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1 Introduction

For [a,b] C R we denote by C'[a, b] the set of functions having continuous first derivatives
on [a,b] and by L[a,b] the set of functions Lebesgue integrable on [a,b]. Choose p € N
and consider the division D = {¢;}!_, of the interval [0,7] C R, where 0 =t; < t; < ... <
t, < t,4+1 = T. Further denote by C}, the set of functions z : [0,7] — R

Z(0) (t) for te [O,tl]
.’L’(t) . .Z'(l) (t) for t e (tl,tg] (11)

Z(p) (t) for te (tp, 1],
where ;) € Ct;, t;11], 0 <@ < p, and denote by ACY, the set of functions 2 € Cp, having

first derivatives absolutely continuous on (¢;,t;+1), 0 < i < p. For z € C3, we will use the

notation
lim 2'(t). (1.2)

! I ! . ’ -
x(ti)—tl_lglil‘(t), 1<i<p+1, x(o)_Ho+
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2 I. Rachunkova

In this paper we study the existence of positive solutions of the following singular
Dirichlet boundary value problem (BVP) with impulses

—u"(t) = f(t, u(t), u'()), (1.3)
uti+) = Jiu(t), u'(tit) = Mi(u'(t:)), 1 <i<p, (1.4)
w(0) = u(T) = 0, (15)

where u/(t;),1 < i < p, are given by (1.2). Here we suppose that J; : R — R, M; : R — R,
1 <@ < p, are continuous and increasing functions and that f fulfils the Carathéodory
conditions on the set [0,7] x ((0,00) x R), which means that

(1) for each (z,y) € (0,00) x R the function f(-,z,y) is measurable on [0,77;

(1) for a.e. t € [0, 7] the function f(¢,,-) is continuous on (0,00) x R;

(i11) for each compact set K C (0,00) x R the function m (t) = sup{|f(¢,z,y)| : (z,y) €
K} is Lebesgue integrable on [0, 7).

Definition 1.1. By a solution of BVP (1.3)-(1.5) we understand a function z € ACj,
which satisfies the impulsive conditions (1.4) and the Dirichlet boundary conditions (1.5)
and for a.e. t € [0,7] fulfils the equation (1.3). If x is positive on (0,7) it is called a
positive solution of BVP (1.3)-(1.5).

The fact that BVP (1.3)-(1.5) is singular means that the right hand side f of the
differential equation does not fulfil the Carathéodory conditions on the whole region where
we seek for solutions, i.e. on [0, 7] x [0, 00) x R. Here, the Carathéodory conditions can be
broken in the phase variable z. Particularly, for a.e. ¢t € [0,7] and all y € R the function
f(t,z,y) can be unbounded for x — 0+. Such singular problems without impulse effects
have been solved before for example in [1]-[4], [7], [9]-[12], [14]-[17], [19]-[25]. But as far as
we know the solvability of singular problems with impulses has not been studied yet. In
this paper we want to fill in this gap and extend the existence results on the case of singular
problems with impulses. Our main goal is to find conditions for f,J;, M;;1 < 1 < p,
which guarantee the existence of at least one solution of problem (1.3)-(1.5). The proofs
are based on the method of a priori estimates, on the regularization technique, on the
topological degree arguments and on the Vitali convergence theorem.

In what follows we assume that C*[a,b] and L[a, b] is respectively equipped with the
norm

lzllcr = max{|z(t)| + |2"(t)] : ¢ € [a, 0]}, and [|y[|z, = /ab ly(t)]dt.

Then C'[a, b] and Ly[a, b] become Banach spaces. For any measurable set M C R, (M)
denotes the Lebesgue measure of M.

Definition 1.2. A collection A C Lq[a,b] is called uniformly absolutely continuous on
[a,b] if for every € > 0 there exists § > 0 such that if ¢ € A and M C [a,b] with

pu(M) < 6, then
/M lo(t)|dt < e.
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Theorem 1.3. (Vitali convergence theorem, [5], p. 178-180.) Let [a,b] C R and let { f,}
be a sequence in Li[a,b] which is convergent to f for a.e. t € |a,b]. Then the following
statements are equivalent:

(a) f € Lila,b] and imy, o || fr — fllz, = 0.
(b) The set {f, :n € N} is uniformly absolutely continuous on [a, b].

2 Main assumptions

In the study of problem (1.3)-(1.5) we will work with assumptions:

(Hy) The impulse functions J; : R - R, M; : R - R, 1 < i < p, are continuous and
increasing and

(H2) @)
xliglo T < o0, 1 S v S b, (22)
M M; .
li Y1) >0, 1 Miz) 1, 2<i<p, (2.3)
Tr—00 € Tr—00 €

lim ——— >0, lim ——>1, 1<i<p-—1 (2.4)

m m (3 — 1. .

T—>—00 Mp(g;) T 5 Mz(x) ’ =t=p

(H3) The function f satisfies the Carathéodory conditions on the set [0,7] x ((0, 00) X R)
and there exists a function ¢ Lebesgue integrable on [0, 7] such that

0 < (t) < f(t.2.) 2.5)
for a.e. t € [0,7] and each = € (0,00),y € R.

