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(tnu′(t))′ + tnf(t, u(t)) = 0, lim
t→0+

tnu′(t) = 0, a0u(1) + a1u
′(1−) = A,

where f(t, x) is a given continuous function defined on the set (0, 1] × (0,∞)
which can have a time singularity at t = 0 and a space singularity at x = 0.
Moreover, n ∈ N, n ≥ 2, and a0, a1, A are real constants such that a0 ∈ (0,∞),
whereas a1, A ∈ [0,∞). The main aim of this paper is to discuss the existence of
solutions to the above problem and apply these general results to cover certain
classes of singular problems arising in the theory of shallow membrane caps, where
we are especially interested in characterizing positive solutions. We illustrate the
analytical findings by numerical simulations based on polynomial collocation.
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1 Introduction

We investigate the solvability of the singular mixed boundary value problem

(tnu′(t))′ + tnf(t, u(t)) = 0, 0 < t < 1, (1.1a)

lim
t→0+

tnu′(t) = 0, a0u(1) + a1u
′(1−) = A, (1.1b)

where n ∈ N,≥ 2, a0 ∈ (0,∞), a1, A ∈ [0,∞) and we denoted limt→1− u
′(t) by

u′(1−).
For the given function f(t, x) we make the following assumption:
A1: The data function f(t, x) is continuous on (0, 1] × (0,∞) and can have a
time singularity at t = 0 and a space singularity at x = 0.

Definition 1.1. A function f(t, x) has a time singularity at t = 0, if there exists
x ∈ (0,∞) such that

∫ ε

0

|f(t, x)|dt = ∞, ε ∈ (0, 1).

A function f(t, x) has a space singularity at x = 0, if

lim sup
x→0+

|f(t, x)| = ∞, t ∈ (0, 1).

We focus our attention on the existence of positive solutions of problem (1.1)
which are characterized in the following definition.

Definition 1.2. A function u is called a positive solution of problem (1.1) if u
satisfies the following conditions:

(i) u ∈ C[0, 1] ∩ C2(0, 1),

(ii) u(t) > 0 for t ∈ (0, 1),

(iii) u satisfies equation (1.1a) and boundary conditions (1.1b).

We aim at a proof of a general existence theorem for problem (1.1) which will
enable a unified approach to the existence and localization of positive solutions
for certain classes of singular problems, such as

(t3u′(t))′ + t3
(

1

8u2(t)
− µ

u(t)
− λ2

2
t2γ−4

)

= 0, (1.2a)

lim
t→0+

t3u′(t) = 0, a0u(1) + a1u
′(1−) = A. (1.2b)
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With µ ≥ 0, λ > 0, γ > 1 problem (1.2) is a special case of (1.1). Boundary value
problems (1.2) arise in the theory of shallow membrane caps and were investigated
in [14], [15], [16], and [21]. Equation

u′′(t) +
3

t
u′(t) +

q(t)

u2(t)
= 0, (1.3)

where q is continuous on [0, 1] and positive on (0, 1), augmented by boundary
conditions (1.1b) was studied in [2]. It describes the behavior of symmetric
circular membranes and can be easily transformed to a special case of (1.1).
Finally, a problem posed on a semi-infinite interval,

z′′(s) +
1

s3

(

λ2

8sγ−2
− 1

32z2(s)
+

µ

4z(s)

)

= 0, 1 < s <∞, (1.4a)

lim
s→∞

| z(s)| <∞, b0z(1) − b1z
′(1−) = A, (1.4b)

also arises in the membrane theory and for A > 0 it was discussed in [1] and [8].
It can be written in form (1.2), where a0 = b0, a1 = 2b1, by using the substitution

s =
1

t2
, z(s) = z

(

1

t2

)

=: u(t). (1.5)

2 Existence theorems for problem (1.1)

Our analytical approach is based on the lower and upper functions method which
is here extended to the general singular problem of the form (1.1). In the sequel,
we shall use the following definitions:
Definition 2.1. A function σ is called a lower function of equation (1.1a), if σ
satisfies the following requiremnts:

(i) σ ∈ C[0, 1] ∩ C2(0, 1),

(ii) (tnσ′(t))′ + tnf(t, σ(t)) ≥ 0, t ∈ (0, 1).

If the inequality in (ii) is reversed, σ is called an upper function of equation (1.1a).
If σ satisfies (i), (ii) and

(iii) limt→0+ t
nσ′(t) ≥ 0, a0σ(1) + a1σ

′(1−) ≤ A,

then σ is called a lower function of the boundary value problem (1.1). If the
inequalities in (ii) and (iii) are reversed, then σ is called an upper function of the
boundary value problem (1.1).
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In general, tnσ′(t) can become unbounded at the endpoints of the integration
interval, t = 0 and t = 1. For more general definitions of lower and upper func-
tions, see e.g. [12], [17] or [22].

For the next two theorems we need the following assumptions:

A2.1: σ1 and σ2 are a lower and an upper function of problem (1.1), respectively.

A2.2: 0 < σ1(t) ≤ σ2(t) for t ∈ (0, 1).

A2.3: There exists p < 2 such that limt→0+ t
ph(t) <∞, where

h(t) = sup{|f(t, x)| : σ1(t) ≤ x ≤ σ2(t)}.

Note that σ1 and σ2 can vanish at t = 0 and t = 1. Since f(t, x) may exhibit
singularities at t = 0 and x = 0, we easily see that h can become unbounded, i.e.

lim sup
t→0+

h(t) = ∞, lim sup
t→1−

h(t) = ∞. (2.1)

Theorem 2.2. Assume that A1 and A2.1 − A2.3 hold.

(i) Let h be bounded on [0, 1]. Then problem (1.1) has a positive solution u such
that u ∈ C1[0, 1] and u′(0) = 0. Moreover,

σ1(t) ≤ u(t) ≤ σ2(t), t ∈ [0, 1]. (2.2)

(ii) Let h satisfy (2.1). Furthermore let us assume that there exists a constant
δ1 ∈ (0, 1) such that

(tnσ′
1(t))

′ ≥ 0, (tnσ′
2(t))

′ ≤ 0, t ∈ (0, δ1), (2.3)

σ1(1) = σ2(1), and there are δ2 ∈ (0, 1), K ∈ R such that

(tnσ′
1(t))

′ ≥ K, (tnσ′
2(t))

′ ≤ K, t ∈ (1 − δ2, 1). (2.4)

Then problem (1.1) with A = 0 in (1.1b) has a positive solution u satisfying (2.2).

