
Method of lower and upper functions and theexistence of solutions to singular periodic problemsfor second order nonlinear di�erential equationsIrena Rach�unková � and Milan TvrdýMay 15, 2000Summary. We construct nonconstant lower and upper functions for the periodic boundary valueproblem u00 = f(t; u); u(0) = u(2�); u0(0) = u0(2�) and �nd their estimates. By means of theseresults we prove existence criteria for the problems u00� g(u) = e(t); u(0) = u(2�); u0(0) = u0(2�);where lim supx!0+ g(x) =1 is allowed and e 2 L [0; 2�] need not be essentially bounded.Mathematics Subject Classi�cation 2000. 34 B 15, 34 C 25Keywords. Second order nonlinear ordinary di�erential equation, periodic solution, singularproblem, lower and upper functions, attractive and repulsive singularity, Du�ng equation.1 . IntroductionIn this paper we construct lower and upper functions to the periodic boundary valueproblem u00 = f(t; u); u(0) = u(2�); u0(0) = u0(2�):(1.1)By means of these results we prove existence criteria for the problemsu00 � g(u) = e(t); u(0) = u(2�); u0(0) = u0(2�);where lim supx!0+ g(x) = 1 is allowed and e 2 L [0; 2�] need not be essentiallybounded. We assume that f : [0; 2�]�R 7! R ful�ls the Carathéodory conditions on[0; 2�]�R ; i.e. f has the following properties: (i) for each x 2 R the function f(:; x) ismeasurable on [0; 2�]; (ii) for almost every t 2 [0; 2�] the function f(t; :) is continuouson R ; (iii) for each compact set K� R the function mK(t) = sup x2K jf(t; x)j isLebesgue integrable on [0; 2�]:�Supported by the grant No. 201/98/0318 of the Grant Agency of the Czech Republic1



For a given subinterval J of R (possibly unbounded) C (J) denotes the set offunctions continuous on J: Furthermore, L [0; 2�] stands for the set of functionsLebesgue integrable on [0; 2�]; L2 [0; 2�] is the set of functions square Lebesgueintegrable on [0; 2�] and A C [0; 2�] denotes the set of functions absolutely continuouson [0; 2�]: For x bounded on [0; 2�]; y 2 L [0; 2�] and z 2 L2 [0; 2�] we denotekxkC = supt2[0;2�] jx(t)j; y = 12� Z 2�0 y(s)ds;kyk1 = Z 2�0 jy(t)jdt and kzk2 = �Z 2�0 z2(t)dt� 12 :By a solution of (1.1) we mean a function u : [0; 2�] 7! R such that u0 2A C [0; 2�]; u(0) = u(2�); u0(0) = u0(2�) andu00(t) = f(t; u(t)) for a.e. t 2 [0; 2�]:1.1. De�nition. A function �1 2 A C [0; 2�] is said to be a lower function of theproblem (1.1) if �01 2 A C [0; 2�];�001 (t) � f(t; �1(t)) for a.e. t 2 [0; 2�];�1(0) = �1(2�); �01(0) � �01(2�):Similarly, a function �2 2 A C [0; 2�] is said to be an upper functions of theproblem (1.1) if �02 2 A C [0; 2�];�002 (t) � f(t; �2(t)) for a.e. t 2 [0; 2�]�2(0) = �2(2�); �02(0) � �02(2�):The lower and upper functions approach we will use here is based on the followingtheorem which is contained in [8, Theorems 4.1 and 4.2].1.2. Theorem. Let �1 and �2 be respectively a lower and an upper function of theproblem (1.1).(I) Suppose �1(t) � �2(t) on [0; 2�]: Then there is a solution u of the problem(1.1) such that �1(t) � u(t) � �2(t) on [0; 2�]:(II) Suppose �1(t) � �2(t) on [0; 2�] and there is m 2 L [0; 2�] such thatf(t; x) � m(t) (or f(t; x) � m(t)) for a.e. t 2 [0; 2�] and all x 2 R :Then there is a solution u of the problem (1.1) such that ku0kC � kmk1 and�2(tu) � u(tu) � �1(tu) for some tu 2 [0; 2�]:2



2 . Construction of lower and upper functions2.1. Proposition. Assume that there are A 2 R and b 2 L [0; 2�] such thatb = 0;(2.1) f(t; x) � b(t) for a.e. t 2 [0; 2�] and all x 2 [A;B];(2.2)where B = A + �3 kbk1:(2.3)Then there exist a lower function � of the problem (1.1) such thatA � �(t) � B on [0; 2�]:(2.4)Proof. De�ne �0(t) = c0 + Z 2�0 g(t; s)b(s)ds for t 2 [0; 2�];where g(t; s) = 8>><>>: t(s� 2�)2� if 0 � t � s � 2�;(t� 2�)s2� if 0 � s < t � 2�and c0 = � 12� Z 2�0 �Z 2�0 g(t; s)b(s)ds�dt:As g is the Green function of the problem v00 = 0; v(0) = v(2�); v0(0) = v0(2�); wehave �000(t) = b(t) a.e. on [0; 2�](2.5)and �0(0) = �0(2�); �00(0) = �00(2�)(2.6)Multiplying the relation (2.5) by �0; integrating it over [0; 2�] and using the Hölderinequality we get k�00k22 � kbk1k�0kC :Further, as �0 = 0; the Sobolev inequality (see [5, Proposition 1.3]) yieldsk�00k22 �r�6 kbk1k�00k2;3



