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1 Motivation

The aim of this work is to show the existence and uniqueness of solutions to a
nonlinear Neumann problem exhibiting a singularity of the first kind in time. In
many applications, second order singular models, cf. [4], [5], [10], [19], and [30],
assume the forms

u′′ =
a1

tα
u′ +

a0

tα+1
u+ f(t, u, u′), u′′ =

a

tα
u′ + f(t, u, u′), t > 0, (1.1)

where a1, a0, a and f are given. We say that for α = 1 the problem exhibits a
singularity of the first kind at t = 0, while for α > 1, the singularity is essential
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or of the second kind. In [30], the existence and uniqueness results in case of
smooth data function f has been developed. This analysis is based on techniques
proposed in [12]. However, in applications mentioned below this smoothness
assumption does not hold and therefore, there is a need for covering the case of
unsmooth inhomogenities f .

Here, we consider differential equations with a singularity of the first kind, α = 1,
of the form

u′′ =
a

t
u′ + f(t, u, u′), (1.2)

where a ∈ R \ {0}, and the function f(t, x, y) is defined for a.e. t ∈ [0, T ] and
for all (x, y) ∈ D ⊂ R × R. Clearly, the above equation is singular at t = 0
because of the first term in the right-hand side, which is in general unbounded
for t → 0. Moreover, we also alow the function f to be unbounded or bounded
but discontinuous for certain values of the time variable t ∈ [0, T ]. This form of
f is motivated by a variety of initial and boundary value problems known from
applications and having nonlinear, discontinuous forcing terms, such as electronic
devices which are often driven by square waves or more complicated discontinuous
inputs. Typically, such problems are modelled by differential equations where f
has jump discontinuities at a discrete set of points in (0, T ), cf. [23]. Many other
applications, cf. [1]–[11], [16], [19], [24]–[29] also show these structural difficulties.

In this paper we extend results from [21] and [30] based on ideas presented in [12],
where, as already mentioned, problems of the above form but with appropriately
smooth data function f have been discussed.

2 Introduction

The following notation will be used throughout the paper. Let J ⊂ R be an
interval. Then, we denote by L1(J) the set of functions which are (Lebesgue)
integrable on J . The corresponding norm is ‖u‖1 :=

∫
J
|u(t)|dt.

Moreover, let us by C(J) and C1(J) denote the sets of functions being continuous
on J , and having continuous first derivatives on J , respectively. The norm on
C[0, T ] is defined as ‖u‖∞ := maxt∈[0,T ] |u(t)|.

Finally, we denote by AC(J) and AC1(J) the sets of functions which are abso-
lutely continuous on J , and which have absolutely continuous first derivatives
on J , respectively. Analogously, ACloc(J) and AC1

loc(J) are the sets of functions
being absolutely continuous on each compact subinterval I ⊂ J , and having
absolutely continuous first derivatives on each compact subinterval I ⊂ J , re-
spectively.
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As already said, we investigate differential equations of the form

u′′(t) =
a

t
u′(t) + f(t, u(t), u′(t)) a.e. on [0, T ], (2.1)

where a ∈ R \ {0}. For the subsequent analysis we assume that

f satisfies the local Carathéodory conditions on [0, T ] × R × R, (2.2)

specified in the following definition.

Definition 2.1. A function f satisfies the local Carathéodory conditions on the
set [0, T ] × R × R if
(i) f(·, x, y) : [0, T ] → R is measurable for all (x, y) ∈ R × R,
(ii) f(t, ·, ·) : R × R → R is continuous for a.e. t ∈ [0, T ],
(iii) for each compact set K ⊂ R × R there exists a function mK(t) ∈ L1[0, T ]
such that |f(t, x, y)| ≤ mK(t) for a.e. t ∈ [0, T ] and all (x, y) ∈ K.

Definition 2.2. A function u : [0, T ] → R is called a solution of equation (2.1)
if u ∈ AC1[0, T ] and

u′′(t) =
a

t
u′(t) + f(t, u(t), u′(t))

holds a.e. on [0, T ].

We will provide existence and/or uniqueness results for solutions of equation (2.1)
for a < 0 subject to the Neumann boundary conditions u′(0) = u′(T ) = 0. The
paper is organized as follows. In Section 3 we generalize some results from [28] and
give a description of an asymptotical behavior for t→ 0+ of functions u satisfying
(2.1) a.e. on [0, T ] for a both positive and negative. The Neumann problem is
then analyzed in Section 4 by means of the results of Section 3. Finally, in Section
5, we illustrate the theoretical findings by means of numerical experiments.