Proof. (i) For h bounded on [0, 1], (i) follows by arguing as in the regular case,
where f is continuous or satisfies the Carathéodory conditions on [0, 1] × [0,∞),
see e.g. Theorem 2.3 in [21].
(ii) Let h satisfy (2.1) and let (2.3), (2.4), and σ1(1) = σ2(1) hold. Now the proof
is carried out in five steps.

Step 1. We first show that A = 0: The condition lim supt→1− h(t) = ∞ and A1
imply σ1(1) = 0. From σ1(1) = σ2(1) also σ2(1) = 0 follows. If a1 = 0, then
Definition 2.1(iii) yields 0 = a0σ1(1) ≤ A and 0 = a0σ2(1) ≥ A. Therefore,
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A = 0. If a1 > 0, Definition 2.1(iii) yields σ′
2(1−) ≥ A

a1
. Due to A2.2, σ2(t) > 0

for t ∈ (0, 1) and hence σ′
2(1−) ≤ 0. Therefore A = 0.

Step 2. Approximate solutions uk: Choose k ∈ N, 1
k
≤ min{δ1, δ2}, and define

fk(t, x) :=











0, t ∈ [0, 1
k
),

f(t, x), t ∈ [ 1
k
, 1 − 1

k
],

−K
tn
, t ∈ (1 − 1

k
, 1].

Consider equation
(tnu′(t))′ + tnfk(t, u(t)) = 0. (2.5)

We see that σ1 and σ2 are lower and upper functions of equation (2.5) subject to
(1.1b) and

hk(t) := sup{|fk(t, x)| : σ1(t) ≤ x ≤ σ2(t)}
is bounded on [0, 1]. By Part (i) of the proof, problem (2.5), (1.1b) has a solution
uk ∈ C1[0, 1] ∩ C2(0, 1) satisfying u′k(0) = 0 and

σ1(t) ≤ uk(t) ≤ σ2(t), t ∈ [0, 1]. (2.6)

Step 3. Properties of the function h: We now derive some useful properties of h
which will be required in next steps of the proof. Choose an interval [0, b] ⊂ [0, 1).
Due to A1 and A2.2, the function tnh(t) is continuous on (0, b]. Since p < 2 ≤ n,
it follows from A2.3 that limt→0+ t

nh(t) = 0 holds. Therefore,

∫ b

0

snh(s)ds =: Mb ∈ (0,∞). (2.7)

Thus, by the de l’Hospital’s rule and A2.3,

lim
t→0+

1

tn−p+1

∫ t

0

snh(s)ds

= lim
t→0+

tnh(t)

(n− p+ 1)tn−p
=

1

n− p+ 1
lim

t→0+
tph(t) =: c0 ∈ (0,∞).

This yields an ε ∈ (0, 1) such that

1

tn

∫ t

0

snh(s)ds ≤ (c0 + 1)
1

tp−1
, t ∈ [0, ε].

Moreover, by (2.7),

1

tn

∫ t

0

snh(s)ds ≤ 1

εn

∫ b

0

snh(s)ds =
Mb

εn
for t ∈ [ε, b].

5



Finally, from the last two inequalities, it follows

∫ b

0

1

tn

∫ t

0

snh(s)dsdt <∞. (2.8)

Step 4. Properties of the sequence {uk}: Consider the sequence of equations (2.5)
subject to (1.1b), where k ∈ N, 1

k
≤ min{δ1, δ2}, where δ1 and δ2 are specified by

(2.3) and (2.4), respectively. From Step 2 we obtain the corresponding sequence
{uk} of their solutions which are approximations for u. Let us first discuss the
convergence properties of {uk}. Choose an interval [0, b] ⊂ [0, 1). Then there
exists an index k1 ∈ N, 1

k1
≤ min{δ1, δ2}, such that

[0, b] ⊂
[

0, 1 − 1

k

]

, k ≥ k1.

Due to boundary conditions (1.1b) and equation (2.5) we have

tnu′k(t) +

∫ t

0

snfk(s, uk(s))ds = 0, t ∈ [0, b], k ≥ k1. (2.9)

The inequality

|fk(t, uk(t))| ≤ h(t), t ∈
[

0, 1 − 1

k

]

, k ≥ k1, (2.10)

condition (2.7) and equality (2.9) yield

|tnu′k(t)| ≤
∫ t

0

snh(s)ds ≤Mb, t ∈ [0, b], k ≥ k1. (2.11)

According to (2.6) and (2.11) the sequences {uk} and {tnu′k} are bounded on
[0, b]. Moreover, by (2.7) and (2.8), for each ε > 0 there exists a δ > 0 such that
for any t1, t2 ∈ [0, b] such that |t1 − t2| < δ, and any k ≥ k1,

|tn1u′k(t1) − tn2u
′
k(t2)| ≤

∣

∣

∣

∣

∫ t2

t1

snh(s)ds

∣

∣

∣

∣

< ε

and

|uk(t1) − uk(t2)| ≤
∣

∣

∣

∣

∫ t2

t1

1

tn

∫ t

0

snh(s)dsdt

∣

∣

∣

∣

< ε

holds. Hence, the sequences {uk} and {tnu′k} are equicontinuous on [0, b]. The
Arzelà-Ascoli theorem now implies that there exists a subsequence {uℓ} ⊂ {uk}
such that

lim
ℓ→∞

uℓ = u, lim
ℓ→∞

tnu′ℓ = tnu′

6



uniformly on [0, b]. Finally, by the diagonalization principle, we find a subse-
quence1 {uk} satisfying

lim
k→∞

uk = u, lim
k→∞

tnu′k = tnu′ (2.12)

locally uniformly on [0, 1).

Step 5. Properties of the function u: We now prove that the limit function u is
a positive solution of problem (1.1) satisfying (2.2). Due to (2.6) and (2.12) we
have

σ1(t) ≤ u(t) ≤ σ2(t), t ∈ [0, 1), u ∈ C[0, 1), (2.13a)

tnu′(t) ∈ C[0, 1), lim
t→0+

tnu′(t) = 0. (2.13b)

Choose t ∈ (0, 1). Then there exists kt ≥ k1 such that

f(t, uk(t)) = fk(t, uk(t)), k ≥ kt

and hence, by A1 and (2.12),

lim
k→∞

fk(t, uk(t)) = lim
k→∞

f(t, uk(t)) = f(t, u(t)).

Consequently, the sequence {fk(t, uk(t))} is pointwise converging on (0, 1). Fur-
thermore, for an arbitrary interval [0, b] ⊂ [0, 1) we have by (2.10),

|tnfk(t, uk(t))| ≤ tnh(t), t ∈ [0, b], k ≥ k1.

