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Abstract. We investigate the following singular boundary value problem which
originates from the theory of shallow membrane caps,

(t3u′(t))′ + t3
(

1

8u2(t)
− a0

u(t)
− b0t

2γ−4

)

= 0, lim
t→0+

t3u′(t) = 0, u(1) = 0,

where a0, b0, and γ are given constants. We show the existence of a positive solution
to the above problem by means of a generalized lower and upper functions method
involving limiting processes. We illustrate the theory by numerical experiments, in
which we used the new version of the MATLAB code sbvp based on polynomial
collocation, to approximate the solution of the membrane problem.
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1 Introduction

We investigate the solvability of the singular mixed boundary value problem for a
scalar implicit ordinary differential equation (ODE) of second order,

(t3u′(t))′ + t3
(

1

8u2(t)
− a0

u(t)
− b0t

2γ−4

)

= 0, 0 < t < 1, (1.1)

subject to boundary conditions (BCs)

lim
t→0+

t3u′(t) = 0, u(1) = 0, (1.2)

where a0 ≥ 0, b0 > 0, γ > 1, arising in the theory of shallow membrane caps, cf. [16],
and [22].
Our aim is to prove the existence of a positive solution to (1.1), (1.2), and then to use
collocation in order to numerically approximate u, for certain values of parameters
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a0, b0 and γ. We are especially interested in covering the case of continuous solutions
u ∈ C[0, 1].
Note that the problem (1.1), (1.2) is singular and that it exhibits both, time and
space singularities. We can see this immediately, by transforming (1.1) into a first
order system, by means of the substitution x1(t) = u(t), x2(t) = t3u′(t),

x′1 = f1(t, x1, x2) =
1

t3
x2, x′2 = f2(t, x1, x2) = −t3

(

1

8x2
1

− a0

x1
− b0t

2γ−4

)

.

Because of the 1/t3 term in the first equation f1 is not integrable in t on any right
neighborhood of t = 0, the function f1 has an essential time singularity1 at t = 0.
Moreover, f2 is not continuous in x1 having a space singularity at x1 = 0. For
existence results concerning other types of singular mixed problems, we refer the
reader to [1]–[5], [12]–[14], [21], [23]–[25], and [32]–[38].
The present investigation of the boundary value problem (1.1), (1.2) is strongly mo-
tivated by the results given in [23], where the second boundary condition in (1.2)
has the form u(1) = u1 > 0. It turns out that in this case solutions of (1.1), (1.2)
are positive on [0, 1] and consequently, the problem has no space singularities. As
a technical tool in the existence proof, the lower and upper functions method has
been used in [23]. In our case, u1 = 0, we need to cope with a space singularity at
u = 0 and therefore it will be necessary to generalize the approach, see the discus-
sion in Section 2. Analytical results will be presented in Section 3, and results of
the numerical simulation can be found in Section 4.

Throughout the paper the following notation and definitions will be used.

Definition 1.1. A function u is called a positive solution of the problem (1.1),
(1.2), if u satisfies the following requirements:
(i) u ∈ C[0, 1] ∩ C2(0, 1) with t3u′ ∈ C[0, 1),
(ii) u(t) > 0 for all t ∈ (0, 1),
(iii) u satisfies the ODE (1.1) for t ∈ (0, 1), and the BCs (1.2).

Let J ⊂ R, then we denote by L∞(J) the set of functions which are essentially
bounded and Lebesgue measurable on J . We equip L∞(J) with the norm defined
by ‖u‖ := sup esst∈J|u(t)|. We use Cn(J) to denote the set of functions which are
n-times continuously differentiable on J . For J = [a, b] and u ∈ C[a, b], the above
norm is the maximum norm, maxa≤t≤b |u(t)| = sup essa≤t≤b|u(t)|, and therefore we
will denote the maximum norm in C[a, b] by ‖ · ‖. We define AC(J) to be a set of
functions being absolutely continuous on J , and by ACloc(J) the set of functions
which are absolutely continuous on each compact subinterval I ⊂ J .
Finally, we require the following definitions:

Definition 1.2. The function f : J×R → R is said to satisfy the L∞-Carathéodory
conditions on the set J × R, if
(i) f(·, x) : J → R is measurable for all x ∈ R,
(ii) f(t, ·) : R → R is continuous for a.e. t ∈ J,
(iii) for each compact set K ⊂ R, there exists a function mK ∈ L∞(J) such that
|f(t, x)| ≤ mK(t), for a.e. t ∈ J and all x ∈ K.

Definition 1.3. Let f : (0, 1]× (0,∞) → R. Then, f(t, x) has a time singularity at
t = 0, if there exists an x ∈ (0,∞) such that

∫ ε

0

|f(t, x)|dt = ∞

1or singularity of the second kind
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for each sufficiently small ε > 0. We say that f(t, x) has a space singularity at x = 0,
if

lim sup
x→0+

|f(t, x)| = ∞,

for a.e. t ∈ (0, 1].