3 Limit properties of functions satisfying singu-

lar equations

We consider the nonlinear equation (2.1), where f satisfies the global Carathéodory
conditions on [0, T ] × R × R, specified in the following definition.

Definition 3.1. A function f satisfies the global Carathéodory conditions on the
set [0, T ]×R×R if f satisfies conditions (i) and (ii) of Definition 2.1 and if there
exists a function g ∈ L1[0, T ] such that

|f(t, x, y)| ≤ g(t) for a.e. t ∈ [0, T ] and all (x, y) ∈ R × R. (3.1)
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Example 3.2. Let v ∈ C(R2) be bounded and let r ∈ L1[0, T ]. Then the
functions

f1(t, x, y) = r(t)v(x, y), f2(t, x, y) = r(t) + v(x, y)

satisfy Definition 3.1.

Theorem3.3. Let us assume that f satisfies the global Carathéodory conditions
on the set [0, T ]×R×R. Let a > 0 and let u ∈ AC1

loc(0, T ] satisfy equation (2.1)
a.e. on (0, T ]. Then

lim
t→0+

u′(t) = 0, (3.2)

and u can be extended on [0, T ] in such a way that u ∈ AC1[0, T ].

Proof. Integrating (2.1) we get

u′(t) =

(
t

T

)a

u′(T ) − ta
∫ T

t

s−af(s, u(s)u′(s))ds, t ∈ (0, T ],

and, using (3.1), we obtain

|u′(t)| ≤ |u′(T )|
(
t

T

)a

+ ta
∫ T

t

s−ag(s)ds, t ∈ (0, T ]. (3.3)

By virtue of the inequality

ta
∫ T

t

s−ag(s)ds ≤
∫ τ

t

g(s)ds+

(
t

τ

)a ∫ T

τ

g(s)ds, 0 < t ≤ τ < T,

we conclude that

lim sup
t→0+

(
ta

∫ T

t

s−ag(s)ds

)
≤

∫ τ

0

g(s)ds, τ ∈ (0, T ).

If we pass to the limit in this inequality as τ → 0+, we get

lim
t→0+

(
ta

∫ T

t

s−ag(s)ds

)
= 0,

which tohether with (3.3) give (3.2). Clearly (3.2) implies that there exists a
finite limit limt→0+ u(t).

In order to prove that u can be extended on [0, T ] as a function in AC1[0, T ],
we have to show that ∫ T

0

|u′′(t)|dt <∞.

Equality (2.1) and condition (3.1) yield∣∣∣u′′(t) − a

t
u′(t)

∣∣∣ ≤ g(t) for a.e. t ∈ (0, T ]. (3.4)
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Integrating (3.4) and using (3.3) we get

∫ T

0

|u′′(t)|dt ≤ a

∫ T

0

|u′(t)|
t

dt+

∫ T

0

g(t)dt

≤ a|u′(T )|T−a

∫ T

0

ta−1dt+ a

∫ T

0

ta−1

(∫ T

t

s−ag(s)ds

)
dt+

∫ T

0

g(t)dt

= |u′(T )| + 2

∫ T

0

g(t)dt <∞.

�

Theorem3.4. Let us assume that f satisfies the global Carathéodory conditions
on the set [0, T ]×R×R. Let a < 0 and let u ∈ AC1

loc(0, T ] satisfy equation (2.1)
a.e. on (0, T ]. Then either limt→0+ u

′(t) = 0 or limt→0+ u
′(t) = ±∞.

In particular, u can be extended on [0, T ] with u ∈ AC1[0, T ] if and only if
limt→0+ u

′(t) = 0.

Proof. Keeping in mind that u is fixed, consider the linear equation

v′(t) − a

t
v(t) = f(t, u(t), u′(t)). (3.5)

Each function v ∈ ACloc(0, T ] satisfying (3.5) for a.e. t ∈ (0, T ] has the form

v(t) = cta + ta
∫ t

0

s−af(s, u(s), u′(s))ds, t ∈ (0, T ],

where c ∈ R. Hence we get

lim
t→0+

v(t) = 0 for c = 0, lim
t→0+

v(t) = ∞· sign c for c �= 0. (3.6)

Since u ∈ AC1
loc(0, T ] satisfies equation (2.1) for a.e. t ∈ (0, T ], there exists c0 ∈ R

such that v = u′ on (0, T ] for c = c0. Therefore, by (3.6), either limt→0+ u
′(t) = 0

or limt→0+ u
′(t) = ±∞.