Therefore, due to (2.7), we can use the Lebesgue dominated convergence theorem
for the sequence of equalities (2.9). Having in mind that b ∈ (0, 1) is arbitrary
and letting k → ∞, we conclude that

tnu′(t) +

∫ t

0

snf(s, u(s))ds = 0, t ∈ [0, 1).

Thus u ∈ C2(0, 1) and u satisfies equation (1.1a) for t ∈ (0, 1). By Step 1, we
have σ1(1) = σ2(1) = A = 0 and consequently, by (2.13a), limt→1− u(t) = 0 fol-
lows. For u(1) = 0, we can see that u ∈ C[0, 1] is a positive solution of problem
(1.1) which completes the proof. �

Theorem 2.3. Assume that A1 and A2.1 − A2.3 hold.
(i) Let h be bounded at t = 0 and let us assume that lim supt→1− h(t) = ∞ and
condition (2.4) hold. Then problem (1.1) with A = 0 in (1.1b) has a positive
solution u ∈ C1[0, 1) which satisfies estimate (2.2) and u′(0) = 0.
(ii) Let h be bounded at t = 1 and let lim supt→0+ h(t) = ∞ and condition (2.3)
hold. Then problem (1.1) has a positive solution u ∈ C1(0, 1] which satisfies
estimate (2.2).

1For simplicity, previous notation {uk} for this subsequence is used.
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Proof. We use arguments similar to those from the proof of Theorem 2.2.
(i) Since h is bounded at t = 0, we define

fk(t, x) :=

{

f(t, x), t ∈
[

0, 1 − 1
k

]

,

−K
tn
, t ∈

(

1 − 1
k
, 1

]

,

where k ∈ N, 1
k
≤ δ2 and δ2, K are given by (2.4). As in Steps 2 - 4, we construct

the sequence {uk} of solutions of equations (2.5) subject to (1.1b) which satisfy
(2.6) and (2.12). By Step 5, the limit function u is a positive solution of problem
(1.1) satisfying (2.2). Since h is bounded at t = 0, we have

sup

{

|h(t)| : t ∈
[

0,
1

2

]}

=: M <∞

and therefore

|u′(t)| ≤ 1

tn

∫ t

0

snh(s)ds ≤ M

n+ 1
t, t ∈

[

0,
1

2

]

.

For u′(0) = 0, u ∈ C1[0, 1) follows.

(ii) Since h is bounded at t = 1, we set

fk(t, x) :=

{

0, t ∈
[

0, 1
k

)

,

f(t, x), t ∈
[

1
k
, 1

]

,

where k ∈ N, 1
k
≤ δ1 and δ1 is specified by (2.3). As in Step 2 we derive the

sequence {uk} of solutions of equations (2.5) subject to (1.1b) and satisfying
(2.6). Moreover, similarly to Step 3, we obtain

∫ 1

0

snh(s)ds <∞,

∫ 1

0

1

tn

∫ t

0

snh(s)dsdt <∞,

and we deduce, as in Step 4, that

lim
k→∞

uk = u, lim
k→∞

tnu′k = tnu′

holds uniformly on [0, 1]. Therefore, u ∈ C[0, 1] ∩ C1(0, 1] and u satisfies (1.1b)
and (2.2). By the Lebesgue dominated convergence theorem, as in Step 5, we
conclude that u ∈ C2(0, 1) satisfies equation (1.1a) for t ∈ (0, 1) and the result
follows. �

Note that the existence of nonnegative solutions for mixed problems where f may
be singular just at x = 0 was also proved in [3].
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3 Singular membrane problems

In this section we use Theorems 2.2 and 2.3 to prove the solvability of singular
membrane problems. We study the boundary value problem

(tnu′(t))′ + tn
(

a

u2m(t)
− b

um(t)
− ct2r

)

= 0, (3.1a)

lim
t→0+

tnu′(t) = 0, a0u(1) + a1u
′(1−) = A, (3.1b)

where a ∈ (0,∞), b, c ∈ [0,∞), r ∈ (−1,∞), m,n ∈ N, n ≥ 2. Problem (3.1)
covers the membrane problem (1.2) and, after substitution (1.5), also the infinite
interval problem (1.4).
In order to be able to utilize results formulated in Theorems 2.2 and 2.3, it is
necessary to show how to find proper lower and upper functions of the above
problem. We begin with lower and upper functions of equation (3.1a), the choice
of which depends on the parameters a, b, c, r, n and m.

Lemma 3.1. Assume that c1 ∈
(

0, x
− 1

m

1

]

, where x1 = 1
2a

(b +
√
b2 + 4ac). For

t ∈ [0, 1], we define

σ1(t) :=

{

c1, r ≥ 0,

c1t
− r

m , r ∈ (−1, 0).
(3.2)

Then σ1 is a lower function of equation (3.1a).

Proof. Since c−m
1 ≥ x1 and x1 is a positive solution of the equation ax2−bx−c = 0,

we have
a

c2m
1

− b

cm1
− c ≥ 0. (3.3)

Let r ≥ 0. Then σ1(t) ≡ c1 and, by (3.3),

(tnσ′
1(t))

′ + tn
(

a

σ2m
1 (t)

− b

σm
1 (t)

− ct2r

)

≥ tn
(

a

c2m
1

− b

cm1
− c

)

≥ 0, t ∈ (0, 1).

Let r ∈ (−1, 0). Then σ1(t) = c1t
− r

m and, by (3.3),

(tnσ′
1(t))

′+tn
(

a

σ2m
1 (t)

− b

σm
1 (t)

− ct2r

)

≥ tn+2r

(

a

c2m
1

− b

cm1
− c

)

≥ 0, t ∈ (0, 1).

This means σ1 satisfies conditions (i) and (ii) of Definition 2.1. �

Lemma 3.2. Let us assume that c2 ∈
[

x
− 1

m

1 ,∞
)

, where x1 is given by Lemma

3.1. For t ∈ [0, 1] define

σ2(t) :=

{

c2 + c
n
(1 − t), r > 0,

c2, r ∈ (−1, 0].
(3.4)

Then σ2 is an upper function of equation (3.1a).
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Proof. Let r ∈ (−1, 0]. Then σ2(t) ≡ c2. Since 0 < c−m
2 ≤ x1 we have

(tnσ′
2(t))

′ + tn
(

a

σ2m
2 (t)

− b

σm
2 (t)

− ct2r

)

≤ tn
(

a

c2m
2

− b

cm2
− c

)

≤ 0, t ∈ (0, 1).

Let r > 0. Then σ2(t) = c2 + c
n
(1 − t) and

(tnσ′
2(t))

′ + tn
(

a

σ2m
2 (t)

− b

σm
2 (t)

− ct2r

)

≤ tn−1(−c+ tψ(t)), t ∈ (0, 1),

where

ψ(t) =
a

[

c2 + c
n
(1 − t)

]2m
− b

[

c2 + c
n
(1 − t)

]m .