(H4) A function h satisfies the Carathéodory conditions on the set [0,77] x [0,00), h is
nonnegative and nondecreasing in its second argument and

1 [T
lim — [ A(t,2)dt =0, (2.6)

2= z Jo

a function ¢ is nonnegative and essentially bounded on [0,7] and a function w is
positive, nonincreasing on (0, co) and

/OTw(s)ds < 00. (2.7)

(Hs) For a.e. t € [0,7] and for each x € (0,00),y € R

Ft,@,y) < h(t, e+ ly]) + g(H)w(z), (2.8)

where functions h, ¢, w satisfy (Hy).
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Remark 2.1. Since w in (Hy) is positive and nonincreasing, the assumption (2.7) implies
that [} w(s)ds < oo for each V € R,.

3 A priori estimates

In order to construct auxiliary regular problems and to use convergence theorems we need
a priori estimates of solutions both below and above. Such types of estimates are proved
in lemmas of this section.

Lemma 3.1. Suppose that (Hy) holds and that u € AC} fulfils (1.4),(1.5) and
0< —d"(t) fora.e tel0,T]. (3.1)
Then u is positive on (0,T) and there exists £ € (0,1") such that
u'(€) =0, u'>00n[0,8), u <0on((£T]. (3.2)
Proof. Let u € AC} fulfil (1.4), (1.5) and (3.1). Then
u' is decreasing on (t;,t;41], 0<i <p. (3.3)

(1) Suppose u'(0) < 0. Then, by (3.3), v'(t) < 0 for ¢t € (0,¢,] and u'(t;+) = M, (u'(t1)) <
M;(0) = 0. Therefore u'(t1+) < 0 and, by (3.3), v/(t) < 0 for t € (¢,t2]. Repeating these
arguments we get

u'(t) <0 for te (0,7 (3.4)
Then, according to (1.5), u(t) < 0 for ¢t € (0,%1] and u(t1+) = Ji(u(t1)) < J1(0) = 0.
Therefore u(t;+) < 0 and, by (3.4), u(t) < 0 for t € (t1,t2]. Repeating it we get u(t) < 0
for t € (0,77, contrary to (1.5). Therefore we have proved

' (0) > 0. (3.5)

(ii) Suppose u'(T") > 0. Then, by (3.3), v'(t) > 0 for t € (t,,T) and u'(t,+) > 0, which
gives My(u'(ty)) > 0 = M,(0). Since M, is increasing, we get u'(¢,) > 0. By (3.3) we
conclude that u'(t) > 0 for t € (¢,_1,1,). Repeatlng these arguments we get

u'(t) >0 forte|0,7). (3.6)

Then, according to (1.5), u(t) < 0 for ¢t € (t,,7") and u(t,+) < 0. Therefore J,(0) =0 >
u(ty+) = Jp(u(ty)), and having in mind that J, is increasing, we get u(t,) < 0, which
together with (3.6) gives u(t) < 0 on (¢,—1,t,]. Repeating it we deduce that u(t) < 0 for
t € [0,7), contrary to (1.5). Therefore we have proved

W' (T) < 0. (3.7)
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(#i) (Hy) implies that
if z € R\ {0}, then sgn(M;(z)) =sgnz, 1 <i <p. (3.8)

(a) Suppose that there is ig € {1,...,p} such that «'(¢;,) = 0. Then, by (Hy), u'(t;,+) =
M;,(0) = 0. By virtue of (3.3) and (3.8), we have u/(t) > 0 for t € [0,;,), u'(t) < O for
t € (tiy, T]. Therefore (3.2) is satisfied with & = t;,.

(b) Let u/(t;) # 0,1 < i < p. Then, by (3.8), sgnu'(t;4) = sgnu'(t;),1 < i < p. Thus, by
(3.3), (3.5) and (3.7), there exists & € UY_(¢;, t;11) satisfying (3.2). O

Definition 3.2. Suppose that u € AC) and £ € (0,T) are from Lemma 3.1. Then £ is
called a critical point of u.

Lemma 3.3. Suppose that (H,) holds and that 1 € Ly[0,T]. Then there exists a constant
v > 0 such that for any function u € AC} having a critical point & = &(u) and fulfilling
(1.4),(1.5) and

0<y(t) < —u"(t) forae tel0,T1], (3.9)

the following estimates hold:
(1) if € € D, ice. £ =141 for some j = j(u) € {0,...,p—1}, then

t—1t;
- _Zt'7 fort e (titiy], 0<i<j
u(t) > ¢ Y 510
t.z+11 i fort € (titiy1], j+1<i<p;
i+1 7 U
(11) if § € (0, 1)\ D, i.e. § € (tj,t;41) for some j = j(u) € {0,...,p}, then
4 t_t
t th forte (titi], 0<i<j—1
it1— i
t—t
f—tj-fy forte (tjaf]a
U (3.11)
-
75]:17—57 for t € (&, 1544,
J
e +1<:<
tit — 1 forte (titia], j+1<i<p.
\ (3 I3

Proof. Let u € AC} satisfy (1.4), (1.5) and (3.9). Denote u(t;) = ¢;, 0 < i < p+ 1.
Then, by Lemma 3.1,

Co=cp1 =0, ¢; >0, Ji(c;) >0, 1<i<p. (3.12)
Let G;(t, s) be the Green’s function of the problem
—U”(t) = 0, U(tz) = U(ti+1) = 0, 0 S 1 S D,

i.e.
(s — i) (tiz1 — 1)
liy1 — U
Gi(t,s) =
= = )t — )
livi — 1

) tiSSStStH—l)

;o i<t <s <1



6 I. Rachunkova

Denote Jy(cy) = ¢ and let for 0 < ¢ < p, uy) € Ct;, t;41] correspond to w in the sense of
(1.1), i.e.