Let (3.2) hold. Then c0 = 0 and

u′(t) = ta
∫ t

0

s−af(s, u(s), u′(s))ds, t ∈ (0, T ]. (3.7)

Clearly (3.2) implies that there exists a finite limit limt→0+ u(t). In order to prove
that u can be extended on [0, T ] as a function in AC1[0, T ], we have to show that

∫ T

0

|u′′(t)|dt <∞.
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By (3.7) and (3.1),

|u′(t)|
t

≤ ta−1

∫ t

0

s−ag(s)ds, t ∈ (0, T ].

Choose an arbitrary ε > 0. Then, by integration of the last inequality, we get∫ T

ε

|u′(t)|
t

dt ≤
∫ T

ε

ta−1

(∫ t

0

s−ag(s)ds

)
dt

= − 1

|a|
(
T a

∫ T

0

t−ag(t)dt− εa

∫ ε

0

t−ag(t)dt−
∫ T

ε

g(t)dt

)
.

If we pass to the limit as ε→ 0+, we obtain∫ T

0

|u′(t)|
t

dt ≤ 1

|a|
∫ T

0

g(t)dt. (3.8)

Finally, integrating (3.4) and using (3.8), we find that∫ T

0

|u′′(t)dt ≤ |a|
∫ T

0

|u′(t)|
t

dt+

∫ T

0

g(t)dt ≤ 2

∫ T

0

g(t)dt <∞.

�

The following corollary will be used in the next section.

Corollary 3.5. Let us assume that condition (2.2) holds. Let a �= 0 and let
u ∈ AC1

loc(0, T ] satisfy equation (2.1) a.e. on [0, T ]. Let us also assume that

S := sup{|u(t)| + |u′(t)| : t ∈ (0, T ]} <∞ (3.9)

is fulfilled. Then (3.2) holds and u can be extended on [0, T ] in such a way that
u ∈ AC1[0, T ].

Proof. Let

χ(z) :=




S if z > S
z if |z| ≤ S
−S if z < −S

and let f̃(t, x, y) = f(t, χ(x), χ(y)) for a.e. t ∈ [0, T ] and all x, y ∈ R. Clearly

u′′(t) =
a

t
u′(t) + f̃(t, u(t), u′(t))

holds for a.e. t ∈ [0, T ]. By (2.2), there exists a funtion g ∈ L1[0, T ] such that
|f̃(t, x, y)| ≤ g(t) for a.e. t ∈ [0, T ] and all (x, y) ∈ R×R. The results now follow
from Theorems 3.3 and 3.4, where f is replaced by f̃ in equation (2.1). �
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4 Neumann Problem

Using results formulated in Corollary 3.5 and the Fredholm-type existence the-
orem (see e.g. [22], [26], [27]), we are now in the position to show the existence
and/or uniqueness of solutions of the nonlinear singular Neumann boundary value
problem

u′′(t) =
a

t
u′(t) + f(t, u(t), u′(t)), (4.1a)

u′(0) = 0, u′(T ) = 0. (4.1b)

Definition 4.1. A function u ∈ AC1[0, T ] is called a solution of the boundary
value problem (4.1), if u satisfies equation (4.1a) a.e. on [0, T ], and the Neumann
conditions (4.1b).

First, we consider the uniqueness.

Theorem4.2. (Uniqueness) Let a < 0 and let us assume that condition (2.2)
holds. Moreover, let us assume that for each compact set K ⊂ R×R there exists
a nonnegative function hK ∈ L1[0, T ] such that

x1 > x2 ⇒ f(t, x1, y1) − f(t, x2, y2) > −hK(t)|y1 − y2| (4.2)

for a.e. t ∈ [0, T ] and all (x1, y1), (x2, y2) ∈ K. Then problem (4.1) has at most
one solution.