If ψ(t) is positive for some t ∈ (0, 1), we can conclude

−c+ tψ(t) ≤ −c+
a

c2m
2

− b

cm2
≤ 0

and thus, by Definition 2.1, the function σ2 is an upper function of (3.1a). �

We now specify the c1 and c2 in σ1 and σ2 from Lemmas 3.1 and 3.2, respectively,
in order to satisfy condition A2.2 and Definition 2.1(iii). For σ2 we take Defini-
tion 2.1(iii) with the reversed inequalities.

Lemma 3.3. Let A > 0 and x1 be as in Lemma 3.1. Set r− := max{0,−r} and

c1 := min

{

Am

a0m+ a1r−
, x

− 1

m

1

}

, c2 := max

{

1

a0

(A+
a1c

n
), x

− 1

m

1

}

.

Then σ1 and σ2 given by (3.2) and (3.4), respectively, are lower and upper func-
tions of problem (3.1) and satisfy A2.2.

Proof. By Lemmas 3.1 and 3.2, σ1 and σ2 are lower and upper functions of
equation (3.1a). We see that A2.2 holds and (3.2), (3.4) yield

lim
t→0+

tnσ′
1(t) = 0, lim

t→0+
tnσ′

2(t) = 0.

Finally,

a0σ1(1) + a1σ
′
1(1−) =

{

a0c1 ≤ A, r ≥ 0,

c1(a0 − a1
r
m

) ≤ A, r ∈ (−1, 0),

a0σ2(1) + a1σ
′
2(1−) =

{

a0c2 ≥ A, r ∈ (−1, 0],

a0c2 − a1
c
n
≥ A, r > 0.

�
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Lemma 3.3 was dealing with the case A > 0. In the next two lemmas we will
discuss the case A = 0 where constant lower and upper functions do not exist.

Lemma 3.4. Let A = 0 and a1 > 0. Set k := 1 + a1

a0−a1
r

m

and for t ∈ [0, 1] define

σ1(t) :=

{

ν(1 − t2 + 2a1

a0
), r ≥ 0,

νt−
r

m (k − t), r ∈ (−1, 0),
σ2(t) := β

(

1 − t2 + 2
a1

a0

)

. (3.5)

Then, there exist constants ν∗, β∗ ∈ (0,∞) such that for each ν ∈ (0, ν∗) and
β ≥ β∗, the functions σ1 and σ2 are a lower function and an upper function of
problem (3.1) satisfying A2.2.

Proof. By direct calculations we can see that σ1 and σ2 satisfy

lim
t→0+

tnσ′
i(t) = 0, a0σi(1) + a1σ

′
i(1−) = 0, i = 1, 2.

Let r ≥ 0. Then σ1(t) = ν(1 − t2 + 2a1

a0
) and

(tnσ′
1(t))

′ + tn
(

a

σ2m
1 (t)

− b

σm
1 (t)

− ct2r

)

≥ tnϕ1(t, ν), t ∈ (0, 1),

where

ϕ1(t, ν) = −2ν(n+ 1) +
a

[

ν(1 − t2 + 2a1

a0

]2m
− b

[

ν(1 − t2 + 2a1

a0

]m − c.

Since limν→0+ ϕ1(t, ν) = ∞ uniformly on [0, 1], we can find ν∗ > 0 such that for
each ν ∈ (0, ν∗], the inequality ϕ1(t, ν) ≥ 0 holds for t ∈ [0, 1].
Let r ∈ (−1, 0). Then σ1(t) = νt−

r

m (k − t) and

(tnσ′
1(t))

′ + tn
(

a

σ2m
1 (t)

− b

σm
1 (t)

− ct2r

)

≥ tn−
r

m
−2ψ1(t, ν), t ∈ (0, 1),

where

ψ1(t, ν) = νℓ(t) + t2r+ r

m
+2h(t, ν), h(t, ν) =

a

[ν(k − t)]2m
− b

[ν(k − t)]m
− c,

and

ℓ(t) = −rk
m

(

n− r

m
− 1

)

−
(

n− r

m

)(

1 − r

m

)

t. (3.6)

Choose c1 > 0 as in Lemma 3.1 and let ν1 ∈
(

0, c1
k

]

. Then, by (3.3), h(t, ν) ≥ 0
for ν ∈ (0, ν1], t ∈ [0, 1]. We now denote the unique zero of ℓ(t) by t0 and have
ℓ(t) ≥ 0 for t ∈ [0, t0]. Consequently,

ψ1(t, ν) ≥ 0, ν ∈ (0, ν1], t ∈ [0, t0].
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Furthermore,
lim

ν→0+
ψ1(t, ν) = ∞

uniformly for t ∈ [t0, 1]. Therefore we can find ν∗ ∈ (0, ν1] such that for each
ν ∈ (0, ν∗], the inequality ψ1(t, ν) ≥ 0 holds for t ∈ [0, 1].

Let us now consider σ2(t) = β
(

1 − t2 + 2a1

a0

)

. We have

(tnσ′
2(t))

′ + tn
(

a

σ2m
2 (t)

− b

σm
2 (t)

− ct2r

)

≤ tnϕ(β), t ∈ (0, 1),

where

ϕ(β) = −2(n+ 1)β + a

(

2β
a1

a0

)−2m

.

Since limβ→∞ ϕ(β) = −∞, there exists β∗ > ν∗ such that for each β ≥ β∗,
ϕ(β) > 0 follows. �

Lemma 3.5. Let A = 0 and a1 = 0. For t ∈ [0, 1] let us define

σ1(t) :=

{

ν(1 − t2), r ≥ 0,

νt−
r

m (1 − t), r ∈ (−1, 0),
σ2(t) := β(1 − t2)

1

2m . (3.7)

Then there exist constants ν∗, β∗ ∈ (0,∞) such that for each ν ∈ (0, ν∗) and
β ≥ β∗, the functions σ1 and σ2 are a lower function and an upper function of
problem (3.1) satisfying A2.2.

Proof. We can easily check that σ1 and σ2 satisfy

lim
t→0+

tnσ′
i(t) = 0, σi(1) = 0, i = 1, 2.

Let r ≥ 0. Then σ1(t) = ν(1 − t2) and

(tnσ′
1(t))

′ + tn
(

a

σ2m
1 (t)

− b

σm
1 (t)

− ct2r

)

≥ tnϕ(t, ν), t ∈ (0, 1),

where

ϕ(t, ν) = −2ν(n+ 1) +
a

[ν(1 − t2)]2m
− b

[ν(1 − t2)]m
− c.