2 Generalized lower and upper functions method

The lower and upper functions method combined with fixed point theorems or topo-
logical degree arguments is an important and powerful tool for analyzing the solv-
ability of boundary value problems, see e.g. [3], [23], [25] or [33]-[36]. The method
is based on the assumption that there exist two functions σ1 and σ2 which satisfy
certain inequalities. These inequalities are specified in Definition 2.1. Functions
σ1 and σ2 are called lower and upper functions (or lower and upper solutions) of
the boundary value problem in question. Provided that the functions σ1 ≤ σ2 are
given, we can construct an auxiliary differential equation which has a solution u
satisfying the prescribed boundary conditions. The auxiliary differential equation
is constructed in such a way, that if σ1 ≤ u ≤ σ2 holds, then u solves also the
original equation.

Let [0, T ] ⊂ R and consider the following boundary value problem:

(p(t)u′(t))′ + p(t)q(t)f(t, u(t)) = 0, 0 < t < T, (2.1)

lim
t→0+

p(t)u′(t) = 0, u(T ) = 0, (2.2)

where p, q, and f are given. We now define the lower and the upper function for
the problem (2.1), (2.2).

Definition 2.1. A function σ ∈ C[0, T ] is called a lower function of (2.1), (2.2),
if there exists a finite set Σ ⊂ (0, T ) such that pσ′ ∈ ACloc((0, T ) \ Σ), and
σ′(τ+), σ′(τ−) ∈ R for each τ ∈ Σ. Moreover, σ has to satisfy

(p(t)σ′(t))′ + p(t)q(t)f(t, σ(t)) ≥ 0, (2.3)

for a.e. t ∈ [0, T ] and

lim
t→0+

p(t)σ′(t) ≥ 0, σ(T ) ≤ 0, σ′(τ−) < σ′(τ+), (2.4)

for each τ ∈ Σ. If the inequalities in (2.3) and (2.4) are reversed, then σ is called
an upper function of (2.1), (2.2).
Note that the first derivatives of lower and upper functions can be unbounded at
the endpoints of the interval of integration, t = 0 and t = T .

For the subsequent analysis we make the following assumptions:

A1: We assume p and q to be continuous, p ∈ C[0, T ], q ∈ C(0, T ], and positive,
p(t) > 0, q(t) > 0, for t ∈ (0, T ].

A2: We assume that the following integrals are bounded:

∫ T

0

p(s)q(s)ds <∞,

∫ T

0

1

p(t)

∫ t

0

p(s)q(s)ds dt <∞.

A3: Function f satisfies the L∞-Carathéodory conditions on [0, T ] × R.
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Definition 2.2. A function u ∈ C[0, T ] ∩ C1(0, T ] with pu′ ∈ AC[0, T ], is called a

solution of the problem (2.1), (2.2), if it satisfies the ODE (2.1) for a.e. t ∈ [0, T ],
and if the BCs (2.2) hold.
It turns out that if J ⊆ (0, T ), f is continuous on J × R, and u is a solution of
(2.1), (2.2), then u ∈ C2(J), pu′ ∈ C1(J) and u satisfies (2.1) for all t ∈ J .

To prove the existence of a solution u, we use the generalized lower and upper func-
tions method for the problem (2.1), (2.2). The related fundamental statement is
given in Theorem 2.3.

Theorem 2.3. Let σ1 and σ2 be a lower and an upper function of the problem

(2.1), (2.2) respectively, such that σ1(t) ≤ σ2(t), t ∈ [0, T ]. Let us also assume that

A1, A2, and A3 hold. Then, the boundary value problem (2.1), (2.2) has a solution

u satisfying

σ1(t) ≤ u(t) ≤ σ2(t), t ∈ [0, T ]. (2.5)

If moreover,

lim
t→0+

1

p(t)

∫ t

0

p(s)q(s)ds = 0, (2.6)

then

u ∈ C1[0, T ], u′(0) = 0. (2.7)

Proof. In the first step of the proof, we show the existence of a solution u of the
auxiliary problem. For a.e. t ∈ [0, T ] and all x ∈ R we define

f∗(t, x) =















f(t, σ2(t)) − x−σ2(t)
x−σ2(t)+1 , x > σ2(t),

f(t, x), σ1(t) ≤ x ≤ σ2(t),

f(t, σ1(t)) + σ1(t)−x

σ1(t)−x+1 , x < σ1(t),

and consider the equation

(p(t)u′(t))′ + p(t)q(t)f∗(t, u(t)) = 0. (2.8)

Define the operator F : C[0, T ] → C[0, T ] by

(Fu)(t) :=

∫ T

t

− 1

p(τ)

∫ τ

0

p(s)q(s)f∗(s, u(s))ds dτ. (2.9)

Since A3 holds, we can find a function m∗ ∈ L∞[0, T ] such that

|f∗(t, x)| ≤ m∗(t) (2.10)

for a.e. t ∈ [0, T ] and all x ∈ R. Therefore, due to A2, F is continuous and compact,
and the Schauder Fixed Point Theorem guaranties that a fixed point u ∈ C[0, T ] of
F exists. According to (2.9) we now have

u(t) =

∫ T

t

− 1

p(τ)

∫ τ

0

p(s)q(s)f∗(s, u(s))ds dτ, t ∈ [0, T ].

