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July 11, 2003

Summary. In this paper, using the lower/upper functions argument, we establish

new existence results for the nonlinear impulsive periodic boundary value problem

u′′ =f(t, u, u′), (1.1)

u(ti+) = Ji(u(ti)), u′(ti+) = Mi(u
′(ti)), i = 1, 2, . . . ,m, (1.2)

u(0) = u(T ), u′(0) = u′(T ), (1.3)

where f ∈ Car([0, T ] × R2) and Ji, Mi ∈ C(R). The main goal of the paper is to

obtain the results in the case that the lower/upper functions σ1/σ2 associated with

the problem are not well-ordered, i.e. σ1 6≤ σ2 on [0, T ].
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0. Introduction

In this paper we provide new conditions for fi, Ji, Mi, i = 1, 2, . . . ,m, which guar-

antee the existence of a solution of the nonlinear impulsive periodic boundary value

problem (1.1)–(1.3). We have studied this problem in [11] using arguments based

on the existence of a well-ordered pair σ1 ≤ σ2 on [0, T ] of lower/upper functions

σ1/σ2 associated with the problem. Such assumption corresponds to requirements

imposed by Hu Shouchuan and Lakshmikantham [6] (see also Bainov and Simeonov

[1]), Erbe and Liu Xinzhi [5], Liz and Nieto [7], [8], Dong Yujun [4] and Zhang

Zhitao [12] who have investigated the problems of the type (1.1)–(1.3). Note that a

similar problem with different impulse conditions was recently treated by Cabada,

Nieto, Franco and Trofimchuk [2]. However, their principal assumption was that of

the existence of well-ordered pair of lower/upper functions, as well.

Here, we consider problem (1.1)–(1.3) in a more complicated case. Particularly,

we assume that there are only lower/upper functions to (1.1)–(1.3) which are not

well-ordered, i.e.

σ1(τ) > σ2(τ) for some τ ∈ [0, T ]. (0.1)

As far as we know, up to now there has been delivered no existence result for any

kind of second order impulsive problems having only lower/upper functions in this

setting. The first step in this direction we did in [10] where we worked for m = 1 with

strict lower/upper functions and where we computed the Leray-Schauder degree of

certain auxiliary operators related to the problem (1.1)–(1.3).

Throughout the paper we keep the following notation and conventions:

For a real valued function u defined a.e. on [0, T ], we put

‖u‖∞ = sup
t∈[0,T ]

|u(t)| and ‖u‖1 =

∫ T

0

|u(s)| ds.
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For a given interval J ⊂ R, by C(J) we denote the set of real valued functions which

are continuous on J. Furthermore, C1(J) is the set of functions having continuous

first derivatives on J and L(J) is the set of functions which are Lebesgue integrable

on J.

Let m ∈ N and let 0 = t0 < t1 < t2 < · · · < tm < tm+1 = T be a division of

the interval [0, T ]. We denote D = {t1, t2, . . . , tm} and define C1
D[0, T ] as the set of

functions u : [0, T ] 7→ R,

u(t) =


u[0](t) if t ∈ [0, t1],
u[1](t) if t ∈ (t1, t2],
. . . . . .
u[m](t) if t ∈ (tm, T ],

where u[i] ∈ C1[ti, ti+1] for i = 0, 1, . . . ,m. Moreover, AC1
D[0, T ] stands for the set

of functions u ∈ C1
D[0, T ] having first derivatives absolutely continuous on each

subinterval (ti, ti+1), i = 0, 1, . . . ,m. For u ∈ C1
D[0, T ] and i = 1, 2, . . . ,m + 1 we

write

u′(ti) = u′(ti−) = lim
t→ti−

u′(t), u′(0) = u′(0+) = lim
t→0+

u′(t) (0.2)

and ‖u‖D = ‖u‖∞ + ‖u′‖∞. Note that the set C1
D[0, T ] becomes a Banach space

when equipped with the norm ‖.‖D and with the usual algebraic operations.

We say that f : [0, T ]×R2 7→ R satisfies the Carathéodory conditions on [0, T ]×

R2 if (i) for each x ∈ R and y ∈ R the function f(., x, y) is measurable on [0, T ];

(ii) for almost every t ∈ [0, T ] the function f(t, ., .) is continuous on R2; (iii) for

each compact set K ⊂ R2 there is a function mK(t) ∈ L[0, T ] such that |f(t, x, y)| ≤

mK(t) holds for a.e. t ∈ [0, T ] and all (x, y) ∈ K. The set of functions satisfying the

Carathéodory conditions on [0, T ]× R2 will be denoted by Car([0, T ]× R2).

Given a Banach space X and its subset M, let cl(M) and ∂M denote the closure

and the boundary of M, respectively.
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Let Ω be an open bounded subset of X. Assume that the operator F : cl(Ω) 7→ X

is completely continuous and F u 6= u for all u ∈ ∂ Ω. Then deg(I−F, Ω) denotes the

Leray-Schauder topological degree of I− F with respect to Ω, where I is the identity

operator on X. For the definition and properties of the degree see e.g. [3] or [9].

1. Formulation of the problem and main assump-

tions

Here we study the existence of solutions to the problem

u′′ =f(t, u, u′), (1.1)

u(ti+) = Ji(u(ti)), u′(ti+) = Mi(u
′(ti)), i = 1, 2, . . . ,m, (1.2)

u(0) = u(T ), u′(0) = u′(T ), (1.3)

where u′(ti) are understood in the sense of (0.2), f ∈ Car([0, T ] × R2), Ji ∈ C(R)

and Mi ∈ C(R).