Since limν→0+ ϕ(t, ν) = ∞ uniformly on [0, 1], we can find ν∗ > 0 such that for
each ν ∈ (0, ν∗], the inequality ϕ(t, ν) ≥ 0 holds for t ∈ [0, 1].
Let r ∈ (−1, 0). Then σ1(t) = νt−

r

m (1 − t) and similarly to the proof of Lemma
3.4 we conclude that for each sufficiently small positive ν the function σ1 is a
lower function of problem (3.1).

Now, consider σ2(t) = β(1 − t2)
1

2m . We have

(tnσ′
2(t))

′ + tn
(

a

σ2m
2 (t)

− b

σm
2 (t)

− ct2r

)

≤ tn(1 − t2)
1

2m
−2ϕ2(t, β), t ∈ (0, 1),
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where

ϕ2(t, β) = −2β

m

(

1 − 1

2m

)

+ aβ−2m(1 − t2)1− 1

2m .

Since limβ→∞ ϕ2(t, β) = −∞ uniformly on [0, 1], we can find a β∗ > ν∗ such that
for each β ≥ β∗, ϕ2(t, β) ≤ 0 on (0, 1) holds. Therefore, σ2 is an upper function
of (3.1) and A2.2 is satisfied. �

Having derived lower and upper functions of problem (3.1) for all values of its
parameters, we can prove the existence of a positive solution u to this problem
and describe how u′ behaves at the singular points t = 0 and t = 1.

Theorem 3.6. Problem (3.1) has a positive solution u such that











u(0) > 0, u′(0+) = 0, r > −1
2
,

u(0) > 0, u′(0+) = c
n
, r = −1

2
,

u(0) ≥ 0, u′(0+) = ∞, r < −1
2
,

(3.8)

and










u′(1−) ∈ R, A > 0,

u′(1−) ∈ R, A = 0, a1 > 0,

u′(1−) = −∞, A = 0, a1 = 0.

(3.9)

Proof. Lower and upper functions σ1 and σ2 of problem (3.1) satisfying A2.2 are
given according to Lemmas 3.3, 3.4 and 3.5. Function

f(t, x) =
a

x2m
− b

xm
− ct2r,

satisfies A1. Consider the function h from A2.3. Then, we have

0 ≤ h(t) ≤ a

σ2m
1 (t)

+
b

σm
1 (t)

+ ct2r, t ∈ (0, 1). (3.10)

Case 1. We assume that A > 0 or A = 0, a1 > 0. We first find c1, by Lemma
3.3, and then choose ν ∈ (0, ν∗) in (3.5) such that νk ≤ c1.

Let r ≥ 0. Then σ1 is positive on [0, 1] and (3.10) implies that h is bounded on
[0, 1] and limt→0+ th(t) = 0. Thus, h satisfies condition A2.3 with p = 1 and,
by Theorem 2.2(i), problem (3.1) has a positive solution u ∈ C1[0, 1] satisfying
u′(0) = 0 and (2.2). Since σ1(0) > 0, u(0) > 0 follows.

Let r ∈ (−1, 0). Then (3.10) yields

0 ≤ h(t) ≤ t2r

(

a

[ν(k − 1)]2m
+

b

[ν(k − 1)]m
+ c

)

, t ∈ (0, 1). (3.11)

13



Also,

h(t) ≥ a

σ2m
1 (t)

− b

σm
1 (t)

− ct2r ≥ t2r

(

a

c2m
1

− b

cm1
− c

)

> 0, t ∈ (0, 1).

By (3.11) and the last inequality we have

lim sup
t→0+

h(t) = ∞, lim sup
t→1−

h(t) <∞.

Due to (3.11), for p = −2r, we can show A2.3 since

lim
t→0+

tph(t) ≤ a

[ν(k − 1)]2m
+

b

[ν(k − 1)]m
+ c <∞.

Now we prove (2.3). If A > 0, we use Lemma 3.3 and have σ1(t) = c1t
− r

m ,
σ2(t) ≡ c2. Hence

(tnσ′
1(t))

′ = c1

(

− r

m

) (

n− 1 − r

m

)

tn−2− r

m ≥ 0, (tnσ′
2(t))

′ = 0, t ∈ (0, 1).

For A = 0 and a1 > 0, we use Lemma 3.4 and have σ1(t) = νt−
r

m (k − t),
σ2(t) = β(1 − t2 + 2a1

a0
). Hence

(tnσ′
1(t))

′ = νtn−2− r

m ℓ(t) ≥ 0, (tnσ′
2(t))

′ = −2β(n+ 1)tn ≤ 0, t ∈ (0, δ1),

where ℓ(t) is given by (3.6) and δ1 = t0 is its unique zero. Therefore, condi-
tion (2.3) holds. Consequently, by Theorem 2.3(ii), problem (3.1) has a positive
solution u ∈ C1(0, 1] satisfying (2.2).
It remains to prove (3.8) for r ∈ (−1, 0). Equation (3.1a) and condition (3.1b)
result in

tnu′(t) = −
∫ t

0

sn

(

a

u2m(s)
− b

um(s)
− cs2r

)

ds, t ∈ (0, 1), (3.12)

and consequently, since n ≥ 2 and r > −1,

lim
t→0+

∫ t

0

sn

(

b

um(s)
− a

u2m(s)

)

ds = 0. (3.13)

Assume u(0) = 0. Since σ1(0) = 0 and limt→0+ σ
′
1(t) = ∞, inequality (2.2)

implies
lim

t→0+
u′(t) = ∞. (3.14)

On the other hand, assumption u(0) = 0 guarantees the existence of δ > 0 such
that um(t) ≤ a

b
for t ∈ [0, δ]. Then, by (3.12),

u′(t) =
1

tn

∫ t

0

sn

u2m(s)
(bum(s) − a)ds+

ct2r+1

n+ 2r + 1
≤ ct2r+1

n+ 2r + 1
, t ∈ (0, δ).
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If r ∈ [−1
2
, 0), then u′(t) ≤ c

n
on (0, δ), in contradiction to (3.14). This means

that we have shown

r ≥ −1

2
=⇒ u(0) > 0. (3.15)

For r ∈ [−1
2
, 0), using (3.12), (3.13), (3.15) and the de l’Hospital’s rule we obtain

lim
t→0+

u′(t) = lim
t→0+

ct2r+1

n+ 2r + 1
=

{

0, r ∈ (−1
2
, 0),

c
n
, r = −1

2
.