Hence, u satisfies (2.8) a.e. in [0, T ], BCs (2.2) hold, and pu′ ∈ AC[0, T ]. The
assumptions p ∈ C[0, T ] and p > 0 on (0, T ] result in u ∈ C1(0, T ]. This means that
u is a solution of the problem (2.8), (2.2).
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If additionally, (2.6) holds, we can use (2.10) to conclude

lim
t→0+

|u′(t)| = lim
t→0+

∣

∣

∣

∣

− 1

p(t)

∫ t

0

p(s)q(s)f∗(s, u(s))ds

∣

∣

∣

∣

≤ ‖m∗‖ lim
t→0+

1

p(t)

∫ t

0

p(s)q(s)ds = 0.

Finally, we set u′(0) := limt→0+ u
′(t) = 0, and (2.7) follows.

In the second step, we show that u solves (2.1). To this end we verify that (2.5)
holds. Let us set v(t) := u(t) − σ2(t), t ∈ [0, T ], and assume that

max
0≤t≤T

v(t) = v(t0) > 0. (2.11)

Since σ2(T ) ≥ 0 and u(T ) = 0, it follows that t0 ∈ [0, T ). Let t0 = 0, then we
have from (2.2) and (2.4) that limt→0+ p(t)v

′(t) ≥ 0. Let limt→0+ p(t)v
′(t) > 0 then

limt→0+ v
′(t) > 0, which contradicts (2.11). Therefore, limt→0+ p(t)v

′(t) = 0 holds.
Now, let t0 ∈ (0, T ). Then (2.11) implies v′(t0) = 0.

We summarize: For t0 ∈ [0, T ) we have p(t0)v
′(t0) = 0 and we can find a δ > 0 such

that v(t) > 0 on (t0, t0 + δ) ⊂ (0, T ), and

(p(t)v′(t))′ = (p(t)u′(t))′ − (p(t)σ′
2(t))

′

≥ −p(t)q(t)
(

f(t, σ2(t)) −
u(t) − σ2(t)

u(t) − σ2(t) + 1

)

+ p(t)q(t)f(t, σ2(t))

= p(t)q(t)
v(t)

v(t) + 1
> 0

a.e. in (t0, t0 + δ). Therefore

0 <

∫ t

t0

p(s)q(s)
v(s)

v(s) + 1
ds ≤

∫ t

t0

(p(s)v′(s))′ds = p(t)v′(t)

for t ∈ (t0, t0 +δ), contradicting (2.11). We have shown that u(t) ≤ σ2(t), t ∈ [0, T ].
The inequality σ1(t) ≤ u(t), t ∈ [0, T ] follows analogously. The definition of f∗ fi-
nally implies that u is a solution of (2.1). �

Example. Let a > 0, ε > 0, p(t) = ta, q(t) = tε−1. Then p and q satisfy A1, A2,
and (2.6).

The main difficulty in applying Theorem 2.3 is to find a lower function σ1 and
an upper function σ2 for the problem (2.1), (2.2), which are well ordered, i.e.,
σ1(t) ≤ σ2(t) for all t ∈ [0, T ]. If f(·, x) in (2.1) changes its sign on [0, T ], for
instance, then lower and upper functions of (2.1), (2.2) have to be nonconstant and
therefore their computation can be difficult. In Lemmas 2.4 and 2.5 we present two
pairs of well ordered lower and upper functions for the problem (1.1), (1.2).

Lemma 2.4. Let γ > 3/2. Then there exist constants ν∗, c∗ ∈ (0,∞) such that for

each ν ∈ (0, ν∗] and c ≥ c∗ the following functions:

σ1(t) = ν(t+ ν)(1 − t), σ2(t) = c
√

1 − t2, t ∈ [0, 1] (2.12)

are lower and upper functions of the problem (1.1), (1.2).
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Proof. It follows from (2.12) that σ′
1(t) = ν(1 − 2t− ν) and σ′

2(t) = −ct√
1−t2

. Thus,

lim
t→0+

t3σ′
1(t) = 0, lim

t→0+
t3σ′

2(t) = 0, σ1(1) = σ2(1) = 0. (2.13)

By inserting σ1 into (1.1), we obtain

(t3σ′
1(t))

′ + t3
(

1

8σ2
1(t)

− a0

σ1(t)
− b0t

2γ−4

)

= t2
(

νϕ1(t, ν) +
t

ν2(1 − t)2(t+ ν)2
ϕ2(t, ν)

)

, 0 < t < 1,

where

ϕ1(t, ν) = 3− 3ν − 8t, ϕ2(t, ν) =
1

8
− a0ν(1− t)(t+ ν)− b0t

2γ−4ν2(1− t)2(t+ ν)2.

Let us choose ν0 ∈ (0, 3
11 ) such that

a0ν0(1 + ν0) + b0ν
2
0(1 + ν0)

2 <
1

16
,

then for all ν ∈ (0, ν0), we have

ϕ1(t, ν) > 0, ϕ2(t, ν) > 0, t ∈ [0, ν].

Moreover, we can find ν∗ ∈ (0, ν0) such that

ν2
∗ϕ1(t, ν∗) +

1

16ν∗(1 + ν∗)2
> 0, t ∈ [ν∗, 1],

and consequently, for all ν ∈ (0, ν∗], it follows

(t3σ′
1(t))

′ + t3
(

1

8σ2
1(t)

− a0

σ1(t)
− b0t

2γ−4

)

≥ 0, t ∈ [0, 1). (2.14)

By (2.13) and (2.14), σ1 is a lower function of the problem (1.1), (1.2).
We now insert σ2 into (1.1) and obtain

(t3σ′
2(t))

′ + t3
(

1

8σ2
2(t)

− a0

σ2(t)
− b0t

2γ−4

)

≤ t3ϕ3(t, c), t ∈ [0, 1),

where

ϕ3(t, c) = −c(1 − t2)−
3
2

(

1 −
√

1 − t2

8c3

)

.