Proof. Let u1 and u2 be different solutions of problem (4.1). Since u1, u2 ∈
AC1[0, T ], there exists a compact set K ⊂ R × R such that (ui(t), u

′
i(t)) ∈ K for

t ∈ [0, T ]. Again, v(t) := u1(t) − u2(t) for t ∈ [0, T ]. Then

v′(0) = 0, v′(T ) = 0. (4.3)

We consider two cases.

Case 1. Assume that u1(t0) = u2(t0) for some t0 ∈ [0, T ], that is v(t0) = 0. Since
u1 and u2 are different, there exists t1 ∈ [0, T ], t1 �= t0, such that v(t1) �= 0.
(i) Let t1 > t0. We can assume that v(t1) > 0 and define v := u2 − u1 otherwise.
Then we can find a0 ∈ (t0, t1) satisfying v(t) > 0 for t ∈ [a0, t1] and v′(a0) > 0.
Let b0 ∈ (a0, T ] be the first zero of v′. Then, if we set [α, β] := [a0, b0], we see
that

v(t) > 0 for t ∈ [α, β], v′(t) > 0 for t ∈ [α, β), v′(β) = 0. (4.4)

Now, by (4.1a), (4.2) and (4.4), we obtain

v′′(t) >
(a
t
− hK(t)

)
v′(t) for a.e. t ∈ [α, β].
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Denote by h∗(t) := a
t
− hK(t). Then h∗ ∈ L1[α, β] and v′′(t) − h∗(t)v′(t) > 0 for

a.e. t ∈ [α, β]. Consequently,(
v′(t) exp

(
−

∫ t

α

h∗(s)ds
))′

> 0 for a.e. t ∈ [α, β].

Integrating the last inequality in [α, β], we obtain

v′(β) exp

(
−

∫ β

α

h∗(s)ds
)
> v′(α) > 0

which contradicts v′(β) = 0.
(ii) Let v = 0 on [t0, T ]. Since u1 and u2 are different, we can find β ∈ (0, t0)
such that (without loss of generality) v(β) > 0, and v′(β) < 0. Due to (4.3) it is
possible to find α ∈ [0, β) such that

v(t) > 0 for t ∈ [α, β], v′(t) < 0 for t ∈ (α, β], v′(α) = 0. (4.5)

Now, we conclude from (4.1a), (4.2) and a < 0,

v′′(t) >
a

t
v′(t) − hK(t)|v′(t)| ≥ hK(t)v′(t) for a.e. t ∈ [α, β].

As above, we modify the last inequality, integrate it and obtain

v′(β) exp

(
−

∫ β

α

hK(s)ds

)
> v′(α) = 0,

which contradicts v′(β) < 0.

Case 2. Assume that u1 �= u2 on [0, T ], that is v �= 0 on [0, T ]. We may assume
that v > 0 on [0, T ].
(i) Let v′ = 0 on [0, T ]. Then, by (4.1a) and (4.2),

v′′(t) >
a

t
v′(t) − hK(t)|v′(t)| = 0 for a.e. t ∈ [0, T ],

in contradiction to v′′ = 0 on [0, T ].
(ii) Let v′(t1) �= 0 for some t1 ∈ (0, T ). If v′(t1) > 0, then we can find an
interval [α, β] ⊂ (t1, T ] satisfying (4.4). If v′(t1) < 0, then we can find an interval
[α, β] ⊂ [0, t1) satisfying (4.5).

The above discussion shows that the existence of [α, β] satisfying either (4.4) or
(4.5) leads to a contradiction. Hence, u1 = u2 on [0, T ] which completes the
proof. �

Theorem4.3. (Existence) Assume (2.2) and let a < 0. Moreover, let there are
A,B ∈ R, A ≤ B, c > 0, ω ∈ C[0,∞), and ψ ∈ L1[0, T ] such that the following
conditions hold:

f(t, A, 0) ≤ 0, f(t, B, 0) ≥ 0 (4.6)
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for a.e. t ∈ [0, T ],
f(t, x, y) sign y ≤ ω(|y|)(|y|+ ψ(t)) (4.7)

for a.e. t ∈ [0, T ] and all x ∈ [A,B], y ∈ R, where

ω(x) ≥ c, x ∈ [0,∞),

∫ ∞

0

ds

ω(s)
= ∞. (4.8)

Then problem (4.1) has a solution u such that

A ≤ u(t) ≤ B, t ∈ [0, T ]. (4.9)

Proof. Step 1. Existence of auxiliary solutions un.