u(0y(0) = 0 = u(0), uw)(t) =u(t) on (¢, tit1], ue)(ti) = u(ti+). (3.13)

We have
—ufy(t) = —u"(t) ae. on (ti,ti), 0 < i < p,
u@y(ti) = Ji(e),  uey(tiv) = cipr, 053 < p.
Now, let us choose an arbitrary ¢ € {0,...,p}. Hence, for t € [t;,t;11], we get

=1 tiy1 — 1
Civ1 T
liv1 — U o

u@(t) =

tiy1
Ji(ci) — /t ' Gi(t, s)u”(s)ds,

liv1 — U

which, by virtue of (3.12) and (3.9), yields

tit1
mMﬂ2/+GMJW@%hMGM@M. (3.14)
t;
Put Gilt. 5)
i t, S
( 5) (t — ti)(ti—i—l — t) on [ +1] X [ +1] ( )
Then,
®, >0 on (ti;ti—f—l) X (ti;ti—H) (316)
and for s € (tz, ti+1)
1 OGZ t, ti B
lim ®,(t,s) = (t,5) SR . 0,
=t + tiv1 — & ot (t,5)=(ti,s) (ti—f—l — ti)Q
-1  0G(t, —t;
lim ®;(t,s) = ( S)\ S )
t—=tip1— tiv1 — & ot (t,8)=(tit+1,5) (ti+1 — t1)2

Therefore, by (3.16), we can extend the function ®; at ¢ = ¢;,¢ = t;41 such that for each
s € (t;,ti11) the function ®;(+, s) is continuous and positive on [t;,¢;11]. Put

ﬂ@:ﬂ%hﬁﬁm@@ for € [t t5.1]. (3.17)

Then, by virtue of (3.9), the function F; is continuous and positive on [¢;,t;+1] and so we
can find 6; > 0 such that F;(t) > ¢; for t € [t;,t;11]. Therefore, by (3.14), (3.15) and
(3.17)

Lit1
() > (t = t) (tips — 1) /t (8, s)u(s)ds =
So,
(tiy1 — t:)°0; =7 > 0.

] =

maX{U(i) (t) it e [ti;tH—l]} Z
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If we put v = min{v;,0 < i < p}, we have
max{u)(t) : t € [ti, tia]} =27, 0<i <p. (3.18)

Now, we are going to prove the assertion (1).
Suppose that v has a critical point § and & = ¢, for some j € {0,...,p—1}. Choose an
arbitrary ¢ € {0,...,7}. Then, by (3.9), (3.2) and (3.13), u(; is concave and increasing
on [t;, ti41]. Moreover ug)(t;) > 0 and ug)(tiz1) > 7, by (3.18). Hence we conclude that

u(t) = u(t) > ——-

> v forte (t;,ti], 0<i<j.
tiy1 — 1

Now consider the case j+1 <4 < p. For such 7 the function u(; is concave and decreasing
on [t;, tit1], u@)(ti) > 7, ug)(tiy1) > 0. Therefore the estimate

liv1 —1

u(t) = ug(t) > v fort e (ti,ti], 7+1<1i<np,

Tty — 1

is true.

To prove the assertion (II) we assume that & € (¢;,t;11) for some j € {0,...,p} and
get (3.11) by means of the concavity and monotonicity arguments as in the proof of (3.10).
O

Lemma3.4. Let ¢ € L1[0,T]. Suppose that (H,), (Hs) and (Hy) with h instead of
h hold. Then there exists constants A*, B* > 0 such that for any function u € AC}
satisfying (1.4), (1.5), (3.9) and

—u"(t) < h(t,u(t) + |u'(t)]) + q(t)w(u(t)) for a.e. t €0,T], (3.19)
the estimates
sup{u(t) : t € [0, 7]} < A, sup{|u'(t)]: t €[0,T]} < B* (3.20)

are valid.
Proof. Let u € AC}, satisfy (1.4), (1.5), (3.9), and (3.19). According to Lemma 3.1 and
Definition 3.2 u has a critical point £ € (0,7 satisfying (3.2). We distinguish two cases:
(i) € belongs to the division D and (7i) £ does not belong to D.

Case (i). Suppose that there is j € {0,...,p — 1} such that £ = ¢;,,. Denote

u'(t)=pi, 0<i<p+1. (3.21)

Then
W (ti+) = Mi(pi), 1<i<p, (3.22)

and by (3.2) and (H,)

pi >0, M;(p;) > 0for 1 <4 <j, po >0,

pi+1 =0, Mji1(pj41) =0, (3.23)
pi <0, Mi(p;) <0forj+2<i<p, ppy1 <O,
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Further, due to (3.3),

po > p1,  Mi(pi) > piy1, 1< i< p (3.24)
and
sup{|u'(£)] - t € (0,11)} = v/(0) = po,
sup{|u'(t)|: t € (ti, tix1)} = W/ (ti+) = Mi(pi), 1 <i <, (3.25)
sup{|u'(t)] : t € (ti,tix1)} = [0/ ((tiga)| = [pial, G+1<i<p.