1.1. Definition. A solution of the problem (1.1)–(1.3) is a function u ∈ AC1
D[0, T ]

which satisfies the impulsive conditions (1.2), the periodic conditions (1.3) and for

a.e. t ∈ [0, T ] fulfils the equation (1.1).

1.2. Definition. A function σ1 ∈ AC1
D[0, T ] is called a lower function of the prob-

lem (1.1)–(1.3) if

σ′′1(t) ≥ f(t, σ1(t), σ
′
1(t)) for a.e. t ∈ [0, T ], (1.4)

σ1(ti+) = Ji(σ1(ti)), σ′1(ti+) ≥ Mi(σ
′
1(ti)), i = 1, 2, . . . ,m, (1.5)

σ1(0) = σ1(T ), σ′1(0) ≥ σ′1(T ). (1.6)
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Similarly, a function σ2 ∈ AC1
D[0, T ] is an upper function of the problem (1.1)–

(1.3) if

σ′′2(t) ≤ f(t, σ2(t), σ
′
2(t)) for a.e. t ∈ [0, T ], (1.7)

σ2(ti+) = Ji(σ2(ti)), σ′2(ti+) ≤ Mi(σ
′
2(ti)), i = 1, 2, . . . ,m, (1.8)

σ2(0) = σ2(T ), σ′2(0) ≤ σ′2(T ). (1.9)

A straightforward illustration of Definition 1.2 is the following proposition pro-

viding a simple example of conditions ensuring the existence of lower and upper

functions for (1.1)–(1.3).

1.3. Proposition. Let α0 ∈ R. For i = 1, 2, . . . ,m assume that Mi(0) = 0, αi =

Ji(αi−1) where αm = α0, f(t, α0, 0) ≤ 0 for a.e. t ∈ (0, t1), f(t, αi, 0) ≤ 0 for a.e.

t ∈ (ti, ti+1), and put σ1(t) = α0 on [0, t1], σ1(t) = αi on (ti, ti+1]. Then σ1 is a lower

function of (1.1)–(1.3).

Let β0 ∈ R. For i = 1, 2, . . . ,m assume that Mi(0) = 0, βi = Ji(βi−1) where

βm = β0, f(t, β0, 0) ≥ 0 for a.e. t ∈ (0, t1), f(t, βi, 0) ≥ 0 for a.e. t ∈ (ti, ti+1), and

put σ2(t) = β0 on [0, t1], σ2(t) = βi on (ti, ti+1]. Then σ2 is an upper function of

(1.1)–(1.3).

1.4. Remark. In particular, if Mi(0) = 0, Ji(α0) = α0, Ji(β0) = β0 for i =

1, 2, . . . ,m and f(t, α0, 0) ≤ 0, f(t, β0, 0) ≥ 0 for a.e. t ∈ [0, T ], then σ1(t) = α0

and σ2(t) = β0, t ∈ [0, T ], are respectively lower and upper functions of (1.1)–(1.3).
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1.5. Assumptions. In the paper we work with the following assumptions:

0 = t0 < t1 < · · · < tm < tm+1 = T < ∞, D = {t1, t2, . . . , tm},
f ∈ Car([0, T ]× R2), Ji ∈ C(R), Mi ∈ C(R), i = 1, 2, . . . ,m;

}
(1.10)

σ1 and σ2 are respectively lower and upper functions of (1.1)–(1.3); (1.11)

x > σ1(ti) =⇒ Ji(x) > Ji(σ1(ti)),

x < σ2(ti) =⇒ Ji(x) < Ji(σ2(ti)), i = 1, 2, . . . ,m;

}
(1.12)

y ≤ σ′1(ti) =⇒ Mi(y) ≤ Mi(σ
′
1(ti)),

y ≥ σ′2(ti) =⇒ Mi(y) ≥ Mi(σ
′
2(ti)), i = 1, 2, . . . ,m.

}
(1.13)

1.6. Operator reformulation of (1.1)–(1.3). Let G(t, s) be the Green function

of the Dirichlet boundary value problem u′′ = 0, u(0) = u(T ) = 0, i.e.

G(t, s) =


t (s− T )

T
if 0 ≤ t ≤ s ≤ T,

s (t− T )

T
if 0 ≤ s < t ≤ T,

and let the operator F : C1
D[0, T ] 7→ C1

D[0, T ] be defined by

(F u)(t) = u(0) + u′(0)− u′(T ) +

∫ T

0

G(t, s) f(s, u(s), u′(s)) ds (1.14)

−
m∑

i=1

∂G

∂s
(t, ti) (Ji(u(ti))− u(ti)) +

m∑
i=1

G(t, ti) (Mi(u
′(ti))− u′(ti)).

Then, as in [10, Lemma 3.1], we can prove that F is completely continuous. More-

over, we can check that each fixed point u of F is a solution of (1.1)–(1.3).

In the proof of our main result we will need the next proposition which concerns

the case of well-ordered lower/upper functions and which follows from [11, Corollary

3.5].

1.7. Proposition. Assume that (1.10) holds and let α and β be respectively lower
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and upper functions of (1.1)–(1.3) such that

α(t) < β(t) for t ∈ [0, T ] and α(τ+) < β(τ+) for τ ∈ D, (1.15)

α(ti) < x < β(ti) =⇒ Ji(α(ti)) < Ji(x) < Ji(β(ti)), i = 1, 2, . . . ,m (1.16)

and

y ≤ α′(ti) =⇒ Mi(y) ≤ Mi(α
′(ti)),

y ≥ β′(ti) =⇒ Mi(y) ≥ Mi(β
′(ti)), i = 1, 2, . . . ,m.