Let

r := ‖ψ‖1 +

(
1 +

T

c

)
(B −A).

Then, by (4.8), there exists ρ∗ > 0 such that∫ ρ∗

0

ds

ω(s)
> r.

For y ∈ R, let

χ(y) =




1 if |y| ≤ ρ∗,

2 − |y|
ρ∗ if ρ∗ < |y| < 2ρ∗,

0 if |y| ≥ 2ρ∗.

Without loss of generality we can assume that 1
n
< T for each n ∈ N. Otherwise

N is replaced by N
′ = {n ∈ N : 1

n
< T}. Motivated by [17], we choose n ∈ N and,

for a.e. t ∈ [0, T ], all x, y ∈ R, ε ∈ [0, 1], we define

hn(t, x, y) :=

{
χ(y)

(
a
t
y + f(t, x, y)

)
− A

n
if t ∈ ( 1

n
, T ],

−A
n

if t ∈ [0, 1
n
],

wA(t, ε) := sup{|hn(t, A, 0) − hn(t, A, y)| : |y| ≤ ε},
wB(t, ε) := sup{|hn(t, B, 0) − hn(t, B, y)| : |y| ≤ ε},

fn(t, x, y) :=



hn(t, B, y) + wB

(
t, x−B

x−B+1

)
if x > B,

hn(t, x, y) if A ≤ x ≤ B,

hn(t, A, y) − wA

(
t, A−x

A−x+1

)
if x < A.

It can be shown that wA and wB satisfy the local Carathéodory conditions
on [0, T ] × [0, 1], are nondecreasing in their second argument and wA(t, 0) =
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wB(t, 0) = 0 a.e. on [0, T ], see [17]. Therefore, fn also satisfies the local Carathéodory
conditions on [0, T ] × R × R and there exists a function mn ∈ L1[0, T ] such that

|fn(t, x, y)| ≤ mn(t) for a.e. t ∈ [0, T ] and all (x, y) ∈ R × R. (4.10)

Note that hn can be written in the form

hn(t, x, y) = µn(t)χ(y)
(a
t
y + f(t, x, y)

)
− A

n
, (4.11)

where

µn(t) =

{
0 if t ∈ [0, 1

n
],

1 if t ∈ ( 1
n
, T ].

We can see that

A

n
+ hn(t, A, 0) ≤ 0,

B

n
+ hn(t, B, 0) ≥ 0 for a.e. t ∈ [0, T ].

Consider the auxiliary regular Neumann problem (4.12), (4.1b), where

u′′ =
u

n
+ fn(t, u, u′). (4.12)

It is easy to verify that the homogeneous problem

u′′ =
u

n
, u′(0) = 0, u′(T ) = 0

has only the trivial solution. Hence, by (4.10) and the Fredholm-like exis-
tence theorem (see e.g. [27, Theorem C.5] or [22] ), there exists a solution
un ∈ AC1[0, T ] of problem (4.12), (4.1b) for all n ∈ N.

Step 2. Estimates of un.
Now, we prove that

A ≤ un(t) ≤ B, t ∈ [0, T ], n ∈ N. (4.13)

Let us define v := A− un and assume

max{v(t) : t ∈ [0, T ]} = v(t0) > 0. (4.14)

Then v′(t0) = 0, which is clear if t0 ∈ (0, T ), or it follows from (4.1b) if t0 ∈ {0, T}.
First, assume that t0 ∈ [0, T ). Then we can find δ > 0 such that

v(t) > 0, |v′(t)| = |u′n(t)| <
v(t)

v(t) + 1
< 1 for t ∈ [t0, t0 + δ] ⊂ [0, T ].
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Consequently,

u′′n(t) = fn(t, un(t), u
′
n(t)) +

un(t)

n
= hn(t, A, u′n(t)) − wA

(
t,

v(t)

v(t) + 1

)
+
un(t)

n

≤ hn(t, A, 0) + hn(t, A, u′n(t)) − hn(t, A, 0) − wA(t, |u′n(t)|) +
un(t)

n

≤ hn(t, A, 0) +
A− v(t)

n
< 0 for t ∈ [t0, t0 + δ].