Hence, limc→∞ ϕ3(t, ν) = −∞ uniformly in [0, 1). Therefore, there exists a constant
c∗ > 0 such that for all c ∈ [c∗,∞) in the definition of σ2, cf. (2.12), we have

(t3σ′
2(t))

′ + t3
(

1

8σ2
2(t)

− a0

σ2(t)
− b0t

2γ−4

)

≤ 0, t ∈ [0, 1). (2.15)

Finally, we conclude from (2.13) and (2.15) that σ2 is an upper function of the
problem (1.1), (1.2) which completes the proof. �

Lemma 2.5. Let γ ∈ (1, 3/2]. Then there exist constants ν∗, c∗ ∈ (0,∞) such that

for each ν ∈ (0, ν∗] and c ≥ c∗ the following functions:

σ1(t) = νt2−γ(1 − t), σ2(t) = c
√

1 − t2, t ∈ [0, 1], (2.16)

are lower and upper functions of the problem (1.1), (1.2).
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Proof: We first calculate the derivatives of σ1 and σ2,

σ′
1(t) = νt1−γ(2 − γ − (3 − γ)t), σ′

2(t) =
−ct√
1 − t2

.

Clearly, σ1 and σ2 satisfy (2.13). By inserting σ1 into (1.1), we obtain

(t3σ′
1(t))

′ + t3
(

1

8σ2
1(t)

− a0

σ1(t)
− b0t

2γ−4

)

= νt3−γ [(4 − γ)(2 − γ) − (5 − γ)(3 − γ)t] +
t2γ−1

ν2(1 − t)2
ψ(t, ν)

> t4−γ

(

−ν(5 − γ)(3 − γ) +
t3γ−5

ν2(1 − t)2
ψ(t, ν)

)

, t ∈ (0, 1),

where

ψ(t, ν) =
1

8
− a0ν(1 − t)t2−γ − b0ν

2(1 − t)2.

We now find a constant ν0 > 0 such that ψ(t, ν) > 0 for t ∈ [0, 1] and ν ∈ (0, ν0].
Furthermore,

lim
ν→0+

1

t5−3γ(1 − t)2ν2
= ∞

uniformly in (0, 1) and therefore, we are able to provide another constant ν∗ ∈ (0, ν0]
such that for any ν ∈ (0, ν∗] in the definition of σ1, see (2.16),

(t3σ′
1(t))

′ + t3
(

1

8σ2
1(t)

− a0

σ1(t)
− b0t

2γ−4

)

> 0, t ∈ (0, 1), (2.17)

holds. This means that by (2.13) and (2.17), σ1 is a lower function of the problem
(1.1), (1.2). By Lemma 2.4 function σ2 is an upper function, and the result follows.

�

3 Analytical results

In this section we present the main analytical results characterizing the solvability
of the problem (1.1), (1.2). We begin with considering the case γ > 3/2. This study
will utilize results provided by Lemma 2.4.

Theorem 3.1. Let γ > 3/2. Then there exists a positive solution u of the problem

(1.1), (1.2). Moreover, this solution satisfies

u(0) > 0, lim
t→0+

u′(t) = 0. (3.1)

Proof. We first construct auxiliary functions fk. Let T = 1. We set

p(t) = t3, q(t) = 1, f(t, x) =
1

8x2
− a0

x
− b0t

2γ−4. (3.2)

It is easily seen that p and q satisfy A1, A2, and (2.6), but A3 does not hold for
f . To remedy the situation, we introduce a sequence of functions fk, k ∈ N, k > 3,
t ∈ [0, 1], x ∈ R,

fk(t, x) :=















0, t ∈ [0, 1
k
),

f(t, α(t, x)), t ∈ [ 1
k
, 1 − 1

k
],

1, t ∈ (1 − 1
k
, 1],

, (3.3)
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where

α(t, x) :=















σ2(t), x > σ2(t),

x, σ1(t) ≤ x ≤ σ2(t),

σ1(t), x < σ1(t).

Note that all functions fk satisfy A3.

We now design the lower and upper functions for auxiliary problems, where f has
been replaced by fk,

(t3u′(t))′ + t3fk(t, u(t)) = 0. (3.4)

Let σ1 and σ2 be specified by (2.12), where ν ≤ ν∗ <
1
9 and c ≥ c∗ > 1. Then, by

Lemma 2.4, σ1 is a lower function and σ2 is an upper function of the problem (1.1),
(1.2). Since k > 3, we have

(t3σ′
1(t))

′ = t2ν(3 − 3ν − 8t) > 0, t ∈
[

0,
1

k

)

,

and

(t3σ′
1(t))

′ + t3 = t2(ν(3 − 3ν − 8t) + t) > 0, t ∈
(

1 − 1

k
, 1

]

.