}
(1.17)

Further, let h ∈ L[0, T ] be such that

|f(t, x, y)| ≤ h(t) for a.e. t ∈ [0, T ] and all (x, y) ∈ [α(t), β(t)]× R (1.18)

and let the operator F be defined by (1.14). Finally, for r ∈ (0,∞) denote

Ω(α, β, r) = {u ∈ C1
D[0, T ] : α(t) < u(t) < β(t) for t ∈ [0, T ], (1.19)

α(τ+) < u(τ+) < β(τ+) for τ ∈ D, ‖u′‖∞ < r}.

Then deg(I− F, Ω(α, β, r)) = 1 whenever F u 6= u on ∂Ω(α, β, r) and

r > ‖h‖1 +
‖α‖∞ + ‖β‖∞

∆
, where ∆ = min

i=1,2,...,m+1
(ti − ti−1). (1.20)

Proof. Using the Mean Value Theorem, we can show that

‖u′‖∞ ≤ ‖h‖1 +
‖α‖∞ + ‖β‖∞

∆
(1.21)

holds for each u ∈ C1
D[0, T ] fulfilling α(t) < u(t) < β(t) for t ∈ [0, T ] and α(τ+) <

u(τ+) < β(τ+) for τ ∈ D . Thus, if we denote by c the right-hand side of (1.21),

we can follow the proof of [11, Corollary 3.5].
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2. A priori estimates

The proof of our main existence result (Theorem 3.1) is based on the evaluation of

the topological degree of a proper auxiliary operator by means of Proposition 1.7. To

this aim we need a priori estimates for certain sets of functions which are provided

in this section.

2.1. Lemma. Let ρ1 ∈ (0,∞), h̃ ∈ L[0, T ], Mi ∈ C(R), i = 1, 2, . . . ,m. Then there

exists d ∈ (ρ1,∞) such that the estimate

‖u′‖∞ < d (2.1)

is valid for each function u ∈ AC1
D[0, T ] satisfying (1.3),

|u′(ξu)| < ρ1 for some ξu ∈ [0, T ], (2.2)

u′(ti+) = Mi(u
′(ti)), i = 1, 2, . . . ,m, (2.3)

and

|u′′(t)| < h̃(t) for a.e. t ∈ [0, T ]. (2.4)

Proof. Suppose that u ∈ AC1
D[0, T ] satisfies (1.3) and (2.2)–(2.4). Since Mi ∈ C(R)

for i = 1, 2, . . . ,m, we have

bi(a) := sup
|y|<a

|Mi(y)| < ∞ for a ∈ (0,∞), i = 1, 2, . . . ,m. (2.5)

Furthermore, due to (1.3), we can assume that ξu ∈ (0, T ], i.e. there is j ∈

{1, 2, . . . ,m + 1} such that ξu ∈ (tj−1, tj]. We will distinguish 3 cases: either j = 1

or j = m + 1 or 1 < j < m + 1.

Let j = 1. Then, using (2.2) and (2.4), we obtain

|u′(t)| < a1 on [0, t1], (2.6)
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where a1 = ρ1+‖h̃‖1. Hence, in view of (2.5), we have |u′(t1+)| < b1(a1), wherefrom,

using (2.4), we deduce that |u′(t)| < b1(a1) + ‖h̃‖1 for t ∈ (t1, t2]. Continuing by

induction, we get |u′(t)| < ai+1 = bi(ai) + ‖h̃‖1 on (ti, ti+1] for i = 2, . . . ,m, i.e.

‖u′‖∞ < d := max{ai : i = 1, 2, . . . ,m + 1}. (2.7)

Assume that j = m + 1. Then, using (2.2) and (2.4), we obtain

|u′(t)| < am+1 on (tm, T ], (2.8)

where am+1 = ρ1 + ‖h̃‖1. Furthermore, due to (1.3), we have |u′(0)| < am+1 which

together with (2.4) yields that (2.6) is true with a1 = am+1 +‖h̃‖1. Now, proceeding

as in the case j = 1, we show that (2.7) is true also in the case j = m + 1.

Assume that 1 < j < m + 1. Then (2.2) and (2.4) yield |u′(t)| < aj+1 = ρ1 +

‖h̃‖1 on (tj, tj+1]. If j < m, then |u′(t)| < aj+2 = bj+1(aj+1) + ‖h̃‖1 on (tj+1, tj+2].

Proceeding by induction we get (2.8) with am+1 = bm(am) + ‖h̃‖1, wherefrom (2.7)

again follows as in the previous case.

2.2. Lemma. Let ρ0, d ∈ (0,∞) and Ji ∈ C(R), i = 1, 2, . . . ,m. Then there exists

c ∈ (ρ0,∞) such that the estimate

‖u‖∞ < c (2.9)

is valid for each u ∈ C1
D[0, T ] and each J̃i ∈ C(R), i = 1, 2, . . . ,m, satisfying (1.3),

(2.1),

u(ti+) = J̃i(u(ti)), i = 1, 2, . . . ,m, (2.10)

|u(τu)| < ρ0 for some τu ∈ [0, T ] (2.11)

and
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sup {| Ji(x)| : |x| < a} < b =⇒ sup {|J̃i(x)| : |x| < a} < b (2.12)

for i = 1, 2, . . . ,m, a ∈ (0,∞), b ∈ (a,∞).