Hence

0 >

∫ t

t0

u′′n(s) ds = u′n(t) − u′n(t0) = u′n(t) = −v′(t) for t ∈ (t0, t0 + δ],

which contradicts (4.14). Assume that t0 = T . Then we can find δ > 0 such that

v(t) > 0, |v′(t)| = |u′n(t)| <
v(t)

v(t) + 1
< 1 for t ∈ [T − δ, T ] ⊂ [0, T ].

Then, as above, we have

u′′n(t) ≤ hn(t, A, 0) +
A− v(t)

n
< 0 for t ∈ [T − δ, T ].

Hence

0 >

∫ T

t

u′′n(s) ds = −u′n(t) = v′(t) for t ∈ [T − δ, T ),

in a contrary to (4.14).
Now, let z := un −B and assume

max{z(t) : t ∈ [0, T ]} = z(ξ) > 0. (4.15)

Then z′(ξ) = 0, where ξ ∈ [0, T ]. Assume that ξ ∈ [0, T ). Then we can find δ > 0
such that

z(t) > 0, |z′(t)| = |u′n(t)| <
z(t)

z(t) + 1
< 1 for t ∈ [ξ, ξ + δ] ⊂ [0, T ].

Consequently,

u′′n(t) = fn(t, un(t), u
′
n(t)) +

un(t)

n
= hn(t, B, u′n(t)) + wB

(
t,

z(t)

z(t) + 1

)
+
un(t)

n

≥ hn(t, B, 0) + hn(t, B, u′n(t)) − hn(t, B, 0) + wB(t, |u′n(t)|) +
un(t)

n

≥ hn(t, B, 0) +
B + z(t)

n
> 0 for t ∈ [ξ, ξ + δ].
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Then

0 <

∫ t

t0

u′′n(s) ds = u′n(t) = z′(t) for t ∈ (ξ, ξ + δ],

which contradicts (4.15). If ξ = T , then there exists δ > 0 such that

z(t) > 0, |z′(t)| = |u′n(t)| <
z(t)

z(t) + 1
< 1 for t ∈ [T − δ, T ] ⊂ [0, T ].

Arguing as above we have

u′′n(t) > 0 for t ∈ [T − δ, T ].

Then

0 <

∫ T

t

u′′n(s) ds = −u′n(t) = −z′(t) for t ∈ [T − δ, T ),

contradicting (4.15). Consequently, we have shown that (4.14) holds.

Step 3. Estimates of u′n.
We now show that

|u′n(t)| ≤ ρ∗, t ∈ [0, T ], n ∈ N. (4.16)

Due to (4.11) and (4.12),

u′′n(t)sign u′n(t)

=
{
µn(t)χ(u′n(t))

(a
t
u′n(t) + f(t, un(t), u

′
n(t))

)
+
un(t) − A

n

}
sign u′n(t) (4.17)

for a.e. t ∈ [0, T ] and all n ∈ N. Denote ρ := ‖u′n‖∞ = |u′n(t0)| and assume
ρ > 0. Then t0 ∈ (0, T ). In the following part of the proof, we discuss two cases,
u′n(t0) = ρ and u′n(t0) = −ρ.
Case 1. Let u′n(t0) = ρ. Then there exists t1 ∈ [0, t0) such that u′n(t) > 0 on
(t1, t0] and u′n(t1) = 0. By (4.7) and (4.17), we obtain

u′′n(t) = µn(t)χ(u′n(t))
(a
t
u′n(t) + f(t, un(t), u

′
n(t))

)
+
un(t) −A

n

≤ µn(t)χ(u′n(t))f(t, un(t), u
′
n(t)) +

un(t) −A

n

≤ ω(u′n(t))(u
′
n(t) + ψ(t)) +

B − A

n

≤ ω(u′n(t)
(
u′n(t) + ψ(t) +

B −A

c

)
for a.e. t ∈ [t1, t0]. In particular,

u′′n(t)

ω(u′n(t))
≤ u′n(t) + ψ(t) +

B − A

c
for a.e. t ∈ [t1, t0].
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Hence ∫ t0

t1

u′′n(t)

ω(u′n(t))
dt ≤

∫ t1

t0

(
u′n(t) + ψ(t) +

B −A

c

)
dt,

and∫ ρ

0

dt

ω(t)
< un(t1) − un(t0) + ‖ψ‖1 +

(B − A)T

c
≤

(
1 +

T

c

)
(B − A) + ‖ψ‖1 = r.