Part 1. First, we are going to find bounds for u and |«'| on [0,%;41]. Denote
a =max{tiy1 —1;,0 <0 < j}, Mo(po) = po,
(3.26)
() =supess{q(t) : t € [0,T]}, = %fg w(t)dt

Here v > 0 is from Lemma 3.3.
According to Lemma 3.1, u is increasing on (t;, t;41], 0 < i < j, and u(tp) = u(0) =0,
which together with (3.25) yields

sup{u(t) : t € (0,t1)} = u(ty) < apy =11 >0,

sup{u(t) 1 t € (ts, tr1)} = ultivr) < Ji(ri) + aMy(pi) = riss > 0, (3.27)

for 1<1<y.

Integrating (3.19) on [0, ¢,41] we obtain, by virtue of (3.21) and (3.22)

po+zM o) zpz < [ (e ule) + 1 O) + ale)olu(0)) de.

wherefrom, due to (3.25)-(3.27),
J M(pz) < Zz 1pz
‘ R 4 (3.28)
+ X [ Bty g+ Mi(p))dt + Q Jy w(u(t))dt.

Applying statement (1) of Lemma 3.3 we get

tj+1 i+1 - 1 J Y
))dt < / b - ; / t)dt,
/0 Z y 7;0 i+1 — o w(t)

z—l—l_t

hence, by (3.26), .
/” wu(t))dt < Tw. (3.29)
0

Emploing (3.28) and (3.29), it follows that

1 < W (i +Z/ T t y Tit1 +Mz(pz))dt+QT@) . (330)

Assume for the sake of contradiction that:
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(a1 ) there is a sequence of functions {u,,}, satisfying (1.4), (1.5), (3.9), (3.19) such
that each u,,, m € N, has its critical point equal to ¢;;
(az) if we put (according to (3.21))

up, (ti) = pim, 0<i<j+1, meN, (3.31)
then there is a k € {0,...,} such that

lim py., = 0. (3.32)

m—o0

Assuming (a;) and (ay) we derive a contradiciton in the following way. Let k be the
largest number satisfying (3.32), i.e. if k < j, then {p;m},k+1 < i < j, are bounded.
First, let us show that (3.32) implies

lim p;,, =00, 0<i<k. (3.33)

m—o0

Really, if £ = 1 then (3.33) follows from the first inequality in (3.24). If £ > 2, then, by
the second inequality in (3.24), limy, 0o Mi—1(pk—1,m) = 00. By virtue of (H;), it follows
that limy, o pr—1,m = 0o. Continue inductively we get (3.33). Now, according to (3.27),
denote

T1,m = OP0,m,
{ Ti+1,m = Ji(/ri,m) —+ O{]\4,L(p1,m‘)7 1 S 7 S j’ m € N. (334)

Then, by virtue of (3.26), (3.30) and the assumption (a;), we put My(pom) = pom and
have

25:1 Pi,m
Xl Mi(pim)
+z{:0 R i+ Mi(pim))dt + QT@
Sizo Mi(pim)
Consider the first member on the right-hand side of (3.35). Note that due to (2.3) and
(3.33) we can find § > 0 and mg € N such that for m > my

Ml(Pl,m) > P1m0,

_|_
(3.35)

, me&N,

(3.36)

Therefore, using also the first inequality in (3.24), we get

_ Zgzl Pi,m < Z?:l Pi,m 1 Zg:k—l—l Pi,m
Zf:o Mi (pi,m) (1 + 6) Zi§:1 Pi,m Po,m

m

(if £ = j, the last member is zero), which yields

) 1

Now, consider the second member in (3.35) and put

Zim = Tit+1,m + Mz(pz,m)a 0 S 7 S j, m € N. (338)
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Then conditions (3.33), (3.36) and (3.34) imply that

limm—)oori,mzooa 1 §Z§k+1>
{ lim, o0 2in =00, 0<17< k. (3.39)
It is immediate from (2.6), that for 0 < ¢ < k
lim — / R z)dt = 0 (3.40)
ml—I)IC%O Zi,m t 7ZZam -V .

Further, for 1 < i < j, by virtue of (3.34) and (3.38), it follows

Zim < JZ (ri,m)
Z‘Z:o Ml(Pl,m) Z‘Z:o Ml(Pl,m)

+14+a=

= M) j L +1l+a<
Ti,m Zl:O M, (pl,m)
) () o
Ti—1,m S0 Mi(pim

Continue inductively we get for 1 <i <3

)+a>+1+a.

Tim

Zim
S L I—
Z?:o M, (Pl,m)
Ji 7,m Jif 1—1,m Jif 1—2,m '] m
(T’ ) ( 1(1" L ) ( Q(T 2 ) ( 1(04/)0, )a—l—a...) +a> +a> +1+a.
Tim Ti—1,m Ti—2.m apo,m
Finally,
m 1 m
7 0, = ( +ja)p0, <1+ a.
Yico Mi(prm) — pom + Xz Mi(prm)
Therefore, by virtue of (2.2), for 0 < i < k,
. Zim
lim J— <
m=e0 3o Mi(pum) (3.41)

S Ai(Aifl(Az?Q(- . .A1a+ Q.. ) + Oé) +a+1+ a,

where J
A; = lim i) _ oo 1<i<k.

2—r00 z !

Hence, using (3.38), (3.40) and (3.41), we get that for 0 < i < k

lim ftﬁ-wrl ﬁ(t; Fit1m + M;(pim))dt
meree Z{:O M, (pl,m)

Now, we are going to show that if £ < j, then (3.42) is valid for £ + 1 < i < j, as well.
There are two cases to consider. These are {ry s, } bounded and {ry42,} unbounded.