Proof. We will argue similarly as in the proof of Lemma 2.1. Suppose that u ∈

C1
D[0, T ] satisfies (1.3), (2.1), (2.10), (2.11) and that J̃i ∈ C(R), i = 1, 2, . . . ,m,

satisfy (2.12). Due to (1.3) we can assume that τu ∈ (0, T ], i.e. there is j ∈

{1, 2, . . . ,m + 1} such that τu ∈ (tj−1, tj]. We will consider three cases: j = 1,

j = m + 1, 1 < j < m + 1. If j = 1, then (2.1) and (2.11) yield |u(t)| < a1 =

ρ0 +d T on [0, t1]. In particular, |u(t1)| < a1. Since J1 ∈ C(R), we can find b1(a1) ∈

(a1,∞) such that | J1(x)| < b1(a1) for all x ∈ (−a1, a1) and consequently, by (2.12),

also |J̃1(x)| < b1(a1) for all x ∈ (−a1, a1). Therefore, by (2.1), |u(t)| < |u(t1+)| +

d T = |J̃1(u(t1))| + d T < a2 = b1(a1) + d T on (t1, t2]. Proceeding by induction

we get bi(ai) ∈ (ai,∞) such that |u(t)| < ai+1 = bi(ai) + d T for t ∈ (ti, ti+1]

and i = 2, . . . ,m. As a result, (2.9) is true with c = max{ai : i = 1, 2, . . . ,m + 1}.

Analogously we would proceed in the remaining cases j = m+1 or 1 < j < m+1.

Finally, we will need two estimates for functions u satisfying one of the following

conditions:

u(su) < σ1(su) and u(tu) > σ2(tu) for some su, tu ∈ [0, T ], (2.13)

u ≥ σ1 on [0, T ] and inf
t∈[0,T ]

|u(t)− σ1(t)| = 0, (2.14)

u ≤ σ2 on [0, T ] and inf
t∈[0,T ]

|u(t)− σ2(t)| = 0. (2.15)

2.3. Lemma. Assume that σ1, σ2 ∈ AC1
D[0, T ], Ji, Mi, J̃i ∈ C(R), i = 1, 2, . . . ,m,

satisfy (1.12), (1.13) and

x > σ1(ti) =⇒ J̃i(x) > J̃i(σ1(ti)) = Ji(σ1(ti)),

x < σ2(ti) =⇒ J̃i(x) < J̃i(σ2(ti)) = Ji(σ2(ti)), i = 1, 2, . . . ,m.

}
(2.16)
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Denote

B = {u ∈ C1
D[0, T ] : u satisfies (1.3), (2.10), (2.3) and one (2.17)

of the conditions (2.13), (2.14), (2.15)}.

Then each function u ∈ B satisfies

|u′(ξu)| < ρ1 for some ξu ∈ [0, T ], where

ρ1 =
2

t1
(‖σ1‖∞ + ‖σ2‖∞) + ‖σ′1‖∞ + ‖σ′2‖∞ + 1.

 (2.18)

Proof. • Part 1. Assume that u ∈ B satisfies (2.13). There are 3 cases to

consider:

Case A. If min{σ1(t), σ2(t)} ≤ u(t) ≤ max{σ1(t), σ2(t)} for t ∈ [0, T ], then,

by the Mean Value Theorem, there is ξu ∈ (0, t1) such that

|u′(ξu)| ≤
2

t1
(‖σ1‖∞ + ‖σ2‖∞). (2.19)

Case B. Assume that u(s) > σ1(s) for some s ∈ [0, T ] and denote v = u − σ1.

Due to (2.13) we have

v∗ = inf
t∈[0,T ]

v(t) < 0 and v∗ = sup
t∈[0,T ]

v(t) > 0. (2.20)

We are going to prove that

v′(α) = 0 for some α ∈ [0, T ] or v′(τ+) = 0 for some τ ∈ D . (2.21)

Suppose, on the contrary, that (2.21) does not hold.

Let v′(0) > 0. Then, according to (1.3) and (1.6), v′(T ) > 0, as well. Due to the

assumption that (2.21) does not hold, this together with (1.5) yields that

0 < v′(tm+) = u′(tm+)− σ′1(tm+) ≤ Mm(u′(tm))−Mm(σ′1(tm)),
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which is by (1.13) possible only if u′(tm) > σ′1(tm), i.e. v′(tm) > 0. Continuing in

this way on each (ti, ti+1], i = 0, 1, . . . ,m− 1, we get

v′(t) > 0 for t ∈ [0, T ] and v′(τ+) > 0 for τ ∈ D . (2.22)

If v(0) ≥ 0, then v(t) > 0 on (0, t1] due to (2.22). Further, it follows by (1.5),

(2.10) and (2.16) that u(t1+) > σ1(t1+), i.e. v(t1+) > 0. Continuing by induction

we deduce that v ≥ 0 on [0, T ], contrary to (2.20).

If v(0) < 0, then by (1.3) and (1.6) we have v(T ) < 0. Further, by virtue of

(2.22) we obtain v < 0 on (tm, T ] and, in particular, v(tm+) < 0. So, J̃m(u(tm)) <

Jm(σ1(tm)) wherefrom u(tm) ≤ σ1(tm) follows, due to (2.16). Thus, we have v < 0

on (tm−1, tm). Continuing by induction we get v ≤ 0 on [0, T ], contrary to (2.20).