Therefore ∫ ρ

0

dt

ω(s)
< r,

and ρ < ρ∗ follows.
Case 2. Let u′n(t0) = −ρ. Then there exists t1 ∈ [0, t0) such that u′n(t) < 0 on
(t1, t0] and u′n(t1) = 0. By (4.7) and (4.17), we deduce

−u′′n(t) = −µn(t)χ(u′n(t))
(a
t
u′n(t) + f(t, un(t), u

′
n(t))

)
− un(t) − A

n
≤ −µn(t)χ(u′n(t))f(t, un(t), u

′
n(t))

≤ ω(−u′n(t))(−u′n(t) + ψ(t))

for a.e. t ∈ [t1, t0]. In particular,

− u′′n(t)
ω(−u′n(t))

≤ −u′n(t) + ψ(t) for a.e. t ∈ [t1, t0]

and

−
∫ t0

t1

u′′n(t)
ω(−u′n(t))

dt ≤
∫ t1

t0

(ψ(t) − u′n(t)) dt.

Hence ∫ ρ

0

dt

ω(s)
≤ ‖ψ‖1 + un(t0) − un(t1) ≤ ‖ψ‖1 +B −A < r.

Consequently, ∫ ρ

0

dt

ω(s)
< r,

which implies ρ < ρ∗. Hence (4.16) holds.

Step 4. Convergence of {un}.
By (4.13) and (4.16), {un} is bounded in C1[0, T ]. Since f satisfies the local
Carathéodory conditions on [0, T ] × R

2, there exists m ∈ L1[0, T ] such that

|f(t, un(t), u
′
n(t))| ≤ m(t) for a.e. t ∈ [0, T ] and all n ∈ N. (4.18)

Choose b ∈ (0, T ]. Then there exists n0 ∈ N such that [b, T ] ⊂ [ 1
n
, T ] for all

n ≥ n0. Hence

u′n(t) = −
∫ T

t

(
fn(t, s, un(s), u

′
n(s)) +

un(s)

n

)
ds

= −
∫ T

t

(
f(s, un(s), u

′
n(s)) +

a

s
u′n(s) +

un(s) − A

n

)
ds (4.19)
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for t ∈ [b, T ] and n ≥ n0. Let b ≤ t1 < t2 ≤ T . Then, by (4.18) and (4.19),

|u′n(t2) − u′n(t1)| =
∣∣∣ ∫ t2

t1

(
f(t, un(t), u

′
n(t)) +

a

t
u′n(t) +

un(t) − A

n

)
dt

∣∣∣
≤

∫ t2

t1

m(t) dt+
( |a|ρ∗

b
+B − A

)
(t2 − t1)

for n ≥ n0. Hence {u′n}n≥n0 is equicontinuous on [b, T ] and since {un} is bounded
in C1[0, T ], the Arzelà-Ascoli theorem and the diagonalization theorem (see e.g.
[27, Theorems B.5 and B.6]) guarantee that there exist a subsequence {u�} of
{un} and u ∈ C[0, T ] ∩ C1(0, T ] such that

lim
�→∞

u�(t) = u(t) uniformly on [0, T ],

lim
�→∞

u′�(t) = u′(t) locally uniformly on (0, T ].

Clearly u′(T ) = 0. By (4.13) and (4.16)

A ≤ u(t) ≤ B for t ∈ [0, T ], |u′(t)| ≤ ρ∗ for t ∈ (0, T ]. (4.20)

Hence (3.9) holds. Passing to the limit as �→ ∞ in (4.19), where un is replaced
by u�, we obtain

u′(t) = −
∫ T

t

(
f(s, u(s), u′(s)) +

a

s
u′(s)

)
ds for t ∈ (0, T ]

by the Lebesgue dominated convergence theorem. Hence the limit function u
belongs to AC1

loc(0, T ] and solves equation (4.1a) a.e. on [0, T ]. The local uniform
convergence of {u′�} on (0, T ] does not guarantee u′(0) = 0. However, we can
apply Corollary 3.5 to find out that u ∈ AC1[0, T ] and u′(0) = 0. Therefore, u
satisfies the Neumann conditions (4.1b). We see that u is a solution of problem
(4.1) such that A ≤ u ≤ B on [0, T ] which completes the proof. �

Example 4.4. Let T = 1. For t ∈ (0, 1], x, y ∈ R, choose

f(t, x, y) =
1√

1 − t

(
3x(x2 − 1) + exy

) − cos(3πt). (4.21)

Then Theorem 4.3 can be applied to f and for both A = −5/4, B = −1/2 and
A = 1/2, B = 5/4. Consequently, problem (4.1) with f given by (4.21), has two
solutions u1 and u2 satisfying

−5

4
≤ u1(t) ≤ −1

2
,

1

2
≤ u2(t) ≤ 5

4
, t ∈ [0, 1].

