

h
√

2
=

√√√√ n∑
j=1

f(x(j))
x(j + 1)− x(j − 1)

2

>

√∫ L

Bes

f(z) dz − ε = c0 > 0 for n ≥ n0.

(6.3)

By (3.9), for any fixed h ∈ (0, hB], we have

lim
n→∞

∆x(n)

h
= 0,

contrary to (6.3). Put hBes = hB. Then {x(n)}∞n=0 cannot be a homoclinic
solution provided Bes ∈ (L0, B̄) and h ∈ (0, hBes ].

Therefore, by virtue of Theorem 3.7, {x(n)}∞n=0 has to be an escape solution
provided Bes ∈ (L0, B̄) and h ∈ (0, hBes ]. �
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7 Existence of homoclinic solutions

Theorem 7.1 Let f fulfil (1.2)–(1.4). There exists h0 > 0 such that for each h∗ ∈
(0, h0] there exists B∗ ∈ (L0, 0) such that the corresponding solution {x(n)}∞n=0 of
problem (1.1), (3.2) with B = B∗ is a homoclinic solution.

Proof. First, assume that, in addition, f fulfils (3.10). By Theorems 5.3 and
6.1 there exists h0 ∈ (0, 1) such that if we choose an arbitrary h ∈ (0, h0], then it
holds:

(a) Let Bnon ∈ (B̄, 0). Then the corresponding solution {xnon(n)}∞n=0 of
problem (1.1), (3.2) with B = Bnon is a non-monotonous solution.

(b) Let Bes ∈ (L0, B̄). Then the corresponding solution {xes(n)}∞n=0 of
problem (1.1), (3.2) with B = Bes is an escape solution.

Choose h ∈ (0, h0], Bnon ∈ (B̄, 0) and the solution {xnon(n)}∞n=0. By Lemma 5.2
there exists c ∈ N satisfying (5.1) for x = xnon . That is xnon(c + 1) < 0. Let
B ∈ (L0, Bnon) and {x(n)}∞n=0 be the corresponding solution of problem (1.1),
(3.2). By Lemma 4.2,

|xnon(n)− x(n)| ≤ |Bnon −B|ec2K0 , n ∈ N, n ≤ c

h
+ 1. (7.1)

Since h < 1, (7.1) yields for n = c + 1

|xnon(c + 1)− x(c + 1)| ≤ |Bnon −B|ec2K0 .

Therefore we can find δ > 0 such small that if B ∈ (Bnon−δ, Bnon ], then x(c+1) <
0. Consequently {x(n)}∞n=0 is a non-monotonous solution. According to (b) there
exists the minimal number B∗ ∈ (L0, Bnon) such that for B ∈ (B∗, Bnon ] the
corresponding solution {x(n)}∞n=0 is a non-monotonous.

Let {x∗(n)}∞n=0 be a solution of problem (1.1), (3.2) with B = B∗. Assume
that {x∗(n)}∞n=0 is non-monotonous. Then using the same arguments as above
we can find δ > 0 such small that for B ∈ (B∗− δ, B∗] the corresponding solution
{x(n)}∞n=0 is also non-monotonous. This contradicts the minimality of B∗.

Assume that {x∗(n)}∞n=0 is an escape solution. By Lemma 3.5 there exists
b ∈ N satisfying (3.11) for x = x∗. That is x∗(b + 1) > L. Consider a solution
{x(n)}∞n=0 of problem (1.1), (3.2) for B ∈ (B∗, 0). We can use Lemma 4.2 again
and get

|x∗(n)− x(n)| ≤ |B∗ −B|eb2K0 , n ∈ N, n ≤ b

h
+ 1. (7.2)

Since h < 1, (7.2) yields for n = b + 1

|x∗(b + 1)− x(b + 1)| ≤ |B∗ −B|eb2K0 .

Therefore we can find δ > 0 such small that if B ∈ [B∗, B∗+δ) then x(b+1) > L.
This yields that {x(n)}∞n=0 is an escape solution, contrary to the definition of B∗.
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We have proved that {x∗(n)}∞n=0 is a homoclinic solution of equation (1.1).
Since L0 < x∗(n) < L for n ∈ N, we can omit the assumption (3.10). �

Remark 7.2 The proof of Theorem 7.1 implies that the homoclinic point x∗ =
(B∗, B∗)T of equation (1.1) can be found in the following way. Choose h ∈ (0, h0].
We have two subsets Mnon and Mes of the interval (L0, 0). Mnon consists of
all B such that the corresponding solutions {x(n)}∞n=0 of problem (1.1), (3.2) are
non-monotonous. Mnon is non-empty by Theorem 5.3 and open by Lemma 4.2.
Mes consists of all B such that the corresponding solutions {x(n)}∞n=0 of problem
(1.1), (3.2) are escape solutions. Mes is non-empty by Theorem 6.1 and open by
Lemma 4.2. Each B∗ lying on the common boundary of Mnon and Mes forms
the homoclinic point x∗ = (B∗, B∗)T satisfying (1.7).
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