Now, assume that v′(0) < 0. Then v′(t1) < 0, i.e. u′(t1) < σ′1(t1) wherefrom, by

(1.5), (1.13) and the assumption that (2.21) does not hold, the inequality v′(t1+) =

u′(t1+)− σ′1(t1+) < 0 follows. Similarly as in the proof of (2.22) we show that

v′(t) < 0 for t ∈ [0, T ] and v′(τ+) < 0 for τ ∈ D . (2.23)

Now, having (2.23), we consider as above two cases: v(0) ≥ 0 and v(0) < 0, and

construct a contradiction by means of analogous arguments.

So we have proved that (2.21) is true, which yields the existence of ξu ∈ [0, T ]

having the property

|u′(ξu)| < ‖σ′1‖∞ + 1. (2.24)

Case C. If u(s) < σ2(s) for some s ∈ [0, T ], we put v = u − σ2 and, using the

properties of σ2 instead of σ1, we can argue as in Case B and show that there exists

ξu ∈ [0, T ] such that

|u′(ξu)| < ‖σ′2‖∞ + 1. (2.25)
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Taking into account (2.19), (2.24) and (2.25) we conclude that (2.18) is valid for

any u ∈ B fulfilling (2.13).

• Part 2. Let u ∈ B satisfy (2.14). Then u ≥ σ1 on [0, T ] and either there is

αu ∈ [0, T ] such that u(αu) = σ1(αu) or there is tj ∈ D such that u(tj+) = σ1(tj+).

Case A. Let the first possibility occur. If αu ∈ (0, T ) \ D, then necessar-

ily u′(αu) = σ′1(αu). Consequently, the estimate (2.24) is valid. If αu = 0, then

inf {u(t)− σ1(t) : t ∈ [0, T ]} = u(0)− σ1(0) = u(T )− σ1(T ) = 0, which, by virtue

of (1.3) and (1.6), implies 0 ≤ u′(0)− σ′1(0) ≤ u′(T )− σ′1(T ) ≤ 0, i.e. u′(0) = σ′1(0)

and the estimate (2.24) is valid with ξu = 0. If αu = tj for some tj ∈ D, then

0 = u(tj) − σ1(tj) = u(tj+) − σ1(tj+). Having in mind that u ≥ σ1 on [0, T ],

we get u′(tj+) ≥ σ′1(tj+) and u′(tj) ≤ σ′1(tj). On the other hand, with respect

to (1.13), the last inequality gives also Mj(u
′(tj)) ≤ Mj(σ

′
1(tj)), which leads to

σ′1(tj+) = u′(tj+). Thus, (2.24) is fulfilled for some ξu ∈ (tj, tj+1) which is sufficiently

close to tj.

Case B. Let the second possibility occur, i.e. u(tj+) = σ1(tj+) for some tj ∈ D .

According to (1.5) and (2.10), we have J̃j(u(tj)) = Jj(σ1(tj)). Taking into account

(2.16), we see that this can occur only if u(tj) ≤ σ1(tj). On the other hand, by the

assumption (2.14) we have u ≥ σ1 on [0, T ]. Hence we conclude that u(tj) = σ1(tj)

and so, arguing as before, we get (2.24) again.

To summarize: (2.18) holds for any u ∈ B fulfilling (2.14).

• Part 3. Let u ∈ B satisfy (2.15). Then using the properties of σ2 instead

of σ1, we argue analogously to Part 2 and prove that (2.25) is valid for each u ∈ B

which satisfies (2.15). In particular, (2.18) holds for any u ∈ B fulfilling (2.15).

2.4. Lemma. Assume that σ1, σ2 ∈ AC1
D[0, T ], Ji, J̃i ∈ C(R), i = 1, 2, . . . ,m,
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satisfy (1.12) and (2.16). Then

min{σ1(τu+), σ2(τu+)} ≤ u(τu+) ≤max{σ1(τu+), σ2(τu+)} (2.26)

for some τu ∈ [0, T )

is true for each u ∈ C1
D[0, T ] fulfilling (1.3), (2.10) and one of the conditions (2.13)–

(2.15).

Proof. Assume, on the contrary, that there is u ∈ B for which (2.26) does not hold.

If u(0) < min{σ1(0), σ2(0)} then, taking into account the continuity of the functions

u, σ1 and σ2 on [0, t1], we deduce that u(t) < min{σ1(t), σ2(t)} is true for each

t ∈ [0, t1]. Consequently, due to (2.16), we have u(t1+) < min{σ1(t1+), σ2(t1+)}. It

is easy to see that proceeding by induction we get

u(t) < min{σ1(t), σ2(t)} and u(τ+) < min{σ1(τ+), σ2(τ+)}

for each t ∈ [0, T ) \ D and τ ∈ D, a contradiction to (2.13). Similarly, we can see

that u(0) > max{σ1(0), σ2(0)} implies that

u(t) > max{σ1(t), σ2(t)} and u(τ+) > max{σ1(τ+), σ2(τ+)}

hold for each t ∈ [0, T ) \ D and τ ∈ D, again a contradiction to (2.13). The proof

will be completed by an obvious observation that u can satisfy neither (2.14) nor

(2.15) whenever it does not satisfy (2.26).