and so k�00k2 �r�6 kbk1;wherefrom using again the Sobolev inequality we getk�0kC � �6 kbk1:Thus, the function � given by�(t) = �6kbk1 + A+ �0(t) for t 2 [0; 2�](2.7)satis�es (2.4). Furthermore, according to (2.1),(2.2) and (2.6), (2.7) we have�00(t) = �000(t) = b(t) � f(t; �(t)) for a.e. t 2 [0; 2�](2.8)and �(0) = �(2�); �0(0) = �0(2�);(2.9)i.e. � is the lower function of (1.1).The following assertion is dual to Proposition 2.1 and its proof can be omitted.2.2. Proposition. Assume that there are A 2 R and b 2 L [0; 2�] such thatb = 0and f(t; x) � a+ b(t) for a.e. t 2 [0; 2�] and all x 2 [A;B]where B is given by (2.3). Then there exist an upper function � of the problem (1.1)with the property (2.4).3 . Applications to Lazer-Solimini singular prob-lemsIn this section we will consider possibly singular problems of the attractive typeu00 + g(u) = e(t); u(0) = u(2�); u0(0) = u0(2�)(3.1)and of the repulsive typeu00 � g(u) = e(t); u(0) = u(2�); u0(0) = u0(2�);(3.2)where 4



g 2 C (0;1) and e 2 L [0; 2�](3.3)and it is allowed that lim supx!0+ g(x) =1:The problem (3.1) has been studied by Lazer and Solimini in [6] for e 2 C [0; 2�]and g positive. In [9, Corollary 3.3], their existence result has been extended toe 2 L [0; 2�] essentially bounded from above. Here, we bring conditions for theexistence of solutions to (3.1) without boundedness of e:3.1. Theorem. Assume (3.3) and let there exist A1; A2 2 (0;1) such thatg(x) � e for all x 2 [A1; B1];(3.4) g(x) � e for all x 2 [A2; B2];(3.5)where B1 � A1 = B2 � A2 = �3 ke� ek1(3.6)and A2 � B1:Then the problem (3.1) has a solution u such that A1 � u(t) � B2 on [0; 2�]:Proof. De�ne for a.e. t 2 [0; 2�];f(t; x) = e(t)� � g(A1) if x < A1;g(x) if x � A1:Then f satis�es the Carathéodory conditions on [0; 2�]� R : Furthermore, by (3.4)and (3.6), f satis�es (2.1)-(2.3) with b(t) = e(t) � e a.e. on [0; 2�] and [A;B] =[A1; B1]: Hence, by Proposition 2.1 there exists a lower function �1 of (1.1) such that�1(t) 2 [A1; B1] for all t 2 [0; 2�]: Similarly, (3.5), (3.6) and Proposition 2.2 yield theexistence of an upper function �2 of (1.1) such that �2(t) 2 [A2; B2] on [0; 2�]: Now,since A2 � B1; we have �1(t) � �2(t) on [0; 2�] and the assertion (I) of Theorem 1.2gives the existence of a desired solution u to (1.1) which is also a solution to (3.1),of course.Classical Lazer and Solimini's considerations [6] of the repulsive problem (3.2)have been extended by several authors (see e.g. [1], [2], [3], [4], [7] and [11]). Herewe present a related result, where e need not be essentially bounded.3.2. Theorem. Assume (3.3),limx!0+Z 1x g(�)d� =1;(3.7)and g� := infx2(0;1) g(x) > �1:(3.8) 5



Furthermore, let there exist A1; A2 2 (0;1) such thatg(x) � �e for all x 2 [A1; B1];(3.9) g(x) � �e for all x 2 [A2; B2];(3.10)where (3.6) is true and A1 � B2:Then the problem (3.2) has a positive solution.Proof. DenoteK = kek1 + jg�j; B = B1 + 2�K and K� = Kkek1 + Z BA2 jg(x)jdx:It follows from (3.7) that lim supx!0+ g(x) = 1 and there exists " 2 (0; A2) suchthat Z A2" g(x)dx > K� and g(") > 0:(3.11)De�ne eg(x) = � g(x) if x � ";g(") if x < ";and f(t; x) = e(t) + eg(x) for a.e. t 2 [0; 2�] and all x 2 R :Now, we can argue as in the proof of Theorem 3.1 and get a lower function �1 andan upper function �2 of (1.1) such that �1(t) � �2(t) on [0; 2�]: The assertion (II) ofTheorem 1.2 (with m(t) = g� + e(t) a.e. on [0; 2�]) implies that (1.1) has a solutionu such that u(tu) 2 [A2; B1] for some tu 2 [0; 2�] and ku0kC � K: It remains toshow that u(t) � " holds on [0; 2�]:Let t0 and t1 2 [0; 2�] be such thatu(t0) = mint2[0;2�]u(t) and u(t1) = maxt2[0;2�]u(t):Clearly, A2 � u(t1) � B: With respect to the periodic boundary conditions we haveu0(t0) = u0(t1) = 0: Now, multiplying the di�erential relation u00(t) = e(t) + eg(u(t))by u0(t) and integrating over [t0; t1], we get0 = Z t1t0 u00(t)u0(t)dt = Z t1t0 e(t)u0(t)dt+ Z t1t0 eg(u(t))u0(t)dt;i.e. Z u(t1)u(t0) eg(x)dx = � Z t1t0 e(t)u0(t)dt � Kkek1:6