= 0. (3.42)
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In the first case we see that {r;,,} is bounded for £ +2 < i < j+1 by (3.34), and {z;,,}
is bounded for k +1 < i < j, by (3.38). Therefore {/"*" h(t, 2i,,)dt} is bounded which
together with (3.33) yields (3.42) for £ + 1 < i < j. In the second case we can suppose
that lim,, e 7k12,m = 00. Thus, due to (3.38), limy, 00 2k+1,m = 00 and so, (3.40), (3.41)
and consequently (3.42) are valid for i = k£ + 1. Continue inductively we conclude that
(3.42) is true for k41 < i < j in the second case, as well. To summarize, we have proved
that (3.42) is valid for 0 <7 < j.
Let us go back to (3.35). The condition (3.37) and (3.42) imply that

i
1< lim _ L=l Pem +
m=00 320 o Mi(pim)
j t; 7 _
i Iy Jh h(t,riflym + Mz(pzym))dt—l— QTw < 1 |
m—eo >0 Mi(pim) 1+9

a contradiction. It means that there exists B; > 0 such that
sup{|u'(t)| : t € [0,tj41]} < By, (3.43)

for each function u € ACY, satisfying (1.4), (1.5), (3.9), (3.19) and having its critical point
equal to ¢;4;. This implies that there is A; > 0 such that

sup{u(t) : t € [0,¢;41]} < A;. (3.44)

Part 2. It remains to estimate v and |v'| on (¢;41,T]. According to Lemma 3.1, u is
decreasing on (;,t;41), j+1 <14 < p, and u(ty11) = u(T') = 0, which together with (3.44)
yields

sup{[(u(t)] : ¢ € (tj11,t512)} = u(tjat+) < Jjna(dy) = ¢jp2 >0,
sup{|u(t)] : ¢ € (i, tis1)} = w(tit) < Jile;)) = i1 >0, j+2 <1 <p,
and we can find a constant A; > 0 (independent on ) satisfying
sup{u(t) 1t € [tip, T)} < A;, j+2<i<p+1. (3.45)

Integrating (3.19) on [t;41,T] we obtain by virtue of (3.21), (3.22)

5 M)~ 52 s [ (Bt + 0D + a0

wherefrom, due to (3.25), (3.45) and (3.26)
f+]1+2 |pl| < Zz =542 |M (p1)|

+ 0 ST R Ay |pial)dt + Q S w(u(t))dt.

Applying statement (I) of Lemma 3.3, we get

(3.46)

T H—l —t 1 u v
/ ))dt < Z / . dt== > (tin —ti)/ w(t)dt,
1tj+1 i=j+1 tit1 — 1 i=j+1 0



12 I. Rachunkova

hence
/ " w(u(t)dt < Ta. (3.47)

tj+1

Emploing (3.46) and (3.47), it follows that

1< Z”“ o (Z | M;(pi)] + Z / h(t, A; +|pz+1|)dt+QTw). (3.48)

% _7+2 1=j+2 i=j+1

Assume for the sake of contradiction (a;) as in Part 1 and instead of (ay) we suppose:
(a3) if we put (according to (3.21))

Uy, (t;) = pim, J+1<i<p+1, meN, (3.49)

m

then there is k € {j +2,...,p+ 1} such that

lim py ., = —00. (3.50)

m— 00

Let {j+2...,p+ 1} =JUK, where

lim p;i,, = —o0 forieK (3.51)

m—o0

and
{pim} 1is bounded for i € J.

Further, let K = K; U Ky, where

lim M;(pim) =—00 foriekK,

m—00

and
{M;(pi;m)} is bounded for i € Ko.

By virtue of (3.45), (3.48) and the assumption (@), we have

f j+2 |M(pz m)|

N f+]1+2 |pz m|

(3.52)

=it fml ht, Aj + |pisim))dt + QTw

P+1

+
z J+2 |pl m|

, me& N,

Consider the first member on the right-hand side of (3.52). Note, that due to (2.4) and
(3.51) we can find § > 0 and my € N such that for m > my

{ |pp,m| > 6| Mp(ppm)| i p €K,

3.53
|pim| > (1+0)|M;(pim)| if i < p, i € K. (3.53)

Therefore, using also the inequality in (3.24) for i = p, we get

r = Zizite Mi(pim)| _ Eicyor, [Mi(pim)| Yieky | Mi(pim)|
f+J1+2 Yiek |Pim| (14 0) Xiek, | Mi(pim)]
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which yields

1
lim Ry, < 155 (3.54)
Now, consider the second member in (3.52) and put
dit1;m = Aj + |piviml, j+1<i<p, meN. (3.55)
Then, for £ € K
lim dyy =00, lim _ Dem <1 (3.56)

meree Zfijl+2 |pim| —
Further, it is immediate from (2.6) that for £ € K
1t -
lim ——— / Rt dim)dt = 0. (3.57)

m=—+c0 dk,m tg—1

Therefore, according to (3.56) and (3.57),
YpeK Jit, At dim)dt

lim ~0. (3.58)
meree f+]1+2 |0
Finally, for k € J the sequences {dj,} and {/;* (t dim)dt} are bounded which yields
PO t dkm dt
lim =*ed ;’;11 ( i _ (3.59)
meree z Jj+2 |pl m|

Let us go back to (3.52). The conditions (3.58), (3.59) and (3.54) imply that
p M X
e Zhe M) |

- omeee f+31+2 |pz m|

+ lim 1 ftHrl N(t A + |pit1m|)dt + QT 1

<
+1 = ’
m— 00 f3+2|[)zm| 1+(5

a contradiction. It means that there exists B- > () such that

sup{[u/(t)] : ¢ € [t41, 7]} < B, (3.60)

for each function u € ACY, satisfying (1.4), (1.5), (3.9), (3.19) and having its critical point
equal to t;41.