Similarly,

(t3σ′
2(t))

′ = −ct3(1 − t2)−
3
2 (4 − 3t2) < 0, t ∈

[

0,
1

k

)

,

and

(t3σ′
2(t))

′ + t3 = t3(−c(1 − t2)−
3
2 (4 − 3t2) + 1) < 0, t ∈

(

1 − 1

k
, 1

)

.

Therefore σ1 and σ2 are also lower and upper functions of the problem (3.4), (1.2).
With no loss of generality, we can choose ν ∈ (0, ν∗) and c ≥ c∗ in such a way that
ν(1 + ν) < c holds. Then σ1 ≤ σ2 on [0, 1] and, by Theorem 2.3, the problem (3.4),
(1.2) has a solution uk ∈ C1[0, 1], k > 3, satisfying

σ1(t) ≤ uk(t) ≤ σ2(t), t ∈ [0, 1], u′k(0) = 0. (3.5)

We regard the sequence uk, k ∈ N, k > 3, of solutions to the problem (3.4), (1.2),
as a sequence of approximations to u, and first discuss the convergence properties
of {uk}. Let us choose an interval [0, b] ⊂ [0, 1). Then, there exists an index k1 ∈ N

such that [0, b] ⊂ [0, 1 − 1
k
] for k ≥ k1 and due to (3.4), (1.2) and (3.5), we have

t3u′k(t) +

∫ t

0

s3
(

1

8u2
k(s)

− a0

uk(s)
− b0s

2γ−4

)

ds = 0, t ∈ [0, b], k ≥ k1. (3.6)

Let

rb := min
0≤t≤b

σ1(t), mb :=
1

8r2b
+
a0

rb
. (3.7)

It follows from (2.12) that rb > 0 and hence, (3.2), (3.3) and (3.6) yield

|t3fk(t, uk(t))| ≤ mbt
3 + b0t

2γ−1, |t3u′k(t)| ≤ mb

4
t4 +

b0
2γ
t2γ , t ∈ [0, b], (3.8)
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provided that k ≥ k1. Due to (3.5) and (3.8), the sequences {uk} and {u′k} are
bounded on [0, b], which implies that {uk} is equicontinuous on [0, b]. Furthermore,
for each ε > 0 there exists δ > 0 such that for any t1, t2 ∈ [0, b] and k ≥ k1,

|t1 − t2| < δ ⇒ |t31u′k(t1) − t32u
′
k(t2)| ≤ mb

∣

∣

∣

∣

∫ t2

t1

s3ds

∣

∣

∣

∣

+ b0

∣

∣

∣

∣

∫ t2

t1

s2γ−1ds

∣

∣

∣

∣

< ε.

Hence the sequence {t3u′k} is equicontinuous on [0, b] and, by (3.8), it is bounded
on [0, b]. The Ascoli-Arzelà Theorem now implies that there exists a subsequence
{ukℓ

} ⊂ {uk} such that

lim
ℓ→∞

ukℓ
= u, lim

ℓ→∞
t3u′kℓ

= t3u′

uniformly in [0, b]. Finally, by diagonalization, we find a subsequence2 satisfying

lim
k→∞

uk = u, lim
k→∞

t3u′k = t3u′ (3.9)

locally uniformly in [0, 1).

We conclude the proof by describing the properties of the limiting function u. Due
to (3.5) and (3.9) we have

σ1(t) ≤ u(t) ≤ σ2(t), t ∈ [0, 1), u ∈ C[0, 1), t3u′ ∈ C[0, 1). (3.10)

Since σ1(1) = σ2(1) = 0 and limt→0+ t
3u′k(t) = 0, it follows that

lim
t→1−

u(t) = 0, lim
t→0+

t3u′(t) = 0. (3.11)

Moreover, (3.3) and (3.9) imply

lim
k→∞

t3fk(t, uk(t)) = t3f(t, u(t)), t ∈ (0, 1),

and from (3.4) and (3.8) we obtain

|t3fk(t, uk(t))| ≤ mbt
3 + b0t

2γ−1,

for t ∈ [0, b] and k ≥ k1. Consequently, we can use the Lebesgue Theorem on [0, b],
and having in mind that b ∈ (0, 1) is arbitrary, we conclude by letting k → ∞ in
(3.6),

t3u′(t) +

∫ t

0

s3
(

1

8u2(s)
− a0

u(s)
− b0s

2γ−4

)

ds = 0, t ∈ (0, 1). (3.12)

Thus u ∈ C2(0, 1) and u satisfies (1.1) for t ∈ (0, 1). Setting u(1) := limt→1− u(t),
we obtain u(1) = 0 and u ∈ C[0, 1]. These smoothness properties of u together with
(3.10), and (3.11), guarantee that u is a positive solution of (1.1), (1.2). It remains
to show that (3.1) holds. From σ1(0) > 0, the first condition in (3.1) follows. The
second condition results on noting that

lim
t→0+

|u′(t)| ≤ lim
t→0+

mb

4
t+ lim

t→0+

b0
2γ
t2γ−3 = 0,

due to (3.12), (3.7) and (3.10). �

Now, we apply results from Lemma 2.5, in order to cover the case γ ∈ (1, 3/2].