3. Main results

Our main result is the following theorem which is the first known existence result

for impulsive periodic problems with non-ordered lower and upper functions.
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3.1. Theorem. Assume that (1.10)–(1.13) and (0.1) hold and let h ∈ L[0, T ] be

such that

|f(t, x, y)| ≤ h(t) for a.e. t ∈ [0, T ] and all (x, y) ∈ R2. (3.1)

Further, let

y Mi(y) ≥ 0 for y ∈ R and i = 1, 2, . . . ,m. (3.2)

Then the problem (1.1)–(1.3) has a solution u satisfying one of the conditions

(2.13)–(2.15).

Proof. • Step 1. We construct a proper auxiliary problem.

Let σ1 and σ2 be respectively lower and upper functions of (1.1)–(1.3) and let ρ1

be associated with them as in (2.18). Put

h̃(t) = 2 h(t) + 1 for a.e. t ∈ [0, T ]

and, by Lemma 2.1, find d ∈ (ρ1,∞) satisfying (2.1). Furthermore, put ρ0 =

‖σ1‖∞+‖σ2‖∞+1 and, by Lemma 2.2, find c ∈ (ρ0,∞) fulfilling (2.9). In particular,

we have

c > ‖σ1‖∞ + ‖σ2‖∞ + 1. (3.3)

Finally, for a.e. t ∈ [0, T ] and all x, y ∈ R define functions

f̃(t, x, y) =

f(t, x, y)− h(t)− 1 if x ≤ −c− 1,

f(t, x, y) + (x + c) (h(t) + 1) if − c− 1 < x < −c,

f(t, x, y) if − c ≤ x ≤ c,

f(t, x, y) + (x− c) (h(t) + 1) if c < x < c + 1,

f(t, x, y) + h(t) + 1 if x ≥ c + 1,


(3.4)
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J̃i(x) =

x if x ≤ −c− 1,

Ji(−c) (c + 1 + x)− x (x + c) if − c− 1 < x < −c,

Ji(x) if − c ≤ x ≤ c,

Ji(c) (c + 1− x) + x (x− c) if c < x < c + 1,

x if x ≥ c + 1, i = 1, 2, . . . ,m,


(3.5)

and consider an auxiliary problem

u′′ = f̃(t, u, u′), (2.10), (2.3), (1.3). (3.6)

Due to (1.10), f̃ ∈ Car([0, T ] × R) and J̃i ∈ C(R) for i = 1, 2, . . . ,m. According

to (3.3)–(3.5) the functions σ1 and σ2 are respectively lower and upper functions of

(3.6). By (3.1) we have

|f̃(t, x, y)| ≤ h̃(t) for a.e. t ∈ [0, T ] and all (x, y) ∈ R2 (3.7)

and

f̃(t, x, y) < 0 for a.e. t ∈ [0, T ] and all (x, y) ∈ (−∞,−c− 1]× R,

f̃(t, x, y) > 0 for a.e. t ∈ [0, T ] and all (x, y) ∈ [c + 1,∞)× R.

}
(3.8)

Furthermore, in view of (3.5), it is easy to check that the condition (2.12) is satisfied.

Moreover, due to (1.12), we see that (2.16) holds if |x| ≤ c. We are going to show

that (2.16) is valid also for |x| > c. First, assume that x > c. In this case it suffices

to verify the first condition in (2.16). Let i ∈ {1, 2, . . . ,m} be given. Notice that,

due to (3.3) and (1.12), we have

c > max{σ1(ti), σ1(ti+)} ≥ Ji(σ1(ti)) and Ji(c) > Ji(σ1(ti)). (3.9)

In view of (1.5), (3.3) and (3.5), this yields that

J̃i(x) = x > σ1(ti+) = Ji(σ1(ti)) = J̃i(σ1(ti))

holds for x > c + 1, i.e. the first condition in (2.16) is satisfied also for x > c + 1. If

x ∈ (c, c + 1], then the values J̃i(x) are convex combinations of the values Ji(c) and
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x, which both are according to (3.9) greater than Ji(σ1(ti)), and so we can conclude

that the first condition in (2.16) is satisfied for all x ∈ (c,∞). Similarly, we can

prove that the second condition in (2.16) is satisfied for x ∈ (−∞,−c).

Now, put

A∗ = 1 +
m∑

i=1

max
|x|≤c+1

|J̃i(x)| and σ3 = −A∗, σ4 = A∗ on [0, T ]. (3.10)

By (3.5) and (3.10) we have A∗ ≥ c + 2 and the condition

J̃i(x) = (−1)k A∗ ⇐⇒ x = (−1)k A∗ (3.11)

is true for k = 1, 2 and i = 1, 2, . . . ,m. According to Remark 1.4, (3.2) and (3.8),

the functions σ3 and σ4 are respectively lower and upper functions of (3.6) which

are well-ordered, i.e.

σ3(t) < σ4(t) for t ∈ [0, T ] and σ3(τ+) < σ4(τ+) for τ ∈ D .

Similarly, since A∗ ≥ c + 2, we get by (3.3) the relations

σ3(t) < σ2(t) for t ∈ [0, T ], σ3(τ+) < σ2(τ+) for τ ∈ D

and

σ1(t) < σ4(t) for t ∈ [0, T ], , σ1(τ+) < σ4(τ+) for τ ∈ D .

To summarize, we have three pairs {σ3, σ4}, {σ3, σ2} and {σ1, σ4} of well-ordered

lower and upper functions of the problem (3.6).