(3.16)

Let r ∈ (−1,−1
2
). If u(0) = 0, then (3.14) holds. If u(0) > 0, then by (3.12),

(3.13) and the de l’Hospital’s rule we deduce as before,

lim
t→0+

u′(t) = lim
t→0+

ct2r+1

n+ 2r + 1
= ∞.

Case 2. Now, we consider the case A = 0, a1 = 0.

Let r ≥ 0, then by Lemma 3.5,

σ1(t) = ν(1 − t2), σ2(t) = β(1 − t2)
1

2m ,

where 0 < ν < β with a sufficiently small ν and a sufficiently large β. For
t ∈ (0, 1) we have

0 <
1

(1 − t2)2m

(

a

ν2m
− b

νm
− c

)

≤ h(t) ≤ 1

(1 − t2)2m

(

a

ν2m
+

b

νm
+ c

)

and consequently,

lim sup
t→0+

h(t) <∞, lim sup
t→1−

h(t) = ∞.

Hence, A2.3 holds. Moreover,

σ1(1) = σ2(1) = 0 = A, (tnσ′
1(t))

′ = −2ν(n+ 1)tn,

and

(tnσ′
2(t))

′ = − β

m
tn(1 − t2)

1

2m
−2

(

(n+ 1)(1 − t2) + 2t2
(

1 − 1

m

))

.

This means that there exists δ2 ∈ (0, 1) such that (2.4) is valid forK = −2ν(n+1).
Therefore, by Theorem 2.3(i), problem (3.1) has a positive solution u ∈ C1[0, 1)
satisfying u′(0) = 0 and (2.2). Since σ1(0) > 0, we have u(0) > 0.

Let r ∈ (−1, 0). By Lemma 3.5,

σ1(t) = νt−
r

m (1 − t), σ2(t) = β(1 − t2)
1

2m ,
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where 0 < ν < β and ν is sufficiently small, while β is sufficiently large. Then,
for t ∈ (0, 1)

0 <
t2r

(1 − t)2m

(

a

ν2m
− b

νm
− c

)

≤ h(t) ≤ t2r

(1 − t)2m

(

a

ν2m
+

b

νm
+ c

)

.

Consequently
lim sup

t→0+
h(t) = ∞, lim sup

t→1−
h(t) = ∞.

For p = −2r we obtain limt→0+ t
ph(t) < ∞ and hence A2.3 follows. Moreover,

we have

(tnσ′
1(t))

′ = νtn−
r

m
−2

(

− r

m

(

n− r

m
− 1

)

−
(

n− r

m

)(

1 − r

m

)

t
)

, t ∈ (0, 1),

(tnσ′
2(t))

′ = − β

m
tn(1 − t2)

1

2m
−2

(

(n+ 1)(1 − t2) + 2t2
(

1 − 1

m

))

, t ∈ (0, 1).

Thus, we can find δ1, δ2 ∈ (0, 1) which are sufficiently small to guarantee

(tnσ′
1(t))

′ ≥ 0, (tnσ′
2(t))

′ ≤ 0, t ∈ (0, δ1),

(tnσ′
1(t))

′ ≥ K, (tnσ′
2(t))

′ ≤ K, t ∈ (1 − δ2, 1),

where K = −ν
(

n− r
m

) (

1 − r
m

)

. We can see that (2.3) and (2.4) hold and use
Theorem 2.2(ii) to deduce that problem (3.1) has a positive solution u ∈ C1(0, 1)
satisfying (2.2). For r ∈ (−1, 0), property (3.8) can be proved in the same way
as in Case 1.
Finally we show that if A = 0 and a1 = 0, then u′(1−) = −∞. Since u(1) = 0,
there exists ξ ∈ (0, 1) such that um(t) ≤ a/2b for t ∈ [ξ, 1]. Moreover we have

−
∫ t

ξ

ds

u2m(s)
≤ −

∫ t

ξ

ds

σ2m
2 (s)

≤ − 1

2β2m

∫ t

ξ

ds

1 − s
=

1

2β2m
ln

1 − t

1 − ξ
, t ∈ (ξ, 1).

Therefore, by integrating (3.1a), we obtain

tnu′(t) = ξnu′(ξ) +

∫ t

ξ

sn

u2m(s)
(bum(s) − a) ds+ c

∫ t

ξ

sn+2rds ≤ ξnu′(ξ)

+
a

2
ξn

(

−
∫ t

ξ

ds

u2m(s)

)

≤ ξnu′(ξ) +
aξn

4β2m
ln

1 − t

1 − ξ
+

c

n+ 2r + 1
, t ∈ (ξ, 1).

Hence, limt→1− t
nu′(t) = u′(1−) = −∞. �

From Theorem 3.6 we are now able to derive the following existence result for
problem (1.4).
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Theorem 3.7. Problem (1.4) has a positive solution z such that

{

lims→∞ z(s) > 0, lims→∞ sγz′(s) = −λ2

8γ
, γ ≥ 3

2
,

lims→∞ z(s) ≥ 0, lims→∞

√
s3 z′(s) = −∞, γ < 3

2
,

(3.17)

and










z′(1+) ∈ R, A > 0,

z′(1+) ∈ R, A = 0, b1 > 0,

z′(1+) = ∞, A = 0, b1 = 0.

(3.18)

Proof. Problem (3.1) with n = 3, a = 1
8
, b = µ, c = λ2

2
, r = γ − 2 has the form

(1.2). By Lemmas 3.3, 3.4 and 3.5 there exist lower and upper functions σ1 and σ2

of problem (1.2) satisfying A2.2. By Theorem 3.6, cf. its proof, there is a positive
solution u of (1.2) satisfying (2.2), (3.8) and (3.9). Let r2 := max{|σ2(t)| : t ∈
[0, 1]} and let z be defined by

z(s) := z

(

1

t2

)

= u(t), t ∈ (0, 1].

Then 0 < z(s) < r2 for s ∈ [1,∞) and z is a solution of problem (1.4). Further-
more, we have

−2
√
s3 z′(s) = u′(t).

Let γ ≥ 3
2
. Then, by (3.16),

lim
t→0+

u′(t) = lim
t→0+

λ2

4γ
t2γ−3,

and

lim
s→∞

sγz′(s) = lim
s→∞

sγ− 3

2

(

s
3

2 z′(s)
)

= lim
t→0+

t3−2γ

(

−1

2
u′(t)

)

= −λ
2

8γ
.

Consequently, due to (3.8) and (3.9), z satisfies (3.17) and (3.18). �

4 Numerical Approach

Here, we first describe how we approximate solutions of two-point boundary value
problems for systems of ordinary differential equations of the form,

f(t, u′(t), u(t)) = 0, t ∈ [0, 1],

g(u(0), u(1)) = 0.