2for simplicity we do not change the notation here
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Theorem 3.2. Let γ ∈ (1, 3/2]. Then there exists a positive solution u of the

problem (1.1), (1.2). For γ = 3/2, the solution u satisfies

u(0) > 0, lim
t→0+

u′(t) =
b0
3
. (3.13)

Proof. The arguments are similar to those given in the proof of Theorem 3.1 and
the beginning of the proof is fully analogous. The main difference is the definition
of the lower function σ1 which is now specified by (2.16), with ν ≤ ν∗ <

1
15 . By

Lemma 2.5, σ1 is a lower function of (1.1), (1.2). For k > 3, we again have

(t3σ′
1(t))

′ = νt4−γ((5 − γ)(3 − γ) − (6 − γ)(4 − γ)t) > 0, t ∈
[

0,
1

k

)

,

and

(t3σ′
1(t))

′ + t3 = νt4−γ((5− γ)(3− γ)− (6− γ)(4− γ)t) + t3 > 0, t ∈
(

1 − 1

k
, 1

]

,

which implies that σ1 is also a lower function of (3.4), (1.2). Since σ2 is the same as
in the previous proof, it is an upper function of (3.4), (1.2). Now, for k ∈ N, k > 3,
the sequence {uk} defined in the proof of Theorem 3.1 is a sequence of solutions to
the problems (3.4), (1.2). Also, uk ∈ C1[0, 1] and it satisfies (3.5).

Consider an interval [0, b] ⊂ [0, 1) and the sequence {uk}, k ∈ N, k > 3. Then (3.6)
holds. Let

a1 :=
a0

ν(1 − b)
, b1 :=

1

8ν2(1 − b)2
+ b0,

then
t3

8σ2
1(t)

+
a0t

3

σ1(t)
+ b0t

2γ−1 ≤ a1t
γ+1 + b1t

2γ−1, t ∈ [0, b]. (3.14)

Thus, (3.5), (3.6), and (3.14), yield

|t3fk(t, uk(t))| ≤ a1t
γ+1 + b1t

2γ−1, |t3u′k(t)| ≤ a1

γ + 2
tγ+2 +

b1
2γ
t2γ , t ∈ [0, b],

provided that k ≥ k1. Hence, for each ε > 0 there exists δ > 0 such that for any
t1, t2 ∈ [0, b] and k ≥ k1,

|t1 − t2| < δ ⇒ |t31u′k(t1) − t32u
′
k(t2)| ≤ |

∫ t2

t1

(a1t
γ+1 + b1t

2γ−1)dt| < ε,

and

|t1 − t2| < δ ⇒ |uk(t1) − uk(t2)| ≤
∣

∣

∣

∣

∫ t2

t1

(

a1

γ + 2
tγ−1 +

b1
2γ
t2γ−3

)

dt

∣

∣

∣

∣

< ε.

Therefore the sequences {uk} and {t3u′k} are bounded and equicontinuous on [0, b]
and (3.9) results due to the arguments given in the proof of Theorem 3.1.

Smoothness of u and the properties (3.10), (3.11) can be shown as in the proof of
Theorem 3.1. Since σ1(0) = 0 and limt→0+ σ

′
1(t) = ∞, we conclude

u(0) = 0 ⇒ lim
t→0+

u′(t) = ∞ (3.15)

by virtue of (3.10). Furthermore, because γ > 1 and limt→0+ t
3u′(t) = 0, relation

(3.12) yields

lim
t→0+

∫ t

0

s3
(

a0

u(s)
− 1

8u2(s)

)

ds = 0,
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and hence, by the l’Hospital rule,

lim
t→0+

u′(t) = lim
t→0+

∫ t

0
s3
(

a0

u(s) − 1
8u2(s)

)

ds

t3
+ lim

t→0+

b0
2γ
t2γ−3

=
1

3
lim

t→0+

t

u2(t)

(

a0u(t) −
1

8

)

+
b0
2γ

lim
t→0+

t2γ−3. (3.16)

Let γ = 3/2 and assume that u(0) = 0 holds. Then

lim
t→0+

u′(t) =
1

3
lim

t→0+

t

u2(t)

(

−1

8

)

+
b0
3

≤ b0
3
,

in contradiction to (3.15). Thus u(0) > 0 and, due to (3.16), limt→0+ u
′(t) = b0

3 .
This completes the proof. �

Remark. Consider a positive solution u of (1.1), (1.2) for γ > 1. We first recapit-
ulate the behavior of u′ at the singular point t = 0.
Let γ > 3/2. Then, by (3.1), we know that u′(0+) = 0 holds.
Let γ = 3/2. Then, by (3.13), the derivative satisfies u′(0+) = b0/3.
Let γ ∈ (1, 3/2). Then u′(0+) = ∞. This follows from (3.15) for u(0) = 0 and from
(3.16) for u(0) > 0.

Finally, let us consider the singular point t = 1. Since u(1) = 0, there exists a
ξ ∈ (0, 1) such that a0u(t) ≤ 1

16 for t ∈ [ξ, 1]. Let σ2 be an upper function given by
(2.12) and satisfying (3.10). Then, it follows

−
∫ t

ξ

ds

u2(s)
≤ −

∫ t

ξ

ds

σ2
2(s)

≤ − 1

2c2

∫ t

ξ

ds

1 − s
=

1

2c2
ln

1 − t

1 − ξ
, t ∈ (ξ, 1).