The existence of two different solutions u1 and u2 corresponds to the fact that f
does not satisfy condition (4.2) of Theorem 4.2.
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The next theorem for the existence of a unique solution of the Neumann problem
(4.1) follows immediately from Theorems 4.2 and 4.3.

Theorem4.5. (Existence and uniqueness) Let all assumptions of Theorem 4.2
and Theorem 4.3 be satisfied. Then problem (4.1) has a unique solution u. This
solution satisfies (4.9).

Example 4.6. The following function,

f(t, x, y) =
1√

1 − t
(x3 − y5) − 10 sin(4πt), (4.22)

t ∈ (0, 1], x, y ∈ R, satisfies the assumptions of Theorem 4.5 for A = −101/3 and
B = 101/3. Therefore problem (4.1) with f given by (4.22) has a unique solution.

5 Numerical Simulation

To illustrate the solution behavior, described by Theorems 4.3 and 4.5 we car-
ried out a series of numerical calculations using a MATLAB

TM
software pack-

age bvpsuite designed to solve boundary value problems in ordinary differential
equations and differential algebraic equations. The solver is based on a class
of collocation method (including methods of different orders). The code also
provides the asymptotically correct estimate for the error of the numerical ap-
proximation. To enhance the efficiency the code attempts to solve the problem
on a mesh adapted to the solution behavior, in such a way that the tolerance is
satisfied with the least possible effort. Error estimate procedure and the mesh
adaptation work dependably provided that the solution of the problem is appro-
priately smooth1. The software and the manual with a short description of the
code can be downloaded from http://www.math.tuwien.ac.at/∼ewa. Further
information can be found in [18] and [20]. This software has already been used
for a variety of singular boundary value problems relevant for applications, see
e.g. [25].

We discuss Neumann problems of the form,

u′′(t) =
a

t
u′(t) +

1√
1 − t

(3u(t)(u2(t) − 1) + eu(t)u′(t)) − cos(3πt), (5.1a)

u′(0) = u′(1) = 0, (5.1b)

and

u′′(t) =
a

t
u′(t) +

1√
1 − t

(u3(t) − u′5(t)) − 10 sin(4πt), (5.2a)

u′(0) = u′(1) = 0, (5.2b)

1The required smoothness of higher derivatives is related to the order of the used collocation
method.
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cf. Examples 4.4 and 4.6, respectively. All solutions were computed on the unit
interval [0, 1].
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Figure 1: Illustrating Theorem 4.3: Solutions −5/4 ≤ u1(t) ≤ −1/2 of problem
(5.1) for different values of a (left), and the related error estimates (right). The
initial solution for the Newton iteration was u0(t) ≡ −1; the number of mesh
points used N = 1000.
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Figure 2: Illustrating Theorem 4.3: Solutions 1/2 ≤ u1(t) ≤ 5/4 of problem (5.1)
for different values of a (left), and the related error estimates (right). The initial
solution for the Newton iteration was u0(t) ≡ 1; the number of mesh points used
N = 1000.

As shown in Figures 1 and 2, we could find two different solutions u1 and u2

lying in regions indicated in Example 4.4. Recall that Theorem 4.3 guaranties
the existence of a solution to a Neumann problem but not its uniqueness. Since
in this case the solution is very unsmooth the mesh adaptation strategy does
not work properly and therefore the calculations have been carried out on an
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equidistant mesh containing 1000 mesh points. We doubled the number of mesh
points to provide a rough error estimate for the global error of the approximation.
According to Theorem 4.5, the solution of problem (5.2a) is unique, cf. Figure 3.
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Figure 3: Illustrating Theorem 4.5: Solutions of problem (5.2a) for different
values of a (left), and the related error estimates (right). The initial solution for
the Newton iteration was u0(t) ≡ 1; the number of mesh points used N = 1000.
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