If we find A;, A; satisfying (3.44), (3.45) and B;, B; satisfying (3.43), (3.60) for each
j€40,...,p—1} and put

A" = maX{Aj,Aj,O <j<p-1}, B'= maX{Bj,Bj, 0<j<p-1},

we get (3.20) for each function u € AC} satisfying (1.4), (1.5), (3.9), (3.19) and having
its critical point in D.

Case (ii). Suppose that u € ACY, fulfils (1.4), (1.5), (3.9), (3.19) and has its critical
point £ € (0,7) \ D. It means that there is j € {0,...,p} such that & € (¢;,¢,41). Then
we argue similarly as in Case (i). Particularly, in Part 1 we take the interval (¢;, £] instead
of (tj,%;+1] and use assertion (II) of Lemma 3.3 instead of assertion (I). In Part 2 we have
in addition the interval (£, ¢;41], where u has the same properties as on (¢;11, ;42| in Case
(i). We also use assertion (II) of Lemma 3.3 and then argue as in Case (). O
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4 Uniform absolute continuity

Let us denote by B the set of all functions x € AC} having a unique critical point & = £(z)
and fulfilling (1), (1I) of Lemma 3.3 and let z(; € C[t;, t;11],0 <@ < p, fulfil (1.1).

Lemmad4.1. Let w satisfy (Hy) and i € {0,...,p}. Then the set
A = {w(zy) o € B}

is uniformly absolutely continuous on [t;,t;+1], i.e. for each ¢ > 0 there exists § > 0 such

that
dt <
/M c

for each function x € B and each set M C [t;,t;1] such that (M) < 0.

Proof. It is sufficient to prove that for any 7 € {0, ..., p} and each € > 0 there exists 6 > 0
such that for each system { (o, fx)}32, of mutually disjoint intervals (o, i) C [ti, tiv1]
the implication

iﬂk_ak <6:>Z/ ))dt < e (4.1)

is valid for each function x € B.
Let us choose z € B and i € {0,...,p}. Then = has a critical point £ = £(z) € (0,T).
We are going to estimate the integral

Iy = / ™ ol (1))

Qg

Denote

We distinguish 3 types of locations of &, oy, Bf.
Location 1: Let £ > ;. Then

T (5 gl
o< <Q(T(b’k — ) = Qe - ti)> . (4.2)
Location 2: Let £ < ay. Then
I < = (2t - o) ~ UGt — ) (43)

Location 3: Let oy < & < . Then

o< = (92 - 1) - 0 (ar — 1)) +
_ X ; (4.4)
= (Q(f(tiﬂ = &) = Q5 (i — 5k)>
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Choose an £ > 0 and put £, = £55. Since €2 is absolutely continuous on [0, 7], we can find
91 > 0 such that for any system {(ag, bx)}32; of mutually disjoint intervals in [0, 7]

Z bk — CLk <0 = Z — Q(ak)) <é€1 (45)
k=1 k=1
is valid. Put § = (51% and take a system { (o, Bk) }72, C [ti, tit1] such that Y0 (Br—ay) <
. Then, using (4.2)-(4.5) and the inequality ||y — t;| — |ax — ;|| < B — ag, we get
2T

Zlk<—€1—€
k=1 v

and hence (4.1) is proved. O

5 Existence principle for regular impulsive BV Ps

Lemmab5.1. Let h € L1[0,T] and ¢;,d; € R;1 < i < p. Then there is a unique solution
u of problem (1.5),

—u"(t) = h(t), (5.1)
U(tl—F) =+ u(ti), U,(ti—i‘) = dz + U,(ti), 1 S 1 S p. (52)
This solution is given by
p T
(1) = S G(t )i + Gt ) d; —/ G(t, s)h(s)ds, (5.3)
=1 0
fort € [0,T], where
T _
N U oss<isT
G(t,s) = ; (5.4)
—7 if 0<t<s<T,
t—T
( = ) if 0<s<t<T

G(t,s) = N - (5.5)
if 0<t<s<T.

Proof. We can argue as in the proof of Lemma 2.1 in [18]. O
Now, suppose that C%, is equipped with the norm
zllp = sup{|a(t)| + [/ (2)] : ¢ € [0, T7]}.
Then C}, becomes a Banach space. (See e.g. [8].) For R > 0 define a set

K(R) = {z € Cp : |lallp < R}
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and its closure denote by cl(K(R)).

Lemma5.2. Let us suppose that g € L]0, T] and (H,) holds. Then there ezists a
constant R* > 0 such that each function u € AC} fulfilling (1.4), (1.5) and

0<—u"(t) <g(t) forae tel0,T| (5.6)

belongs to K(R*).
Proof. By Lemma 3.1 u has a critical point £ € (0,7"). First, assume that £ € D, i.e.
¢ =t; for some j € {1,...,p}. Integrate (5.6) from & to t € (§,¢;+1]. We get

0< —u(t) < lglla, for t € €, ty1]
If j < p we integrate (5.6) from ¢4y to t € (¢j41,tj12] and get
0 < —u'(t) < Mj(llgllz,) +[lglle,  for ¢ € [t 2542

If j < p—1 we integrate again and continue inductively we find a constant m; > 0 such
that
0<—u'(t)<my fortelT], (5.7)

for any u € AC} satisfying (1.4), (1.5) and (5.6). Similarly we find my > 0 such that
0<u'(t) <my fortel0&]. (5.8)

If £ € (0,7)\ D we can use a similar integral procedure and get (5.7), (5.8), as well. Now,
integrate (5.8) from 0 to ¢ € (0,%;]. Then

0 S U(t) S t1m2 for t € [0, tl]
Integrate (5.8) from ¢; to t € (t1,t3]. Then
0 <u(t) < (te —ti)ma+ Ji(timg) fort € (t1,ts].