Integrating (1.1) yields

t3u′(t) = ξ3u′(ξ) +

∫ t

ξ

s3

u2(s)

(

a0u(s) −
1

8

)

ds+ b0

∫ t

ξ

s2γ−1ds

≤ ξ3u′(ξ) +
ξ3

32c2
ln

1 − t

1 − ξ
+
b0
2γ
, t ∈ (ξ, 1),

and therefore limt→1− t
3u′(t) = u′(1−) = −∞.

4 Numerical Experiments

In this section we solve the boundary value problem (1.1), (1.2) numerically, in
order to illustrate the analytical results formulated in Theorems 3.1 and 3.2. To
this end we consider two different formulations of the analytical problem. We first
rewrite equation (1.1) and obtain an implicit second order equation,

t3u′′(t)u2(t)+3t2u′(t)u(t)+t3
(

1

8
− a0u(t) − b0t

2γ−4u2(t)

)

= 0, 0 < t < 1, (4.1)

subject to boundary conditions

u′(0) = 0, u(1) = 0. (4.2)

11



Moreover, after applying the transformation v(t) = t3u′(t) to (1.1) we have a system
of two implicit differential equations of order one,

t3u′(t) − v(t) = 0, 0 < t < 1, (4.3)

v′(t)u2(t) + t3
(

1

8
− a0u(t) − b0t

2γ−4u2(t)

)

= 0, 0 < t < 1, (4.4)

subject to boundary conditions

v(0) = 0, u(1) = 0. (4.5)

The numerical solution of singular boundary value problems has been extensively
discussed in the literature, see for example [17]–[19], and [29]–[31]. The convergence
theory for most of the standard numerical methods is often provided for the following
model problem,

tαz′(t) −M(t)z(t) = f(t, z(t)), 0 < t ≤ 1, (4.6)

b(z(0), z(1)) = 0, (4.7)

where the matrixM(t) ∈ R
n×n

and the functions f(t, z) : [0, 1]×R
n → R

n
, b(z0, z1) :

R
n × R

n → R
n

are given. For α = 1, problem (4.6), (4.7) is said to be singular
with a singularity of the first kind, for α > 1, to be essentially singular. We assume
(4.6), (4.7) to be well-posed and to have an appropriately smooth, locally unique
solution.
We apply polynomial collocation to solve the problems (4.1), (4.2), and (4.3), (4.4),
(4.5). Collocation is a widely used and well-studied standard solution method for
two-point boundary value problems, see for example [6] and the references therein.
Moreover, for singular problems, many popular discretization methods like finite
differences, Runge–Kutta or multistep methods show order reductions, thus making
computations inefficient and prohibiting asymptotically correct error estimation and
reliable mesh adaptation. Therefore, in our code development, we have chosen
collocation as a high-order, robust, general-purpose numerical method. It is a new
version of the general purpose Matlab code sbvp, cf. [8] and [26], which has already
been successfully applied to a variety of problems, see for example [7], [15], [26],
and [27]. The code is designed to solve systems of differential equations whose order
may vary between four and zero, which means that algebraic constrains which do
not involve derivatives are also admitted. Moreover, the problem can be given in a
fully implicit form,

F (t, z(4)(t), z(3)(t), z′′(t), z′(t), z(t)) = 0, 0 < t ≤ 1, (4.8)

b(z(3)(0), z′′(0), z′(0), z(0), z(3)(1), z′′(1), z′(1), z(1)) = 0. (4.9)

The numerical approximation defined by collocation is computed as follows: On a
mesh

∆ := {τi : i = 0, . . . , N}, 0 = τ0 < τ1 · · · < τN = 1

we approximate the analytical solution by a piecewise defined collocating function

p(s) := pi(s), s ∈ [τi, τi+1], i = 0, . . . , N − 1,

where we require p ∈ Cq−1[0, 1] if the order of the underlying differential equation
is q. Here pi are polynomials of maximal degree m− 1 + q which satisfy the system
(4.8) at the collocation points

{ti,j = τi + ρj(τi+1 − τi), i = 0, . . . , N − 1, j = 1, . . . ,m}, 0 < ρ1 < · · · < ρm < 1,
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and the associated boundary conditions (4.9) are also prescribed for p. Classical
theory, cf. [6], predicts that the convergence order is at least O(hm), where h is the
maximal stepsize, h := maxi |τi+1 − τi|. The same could be shown in [20], [39], [10],
and [28] for first order problems with a singularity of the first kind. Quite often, even
the superconvergence order, in case of Gaussian points O(h2m), can be observed in
practice. For problems with an essential singularity, extensive numerical evidence
and partial theoretical support indicate that the methods retain their convergence
order if the collocation points are symmetric, see [11].
To make the computations more efficient, we additionally use an adaptive mesh
selection strategy based on an a posteriori estimate for the global error of the
collocation solution. We use a classical error estimate based on mesh halving. In this
approach, we compute the collocation solution p∆(s) on a mesh ∆. Subsequently,
we choose a second mesh ∆2 where in every interval [τi, τi+1] of ∆ we insert two
subintervals of equal length. On this new mesh, we compute the numerical solution
based on the same collocation scheme to obtain the collocating function p∆2

(s).
Using these two quantities, we define

E(s) :=
2m

1 − 2m
(p∆2

(s) − p∆(s)) (4.10)

as an error estimate for the approximation p∆(s). Assume that the global error
δ(s) := p∆(s) − z(s) of the collocation solution can be expressed in terms of the
principal error function e(s),