We assume that the analytical solution u is appropriately smooth and attempt
to solve this problem numerically using the collocation method implemented in
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our Matlab code bvpsuite . It is a new version of the general purpose Matlab

code sbvp, cf. [4], [5] and [18], which has already been successfully applied to a
variety of problems, see for example [9], [10], [11], [19], and [21]. Collocation is a
widely used and well-studied standard solution method for two-point boundary
value problems, see for example [23] and the references therein. It also proved
robust in case of singular boundary value problems.

The code is designed to solve systems of differential equations of arbitrary order.
For simplicity of notation we formulate below a problem whose order varies be-
tween four and zero, which means that algebraic constraints which do not involve
derivatives are also admitted. Moreover, the problem can be given in a fully
implicit form,

F (t, u(4)(t), u(3)(t), u′′(t), u′(t), u(t)) = 0, 0 < t ≤ 1, (4.19a)

b(u(3)(0), u′′(0), u′(0), u(0), u(3)(1), u′′(1), u′(1), u(1)) = 0. (4.19b)

The program can cope with free parameters, λ1, λ2, . . . , λk, which will be com-
puted along with the numerical approximation for u,

F (t, u(4)(t), u(3)(t), u′′(t), u′(t), u(t), λ1, λ2, . . . , λk)=0, 0 < t ≤ 1,(4.20a)

baug(u
(3)(0), u′′(0), u′(0), u(0), u(3)(1), u′′(1), u′(1), u(1))=0, (4.20b)

provided that the boundary conditions baug include k additional requirements to
be satisfied by u.

The numerical approximation defined by collocation is computed as follows: On
a mesh

∆ := {τi : i = 0, . . . , N}, 0 = τ0 < τ1 · · · < τN = 1

we approximate the analytical solution by a collocating function,

p(t) := pi(t), t ∈ [τi, τi+1], i = 0, . . . , N − 1,

where we require p ∈ Cq−1[0, 1] in case that the order of the underlying differential
equation is q. Here pi are polynomials of maximal degree m− 1+ q which satisfy
the system (4.19a) at the collocation points

{ti,j = τi+ρj(τi+1−τi), i = 0, . . . , N−1, j = 1, . . . ,m}, 0 < ρ1 < · · · < ρm < 1,

and the associated boundary conditions (4.19b). For y ∈ R
n, y = (y1, . . . , yn)T ,

we have
|y| := max

1≤k≤n
|yk|.

Let y ∈ C[0, 1], y : [0, 1] → R
n. For t ∈ [0, 1],

|y(t)| := max
1≤k≤n

|yk(t)|
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and
‖y‖∞ := max

0≤t≤1
|y(t)|.

Classical theory, cf. [23], predicts that the convergence order for the global er-
ror of the method is at least O(hm), where h is the maximal stepsize, h :=
maxi(τi+1 − τi). More precisely, for the global error of p, ‖p − u‖∞ = O(hm)
holds uniformly in t. For certain choices of the collocation points the so-called
superconvergence order can be observed. In case of the Gaussian points this
means that the approximation is exceptionally precise at the meshpoints τi,
max
τi∈∆

|p(τi) − u(τi)|∞ = O(h2m).

To make the computations more efficient, an adaptive mesh selection strategy
based on an a posteriori estimate for the global error of the collocation solution
may be utilized. We use a classical error estimate based on mesh halving. In this
approach, we compute the collocation solution p∆(t) on a mesh ∆. Subsequently,
we choose a second mesh ∆2 where in every interval [τi, τi+1] of ∆ we insert
two subintervals of equal length. On this new mesh, we compute the numerical
solution based on the same collocation scheme to obtain the collocating function
p∆2

(t). Using these two quantities, we define

E(t) :=
2m

1 − 2m
(p∆2

(t) − p∆(t)) (4.21)

as an error estimate for the approximation p∆(t). Assume that the global error
δ(t) := p∆(t) − u(t) of the collocation solution can be expressed in terms of the
principal error function e(t),

δ(t) = e(t)|τi+1 − τi|m +O(|τi+1 − τi|m+1), t ∈ [τi, τi+1], (4.22)

where e(t) is independent of ∆. Then obviously, the quantity E(t) satisfies
E(t) − δ(t) = O(hm+1) and the error estimate is asymptotically correct. Our
mesh adaptation is based on the equidistribution of the global error of the nu-
merical solution. Thus, we define a monitor function Θ(t) := m

√

E(t)/h(t), where
h(t) := |τi+1 − τi| for t ∈ [τi, τi+1]. Now, the mesh selection strategy aims at the
equidistribution of

∫ τ̃i+1

τ̃i

Θ(s) ds

on the mesh consisting of the points τ̃i to be determined accordingly, where at
the same time measures are taken to ensure that the variation of the stepsizes
is restricted and tolerance requirements are satisfied with small computational
effort. Details of the mesh selection algorithm and a proof of the fact that our
strategy implies that the global error of the numerical solution is asymptotically
equidistributed are given in [7].

19



We now discuss the numerical solution of problem (3.1) whose analytical prop-
erties are formulated in Theorem 3.6. For the numerical experiments we specify
the following parameter setting:

n = 3, m = 1, a =
1

8
, b = µ = 0, c =

λ2

2
=

1

2
, λ = 1, r = γ − 2,

see Theorem 3.6. In order to be able to formulate the first boundary condition
in (3.1b), we introduce a new variable v(t) := t3u′(t) and transform the scalar
boundary value problem (3.1) to an associated boundary value problem for system
of two implicit differential equations of first order,

v′(t) + t3
(

1

8u2(t)
− µ

u(t)
− λ2

2
t2γ−4

)

= 0, (4.23a)

v(t) − t3u′(t) = 0, (4.23b)

v(0) = 0, a0u(1) +
1

2
a1u

′(1) = A, (4.23c)

with t ∈ [0, 1]. For the numerical simulation problem (4.23) has been rearranged
to

v′(t)u2(t) + t3
(

1

8
− µu(t) − λ2u2(t)

2
t2γ−4

)

= 0, (4.24a)

v(t) − t3u′(t) = 0, (4.24b)

v(0) = 0, a0u(1) +
1

2
a1v(1) = A. (4.24c)

4.1 Numerical Results

In this section, we illustrate the theoretical findings of Theorem 3.6 by corre-
sponding numerical experiments which have been carried out using collocation
at 4 Gaussian collocation points. The numerical solution has been calculated on
a fixed equidistant mesh with 1000 points. These rather dense grids were nec-
essary for a good visualization of approximations when transforming them from
the standard interval [0, 1] back to the infinite interval [1,∞). The error estimate
and the residual were also recorded as indicators for the accuracy of the numeri-
cal solution. The error estimate was computed from (4.21) by coupling solutions
related to meshes with 1000 and 2000 meshpoints. The residual was obtained
by substituting the numerical solution p into the system of differential equations
(4.24a), (4.24b).