Continue inductively we deduce that there exists a constant m3 (independent on u) such
that
0 < sup{u(t) :t € [0,7]} < ms.

Hence, it suffices to put R* = m; + msy + m3 and lemma is proved. O

Theorem 5.3. Let us suppose that f satisfies the Carathéodory conditions on [0, T] x R?,
(Hi) holds and that there exists a function g € L1[0,T] such that

0< f(t,x,y) < g(t) forae te[0,T] and for all x,y € R. (5.9)

Then problem (1.4),(1.5),

—u"(t) = f(t,u(t),u' (1)) (5.10)

has a positive solution.
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Proof. Step 1. Choose an arbitrary y € C4, and consider the auxiliary linear problem
1.5

" —a"(t) = f(t,y(t),y'(1)), (5.11)
e | (5.12)
) —y'(ti), 1<i<p.

Clearly F(t,y(0), y'(1) € L0, T, Ji(y(t) — y(t) = i € R, Mi(y/ (1)) — y'(ts) = ds € R,

1 < i < p, and hence, by Lemma 5.1, problem (1.5), (5.11), (5.12) has a unique solution
x € AC}. By virtue of (5.3) this solution is of the form

z(t) = (Fy)(t) forte[0,T],

where F' : CL — CJ is given by

(Fy)(t) = i G(t,t:) (Jiy(t:) — y(ts))+

1

+ DGO 1)~ (1) — [ Gt 9) (s, u(s), (6))ds.

=1

-.
Il

Therefore, u is a solution of (1.4), (1.5), (5.10) if and only if u is a fixed point of the
operator F. Let F} : C} — C} be defined by the formula

(Fu)(0) = [ Glt,) (5, 9(5),/(5))ds.

Due to (5.9) we can use the Lebesgue dominated convergence theorem and the Arzela-
Ascoli theorem and get that F} is absolutely continuous. Further, since J; and M;, 1 <
i < p, are continuous, the operator Fy = F + F} is continuous, as well. Since F, maps C},
in a 2p-dimensional subspace of C}, we deduce that F, and consequently F' are absolutely
continuous operators.

Step 2. We are going to prove the existence of a fixed point of F' by means of the
topological degree arguments. To this aim we consider the operator equation

u=Fu (5.13)
and the parameter system of equations
u=F*"(\u), (5.14)

with F*: [0,1] x C} — Cp,
F*(\u) = ié(t, 1) (Ti(u(t)) — u(t) +

+ )Gt ) (M (W (8) — o' () — )\/OT G(t,s)f(s,u(s),u'(s))ds.

1=1
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Clearly F*(1,u) = Fu and F* is absolutely continuous. Let us choose A € (0,1] and
let u € Ch be a corresponding solution of (5.14), i.e. u = F*(\,u). It means that the
function u satisfies

—u"(t) = Af(t,u(t),u'(t)) forae. t e [0,T], (5.15)

and u € ACY, fulfils (1.4), (1.5). Hence u is a solution of problem (5.15), (1.4), (1.5). By
virtue of (5.9) u satisfies

0 < —u"(t) < Ag(t) < g(t) forae. tel0,T],
and hence, by Lemma 5.2, there exists R* > 0 (independent on w and A) such that
u e K(R"). (5.16)

Let u € C} be a solution of (5.14) for A = 0, i.e. w = F*(0,u). Then u € AC}, satisfies
(1.4), (1.5) and —u"(t) = 0 for a.e. ¢t € [0,T]. Therefore u(t) = a + bt, a,b € R. Since
u(0) = 0, we get @ = 0 and the condition «(7") = 0 implies b = 0. Hence u(t) = 0 for
t € [0,7] and consequently u fulfils (5.16). To summarize, we have proved that there
exists a constant R* > 0 such that for any A € [0, 1] each solution of (5.14) belongs to
K(R*). This means that Iu — F*(\,u) is a homotopy on [0, 1] x ¢/(K(R*)) and thus

1 =deg(l,K(R")) =deg(I — F,K(R")). (5.17)

Here, deg is the Leray-Schauder topological degree and I : Ch — C} is the identity
operator /& = x. The condition (5.17) implies that F" has a fixed point u € K(R*). Since
fixed points of F' are solutions of (1.4), (1.5), (5.10), and due to Lemma 3.1 these solutions
are positive on (0,7"), Theorem 5.3 is proved. O

6 Main results

In this section we construct a sequence of auxiliary regular BVPs and, by Theorem 5.3, we
get a sequence of their solutions. Then, using the limiting process we prove the existence
of a positive solution to our original singular Dirichlet BVP (1.3)-(1.5).