δ(s) = e(s)|τi+1 − τi|m +O(|τi+1 − τi|m+1), s ∈ [τi, τi+1], (4.11)

where e(s) is independent of ∆. Then obviously the quantity E(s) satisfies E(s) −
δ(s) = O(hm+1) and the error estimate is asymptotically correct. Our mesh adap-
tation is based on the equidistribution of the global error of the numerical solution.
Thus, we define a monitor function Θ(s) := m

√

E(s)/h(s), where h(s) := |τi+1 − τi|
for s ∈ [τi, τi+1]. Now, the mesh selection strategy aims at the equidistribution of

∫ τ̃i+1

τ̃i

Θ(s) ds

on the mesh consisting of the points τ̃i to be determined accordingly, where at the
same time measures are taken to ensure that the variation of the stepsizes is re-
stricted and tolerance requirements are satisfied with small computational effort.
Details of the mesh selection algorithm and a proof of the fact that our strategy im-
plies that the global error of the numerical solution is asymptotically equidistributed

are given in [9].
It is clear that the analytical problems we are studying, do not belong to the class
which is covered by the convergence theory, but nevertheless, our code is applicable
and we can use it to approximate their solutions. For the first test run we set the
parameters to a0 = 2, b0 = 3 and γ = 1.8, and display the numerical solution
p(t) which approximates the unknown analytical solution u(t) computed from the
boundary value problems (4.1), (4.2), and (4.3), (4.4), (4.5), in Figures 1 and 2,
respectively.
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Figure 1: Numerical solution of (4.1), (4.2) for a0 = 2, b0 = 3, γ = 1.8. Left graph:
p(t), t ∈ [0, 1]; Right graph: p(t), t ∈ [0, 10−3].
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Figure 2: Numerical solution of (4.3), (4.4), (4.5) for a0 = 2, b0 = 3, γ = 1.8. Left
graph: p(t), t ∈ [0, 1]; Right graph: p(t), t ∈ [0, 10−3].
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Figure 3: Figures (1) and (2) shown together in one graph. Dashed-dotted line:
Solution of the first formulation (4.1), (4.2). Dotted line: Solution of the second
formulation (4.3), (4.4), (4.5).

The numerical results are in a good agreement with the statement shown in The-
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orem 3.1. The value of p(0) is positive and its derivative satisfies limt→0 p
′(t) = 0,

as predicted by the theory.

According to Theorem 3.2, the asymptotical behavior of u′(0) is specified by

lim
t→0

t3u′(t) = 0

and u′ is not bounded at t = 0, u′(0) = ∞, for γ ∈ (1, 3
2 ). Moreover, limt→0 u

′(t) =
b0
3 for γ = 3

2 . Thus, the formulation (4.1), (4.2) is no longer adequate for the
numerical treatment and we are therefore limited to (4.3), (4.4), (4.5). Figure 4
shows the related result for the parameter values a0 = 1, b0 = 2, γ = 3

2 .
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Figure 4: Numerical solution of (4.3), (4.4), (4.5) for a0 = 1, b0 = 2, γ = 3
2 . Left

graph: p(t), t ∈ [0, 1]; Right graph: p(t), t ∈ [0, 10−3].
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Figure 5: Derivative of the numerical solution of (4.3), (4.4), (4.5) for a0 = 1,
b0 = 2, γ = 3

2 . Left graph: p′(t), t ∈ [0, 1]; Right graph: p′(t), t ∈ [0, 10−3].

Again, the experiments reflect correctly the analytical properties of u. It is clear
from Figure (4) that u(0) > 0 and Figure (5) shows that limt→0 u

′(t) = b0
3 ≈ 0.66

holds.

In the final experiment, we would like to illustrate how the value of u′(0) depends
on γ. We expect u′(0) to increase when γ decreases. Therefore we set a0 = 1, b0 = 2
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and γ = 1.4, cf. Figures 6 and 7. Again we observe u(0) > 0 and we see that, as
expected, u′(0) is now larger than it was for γ = 1.5.
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Figure 6: Numerical solution of (4.3), (4.4), (4.5) for a0 = 1, b0 = 2, γ = 1.4. Left
graph: p(t), t ∈ [0, 1]; Right graph: p(t), t ∈ [0, 10−3].
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Figure 7: Derivative of the numerical solution of (4.3), (4.4), (4.5) for a0 = 1,
b0 = 2, γ = 1.4. Left graph: p′(t), t ∈ [0, 1]; Right graph: p′(t), t ∈ [0, 10−1].

We recapitulate: The numerical experiments are in a good agreement with the
analytical results shown in Theorems 3.1 and 3.2. It should be noticed however,
that the problem under consideration is very difficult to solve numerically, due
to the lack of smoothness in the solution u. The controlling mechanisms, error
estimate and procedure for the grid adaptation, require a dependable numerical
solution of a high order to work properly. When the code tries to follow a very
unsmooth solution on an adaptive grid, it naturally, may become very inefficient.
For the above experiments, we therefore decided to use an equidistant grid with
1000 gridpoints, in order to avoid unnecessarily long run times.
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[33] I. Rach̊unková. Singular mixed boundary value problem. J. Math. Anal.

Appl. 320 (2006), 611–618.
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