Having G from (1.14), define an operator F̃ : C1
D[0, T ] 7→ C1

D[0, T ] by

(F̃u)(t) = u(0) + u′(0)− u′(T ) +

∫ T

0

G(t, s) f̃(s, u(s), u′(s)) ds (3.12)

−
m∑

i=1

∂G

∂s
(t, ti) (J̃i(u(ti))− u(ti)) +

m∑
i=1

G(t, ti) (Mi(u
′(ti))− u′(ti)).
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Similarly as in [10, Lemma 3.1], we can show that F̃ is completely continuous.

Moreover, we can check that u is a solution of (3.6) whenever F̃u = u.

• Step 2. We prove the first a priori estimate for solutions of (3.6).

Denote

Ω0 = {u ∈ C1
D[0, T ] : ‖u‖∞ < A∗, ‖u′‖∞ < C∗}, (3.13)

where C∗=
2A∗

∆
+ ‖h̃‖1 + 1 and ∆ is defined in (1.20).

By virtue of (1.19) and (3.10), we have Ω0 = Ω(σ3, σ4, C
∗). We are going to prove

that for each solution u of (3.6) the estimate

u ∈ cl(Ω0) =⇒ u ∈ Ω0 (3.14)

is true. To this aim, suppose that u is a solution of (3.6) and u ∈ cl(Ω0), i.e.

‖u‖∞ ≤ A∗ and ‖u′‖∞ ≤ C∗. By the Mean Value Theorem, there are ξi ∈ (ti, ti+1),

i = 1, 2, . . . ,m, such that |u′(ξi)| ≤ 2 A∗/∆. Hence, by (3.7), we get

‖u′‖∞ < C∗, (3.15)

where C∗ is defined in (3.13). It remains to show that ‖u‖∞ < A∗. Assuming the

contrary there are two cases to distinguish:

Case A. Let

sup {u(t) : t ∈ [0, T ]} = A∗. (3.16)

Then, due to (1.3) and (3.11), there is τ ∈ [0, T ) such that

u(τ) = u(τ+) = A∗. (3.17)

Recall that A∗ ≥ c + 2. Consequently, (3.17) implies that

u(t) > c + 1 for t ∈ [τ, τ + δ] (3.18)
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is true for some δ > 0. Furthermore, we have

u′(τ+) = 0. (3.19)

Indeed, if τ = 0, then (1.3) and (3.16) give u(0) = u(T ) = A∗ and 0 ≥ u′(τ+) =

u′(0) = u′(T ) ≥ 0. If τ ∈ D, then (3.16) and (3.17) imply u′(τ+) ≤ 0 and u′(τ) ≥ 0.

As, by (3.2), the latter inequality yields also u′(τ+) ≥ 0, (3.19) is true. Finally, if

τ ∈ (0, T ) \D, then the validity of (3.19) is evident.

Now, by (3.8) and (3.18), we obtain that u′′(t) > 0 holds a.e. on [τ, τ + δ]. Con-

sequently, in view of (3.19), we have u′(t) > u′(τ+) = 0 on (τ, τ +δ), a contradiction

to (3.16) and (3.17).

Case B. If inf {u(t) : t ∈ [0, T ]} = −A∗, we construct a contradiction similarly

as in Case A.

Therefore, ‖u‖∞ < A∗ holds for each solution u of (3.6). This together with

(3.15) shows that the estimate (3.14) is valid for each solution u of (3.6).

• Step 3. We prove the second a priori estimate for solutions of (3.6).

Define sets

Ω1 = {u ∈ Ω0 : u(t) > σ1(t) for t ∈ [0, T ], u(τ+) > σ1(τ+) for τ ∈ D},

Ω2 = {u ∈ Ω0 : u(t) < σ2(t) for t ∈ [0, T ], u(τ+) < σ2(τ+) for τ ∈ D}

and Ω̃ = Ω0 \ cl(Ω1 ∪ Ω2). Then, by (0.1), Ω1 ∩ Ω2 = ∅ and

Ω̃ = {u ∈ Ω0 : u satisfies (2.13)}. (3.20)

Furthermore, with respect to (1.19) and (3.10) we have Ω1 = Ω(σ1, σ4, C
∗) and

Ω2 = Ω(σ3, σ2, C
∗).
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Consider c from Step 1. We are going to prove that the estimate

u ∈ cl(Ω̃) =⇒ ‖u‖∞ < c (3.21)

is valid for each solution u of (3.6). So, assume that u is a solution of (3.6) and

u ∈ cl(Ω̃). Then, due to (3.14), u fulfils one of the conditions (2.13), (2.14), (2.15)

and so, by (2.17), u ∈ B. Since we have already proved that (2.16) holds, we can

use Lemma 2.3 and get ξu ∈ [0, T ] such that (2.18) is true. Further, due to (1.3),

(2.3) and (3.7), we can apply Lemma 2.1 to show that u satisfies the estimate (2.1).

Finally, by Lemma 2.4, u satisfies (2.26) and hence also (2.11) with ρ0 defined in

Step 1. Moreover, let us recall that J̃i, i = 1, 2, . . . ,m, verify the condition (2.12).

Hence, by Lemma 2.2, we have (2.9), i.e. each solution u of (3.6) satisfies (3.21).

• Step 4. We prove the existence of a solution to (1.1)–(1.3).

Consider the operator F̃ defined by (3.12). We distinguish two cases: either F̃

has a fixed point in ∂Ω̃ or it has no fixed point in ∂Ω̃.