Theorem 6.1. Let assumptions (Hy)-(Hs) be satisfied. Then there exists a positive
solution of BVP (1.3) — (1.5).
Proof. For a.e. t € [0,7] and all z € [0, 00) put

h(t,z) = h(t,1+ z) + q(t)w(1). (6.1)

Then, due to (H,), h satisfies the Carathéodory conditions on [0, 7] x [0,00), A is non-
negative and nondecreasing in its second argument and, by virtue of (2.6),

1 /T-
lim — [ h(t, z)dt = 0.

z2—=00 7z Jo
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Therefore, we can find positive constants A*, B* satisfying Lemma 3.4.
Now, choose an arbitrary m € N and put for x € [0,00),y € R

1
Yy if |y| < B*
4 A* o3(y) =

— if 0
1 m
x .
B*sgny if |y| > B*.

IN

r <

—_ Sl'_‘

0—1(%’1‘) =

=

3=

1 <z <

1+ A" if o>1+ A"

Further, for a.e. ¢ € [0,7] and all z,y € R define

it 2,9) = (1,01 o), ),

and consider the auxiliary equation

—u"(t) = fm(t, u(t),u'(t)). (6.2)
Then, by (Hs), f,, satisfies the Carathéodory conditions on [0,7] x R* and for a.e. ¢ €
[0,7] and all z,y € R
0 < f(t, 2, y) < gmlt), (6.3)
where )
gm(t) =sup{f(t,z,y) :z € [E’ 1+ A*],y € [-B*,B*]} € L1[0,T].

Therefore, according to Theorem 5.3, for each m € N problem (6.2), (1.4), (1.5) has a
positive solution u,,. In such a way we get a sequence {u,,} of solutions. By Lemma 3.1
and (6.2), (6.3), each u,, has a unique critical point &,, = &, (u,,) € (0,7), m € N.

Further, by virtue of (H3)-(Hs), we see that for a.e. t € [0,7] and all z € (0,0),y € R,
m € N, the inequalities

0 <tp(t) < fmlt, @,y), (6.4)
and
(b, y) < B(E @+ [y]) + q(t)w(2), (6.5)

are valid, where 1 is from (Hs) and h (on the place of h), q,w satisfy (H;). Note, that
(6.5) follows from (2.8), (6.1) and relations

n() 145, )] <l
and .
w(ﬁ(aﬂ)) <w(l+A4%) +w(r) <w(l) +w(x).

In view of (6.4) we can use Lemma 3.3 and find v > 0 (independent on u,,) satisfying
(3.10), (3.11), where u is replaced with w,,, m € N. It means that

{un} C B. (6.6)
Moreover, Lemma 3.4 yields

{ sup{u,(t) : t € [0,T]} < A%,

sup{|u’.(t)| : t € [0,T]} < B*. (6.7)
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Now, choose an arbitrary ¢ € {0,...,p} and denote by ) functions from C'[t;, t;41]
which correspond to u,, in the sense of the formula (1.1). Put as before

Q) = supess{q(t) : t € [0,T]}.

By (6.5), we have for t,7 € [t;,t;11], T < t,

|Urn iy () — gy (T)] < /Tt h(s, A* + B*)ds + Q /:W(um(i)(s))ds- (6.8)

Due to (6.6) we can use Lemma 4.1 and obtain that the sequence {w(um())} is uniformly
absolutely continuous on [t;,t;11]. This, by (6.8), implies that the sequence {u’m(i)} is
equicontinuous on [¢;, t;11]. Further, by (6.7), we see that the sequence {u,(;)} is bounded
in C'[t;,t;11]. Thus by the Arzela-Ascoli theorem, we can choose a subsequence {uy;)}
which converges in C'[t;, ;11] to a function uyy € CHt;, t;11]. Consider the sequence of
equalities

t
u;c(i) (t) = u;c(i) (t;) — /t fre(s, up@ (s), u;(i)(s))ds for t € [t;, tivq]- (6.9)

Denote the set of all ¢ € [0,77] such that f(¢,-,-) : (0,00) x R — R is continuous by U.
Then p([0, 7]\ U) =0 and

Jim it ) (£), whpy (8) = f (8w (t), u (1) forall ¢ € (&, tipa) NU,

because u; is positive on (¢;,%;11) by (6.6). Using (6.5) and the uniform absolute con-
tinuity of {w(ugu))} on [t;, tiv1], we deduce that {fi(Z, ure)(t), uj(t))} is also uniformly
absolutely continuous on [t;,#;11]. Therefore we can use the Vitali convergence theorem
by which f(¢, u)(t), u(;)(t)) € Li[ti, ti41] and letting & — oo in (6.9) we have that

t
() = uly () — /t F (s, ug)(8), ufy (s))ds for t € [ti,ti11]:

It means that ug € AC'[t;,tiy1] and ug) satisfies (1.3) a.e. on [t;,;41]. Since i €
{0,...,p} has been chosen arbitrarily, we can put

wy(t) for te€[0,4]

u(t) = umy(t)  for  t€ (1,1
up(t)  for  te(t,T]

and get u € AC}, u satisfies (1.3) a.e. on [0,7] and fulfils (1.5). Having in mind that

Ji, M;, 1 < i < p are continuous we deduce that u fulfils (1.4). Really, we have

u(ti+) = ug)(t) = limy o0 urg)(t:) = limg oo Ji(ur—1)) (t:)) =
= Ji(limg o0 up(i1)(t:)) = Jilu1)(t:) = Ji(u(ts)).

Similarly for «'(¢;4). Finally, due to Lemma 3.1 and (H3), u is positive on (0,7"). Theorem
6.1 is proved. O
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