Further, Z A2u(t0) eg(x)dx � Kkek1 + Z BA2 jeg(x)jdx = K�which, with respect to (3.11), is possible only if u(t0) � ": Thus, u is a solution to(3.2).3.3. Example. Let g(x) = 1x on (0;1): If  > 0; then Theorem 3.1 ensures theexistence of a positive solution to (3.1) for any e 2 L [0; 2�] such thate > 0 and �3 e 1 ke� ekL < 1:(3.12)The function e(t) = c+ 1p2�t � 1� with c 2 R is not essentially bounded from aboveon [0; 2�]: However, it satis�es (3.12) if0 < c < � 3� �:We should mention that provided e 2 C [0; 2�] or e is essentially bounded fromabove, the condition e > 0 is su�cient for the existence of a solution to (3.1) (cf.[6] or [9], respectively.3.4. Example. Let e 2 L [0; 2�] be essentially unbounded from below and letg(x) = 1 + sin(�x)x � arctan(x); x 2 (0;1):Then g veri�es the assumptions (3.3), (3.7) and (3.8) of Theorem 3.2. Let us sup-pose that e = �5: Then the equation g(x) = 5 has exactly 5 roots in the interval[0:125;1): In particular, we have (see Figures 1 and 2)x1 � 0:126804; x2 � 0:141071; x3 � 0:167853; x4 � 0:200541; x5 � 0:244461;g(x) > 5 on (x2; x3) [ (x4; x5) and g(x) < 5 on (x1; x2) [ (x3; x4) [ (x5;1):Therefore, by Theorem 3.2, ifke� ekL � 3� (x5 � x4) � 0:0419392;the problemu00 = 1 + sin(�u)u � arctan(u) + e(t); u(0) = u(2�); u0(0) = u0(2�)(3.13) 7
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has a solution u1 such that u1(t�) 2 [x4; x5 + d1] for some t� 2 [0; 2�]; where d1 =x5 � x4 (see Figure 3).Similarly, by Theorems 3.1 and 3.2, ifke� ekL < 32� (x5 � x4) � 0:0209699;the problem (3.13) has at least 2 di�erent solutions u1 and u2; where u1(t�) 2(x5�d2; x5+d2) for some t� 2 [0; 2�] and u2(t) 2 (x4�d2; x4+d2) for all t 2 [0; 2�];where d2 = 12(x5 � x4) (see Figure 4).Finally, if ke� ekL � 3� (x2 � x1) � 0:0136238;the problem (3.13) has at least 3 di�erent solutions u1; u2 and u3; where u1(t�) 2[x5� d3; x5 + d3] for some t� 2 [0; 2�]; u2(t) 2 [x4� d3; x4 + d3] for all t 2 [0; 2�] andu3(t) 2 [x1; x2] for all t 2 [0; 2�]; where d3 = x2 � x1 (see Figure 5).References[1] M. del Pino, R. Manásevich and A. Montero. T -periodic solutions for some secondorder di�erential equations with singularities. Proc. Royal Soc. Edinburgh 120A, 231-244(1992).[2] A. Fonda, R. Manásevich and F. Zanolin. Subharmonic solutions for some second-orderdi�erential equations with singularities. SIAM J. Math. Anal. 24, 1294-1311 (1993).[3] P. Habets and L. Sanchez. Periodic solutions of some Liénard equations with singularities.Proc. Amer. Math. Soc. 109, 1035-1044 (1990).[4] J. Mawhin. Topological degree and boundary value problems for nonlinear di�erential equa-tions. M. Furi (ed.) et al., Topological methods for ordinary di�erential equations. Lecturesgiven at the 1st session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held inMontecatini Terme, Italy, June 24-July 2, 1991. Berlin: Springer-Verlag, Lect. Notes Math.1537, 74-142 (1993).[5] J. Mawhin and M. Willem. Critical Point Theory and Hamiltonian Systems. (AppliedMathematical Sciences 74, Springer-Verlag, Berlin (1989).[6] A. C. Lazer and S. Solimini. On periodic solutions of nonlinear di�erential equations withsingularities. Proc. Amer. Math. Soc. 99, 109-114 (1987).[7] P. Omari and W. Ye. Necessary and su�cient conditions for the existence of periodic solu-tions of second order ordinary di�erential equations with singular nonlinearities. Di�erentialand Integral Equations 8, 1843-1858 (1995).[8] I. Rach�unková and M. Tvrdý. Nonlinear systems of di�erential inequalities and solvabilityof certain nonlinear second order boundary value problems. J. Inequal. Appl., to appear.9
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