First, we set a0 = 1, a1 = 0 and A = 1. According to Theorem 3.6 this means
that u′(1−) ∈ R. Corresponding numerical results for two different values of γ,
both covering the case r > −1

2
, can be found in Figures 1 and 2.
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Figure 1: Problem (4.24), γ = 2.5: The numerical approximation for the solution
component u(t), the error estimate and the residual
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Figure 2: Problem (4.24), γ = 2: The numerical approximation for the solution
component u(t), the error estimate and the residual

In both figures u(0) > 0 and u′(0+) = 0, as it was predicted by the Theorem
3.6. Moreover, both error estimate and the residual are very small indicating an
excellent accuracy of the approximation. In Figure 3 the results for r = −1

2
are

depicted. Again, u(0) > 0 is clearly visible. Here, we have n = 3, c = 1
2

and
therefore, u′(0+) = c

n
≈ 0.167 which is in a good agreement with Theorem 3.6.
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Figure 3: Problem (4.24), γ = 1.5: The numerical approximation for the solution
component u(t), the error estimate and the residual.

Finally, Figures 4 and 5 show the last case r < −1
2
.
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Figure 4: Problem (4.24), γ = 1.3: The numerical approximation for the solution
component u(t), the error estimate and the residual
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Figure 5: Problem (4.24), γ = 1.2: The numerical approximation for the solution
component u(t), the error estimate and the residual

For both settings, u(0) ≥ 0 and u′(0+) = ∞.

We now set A = 0 and leave all other parameters unchanged. According to the
Theorem 3.6 this results in u′(1−) = −∞. Figures 6 to 10 show the corresponding
numerical runs for γ = 2.5, 2, 1.5, 1.3, 1.2, respectively.
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Figure 6: Problem (4.24), A = 0, γ = 2.5: The numerical approximation for the
solution component u(t), the error estimate and the residual
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Figure 7: Problem (4.24), A = 0, γ = 2: The numerical approximation for the
solution component u(t), the error estimate and the residual
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Figure 8: Problem (4.24), A = 0, γ = 1.5: The numerical approximation for the
solution component u(t), the error estimate and the residual

Again, u′(0+) ≈ 0.167.
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Figure 9: Problem (4.24), A = 0, γ = 1.3: The numerical approximation for the
solution component u(t), the error estimate and the residual
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Figure 10: Problem (4.24), A = 0, γ = 1.2: The numerical approximation for the
solution component u(t), the error estimate and the residual

The last setting discussed in Theorem 3.6 is A = 0 and a1 > 0. We use a1 = 2,
all other parameters remain unchanged, see Figures 11 to 15 for the numerical
simulations corresponding to the above values of γ.
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Figure 11: Problem (4.24), A = 0, a1 > 0, γ = 2.5: The numerical approximation
for the solution component u(t), the error estimate and the residual
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Figure 12: Problem (4.24), A = 0, a1 > 0, γ = 2: The numerical approximation
for the solution component u(t), the error estimate and the residual
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Figure 13: Problem (4.24), A = 0, a1 > 0, γ = 1.5: The numerical approximation
for the solution component u(t), the error estimate and the residual
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Figure 14: Problem (4.24), A = 0, a1 > 0, γ = 1.3: The numerical approximation
for the solution component u(t), the error estimate and the residual
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Figure 15: Problem (4.24), A = 0, a1 > 0, γ = 1.2: The numerical approximation
for the solution component u(t), the error estimate and the residual

All numerical results show a good agreement with Theorem 3.6. Both, the error
estimates2 and the residuals show that the solutions accuracy is excellent. To
visualize solutions of problem (1.4) posed on the semi-infinite interval, we have
to transform the numerical solution obtained on [0, 1] back to the original interval

2Often within the level of the machine accuracy of Matlab.
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[1,∞). To this end we use

z(s) := z

(

1

t2

)

= u(t), s ∈ [1,∞), t ∈ (0, 1],

to obtain the values for z(s).
We again discuss three different settings, where for all experiments b0 = a0 = 1.
For A = 1 and b1 = a1

2
= 0, Figure 16 shows the numerical solution of (1.4)

displayed on a short and a long interval.
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Figure 16: Problem (1.4), A = 1, b1 = 0: Solution z(s) on the interval [1, 10]
(above) and interval [1, 1000] (below) for values of γ = 2.5, γ = 1.5 and γ = 1.3
(from left to right)

For a better illustration of the solution behavior for γ = 2.5 displayed on the
long interval in Figure 16, we depict this solution in Figure 17 on three further
intervals of smaller length, see also Figure 1.
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Figure 17: Problem (1.4), A = 1, b1 = 0, γ = 2.5: Solution z(s) on the intervals
[1, 20], [1, 50], and [1, 100] (from left to right)
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For γ ≥ 3
2
, z′(1+) ∈ R holds and we know that the solution of (4.24) is positive

with lims→∞ z(s) > 0. Also, for λ = 1, lims→∞ sγz′(s) = − 1
8γ

. In principle, we
should be able to verify this latter limit using the values of the numerical solution
in the meshpoints approaching zero and the relation

sγz′(s) = −v(t)/(2t2γ) =: w(t), (4.25)

cf. (4.24b). For γ = 1.5 (and γ = 1.6) we have plotted w(t) using its values at
the meshpoints and found out that w(0) − (− 1

8γ
) ≈ 10−5.

In Figure 18 the numerical solution of (1.4) for A = 0 and b1 = 0 are reported.
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Figure 18: Problem (1.4), A = 0, b1 = 0: Solution z(s) on the interval [1, 10]
(above) and interval [1, 1000] (below) for values of γ = 2.5, γ = 1.5 and γ = 1.3
(from left to right)

Here, as expected, z′(1+) = ∞ holds for all values of γ. Also, z(s) ≥ 0.
Finally, we consider A = 0 and b1 = 1. The numerical results for this set-
ting and the above five values of γ are given in Figure 19. With z′(1+) ∈ R,
lims→∞ sγz′(s) ≈ − 1

8γ
for γ = 1.5, and lims→∞ z(s) ≥ 0 the numerical solution

again very well reflects the properties of the analytical solution.
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Figure 19: Problem (1.4), A = 0, b1 = 1: Solution z(s) on the interval [1, 10]
(above) and interval [1, 1000] (below) for values of γ = 2.5, γ = 1.5 and γ = 1.3
(from left to right)
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