Assume that F̃ u = u for some u ∈ ∂Ω̃. Then u is a solution of (3.6) and, with

respect to (3.21), we have ‖u‖∞ < c, which means, by (3.4) and (3.5), that u is

a solution of (1.1)–(1.3). Furthermore, due to (3.14), u satisfies (2.14) or (2.15).

Now, assume that F̃ u 6= u for all u ∈ ∂Ω̃. Then F̃u 6= u for all u ∈ ∂Ω0 ∪

∂Ω1 ∪ ∂Ω2. If we replace f, h, Ji, i = 1, 2, . . . ,m, α, β and r respectively by f̃ , h̃,

J̃i, i = 1, 2, . . . ,m, σ3, σ4 and C∗ in Proposition 1.7, we see that the assumptions

(1.15)–(1.18) and (1.20) are satisfied. Thus, by Proposition 1.7, we obtain that

deg(I− F̃, Ω(σ3, σ4, C
∗)) = deg(I− F̃, Ω0) = 1. (3.22)
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Similarly, we can apply Proposition 1.7 to show that

deg(I− F̃, Ω(σ1, σ4, C
∗)) = deg(I− F̃, Ω1) = 1 (3.23)

and

deg(I− F̃, Ω(σ3, σ2, C
∗)) = deg(I− F̃, Ω2) = 1. (3.24)

Using the additivity property of the Leray-Schauder topological degree we derive

from (3.22)–(3.24) that

deg(I− F̃, Ω̃) = −1.

Therefore, F̃ has a fixed point u ∈ Ω̃. By (3.20) and (3.21) we have (2.13) and

‖u‖∞ < c. This together with (3.4) and (3.5) yields that u is a solution to (1.1)–

(1.3) fulfilling (2.13).

3.2. Remark. Let the assumptions of Theorem 3.1 be fulfilled and let, moreover,

σ1 ≥ σ2 on [0, T ]. Put J̃i = Ji for i = 1, 2, . . . ,m. Then, by Lemma 2.4, a solution u

of (1.1)–(1.3) fulfils one of the conditions (2.13)–(2.15) if and only if it satisfies

σ2(τu+) ≤ u(τu+) ≤ σ1(τu+) for some τu ∈ [0, T ].

Now, let us compare the existence result provided by Theorem 3.1 which is

applicable for non-ordered lower and upper function with the following one which

has been proved by the authors in [11, Theorem 3.1] and which concerns the well-

ordered case.

3.3. Theorem. Assume that (1.10), (1.11), (1.13) and σ1 ≤ σ2 on [0, T ] hold. Fur-

thermore, let the conditions

σ1(ti) ≤ x ≤ σ2(ti) =⇒ Ji(σ1(ti)) ≤ J(x) ≤ Ji(σ2(ti)) for i = 1, 2, . . . ,m
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and

|f(t, x, y)| ≤ ω(|y|) (|y|+ h(t)) (3.25)

for a.e. t ∈ [0, T ] and all x ∈ [σ1(t), σ2(t)], |y| ≥ 1,

be satisfied, where h ∈ L[0, T ] is nonnegative function, ω ∈ C([1,∞)) is positive

and ∫ ∞

1

ds

ω(s)
= ∞.

Then the problem (1.1)–(1.3) has a solution u satisfying

σ1 ≤ u ≤ σ2 on [0, T ].

Imposing assumptions ensuring the existence of constant or piecewise constant

lower/upper functions for (1.1)–(1.3) in Theorems 3.1 and 3.3, we obtain simple

effective existence criteria. The first couple of them deals with piecewise constant

lower/upper functions.

3.4. Corollary. Let (1.10), (3.1) and (3.2) hold. Assume that αi, βi ∈ R, i =

0, 1, . . . ,m, fulfil the assumptions of Proposition 1.3, α0 > β0 and that the implica-

tions

x > αi−1 =⇒ Ji(x) > αi and x < βi−1 =⇒ Ji(x) < βi (3.26)

are true for i = 1, 2, . . . ,m. Then the problem (1.1)–(1.3) has a solution u for

which there exist j ∈ {0, 1, . . . ,m} and τu ∈ [tj, tj+1) such that

βj ≤ u(τu+) ≤ αj. (3.27)

Proof. First, recall that α0 = αm, β0 = βm. Hence αm > βm and, in view of

(3.26), αi > βi for all i = 0, 1, . . . ,m. Let the functions σ1 and σ2 be defined as in



Non-ordered lower and upper functions in second order impulsive periodic problems 23

Proposition 1.3. By this proposition they are respectively lower and upper functions

of (1.1)–(1.3). Now, the existence of a solution u to (1.1)–(1.3) having the property

(3.27) follows by Theorem 3.1 and Remark 3.2.

3.5. Corollary. Let (1.10) and (3.2) hold. Assume that αi, βi ∈ R, i = 0, 1, . . . ,m,

fulfil the assumptions of Proposition 1.3, α0 ≤ β0 and that the implications

αi−1 ≤ x ≤ βi−1 =⇒ αi ≤ Ji(x) ≤ βi (3.28)

are true for i = 1, 2, . . . ,m. Let σ1 and σ2 be defined as in Proposition 1.3 and let

(3.25) be fulfilled with h and ω from Theorem 3.3. Then the problem (1.1)–(1.3) has

a solution u satisfying

αi ≤ u(t) ≤ βi for t ∈ (ti, ti+1] and i = 0, 1, . . . ,m. (3.29)

Proof. By Proposition 1.3, σ1 and σ2 are respectively lower and upper functions of

(1.1)–(1.3) and, by (3.28), we have σ1 ≤ σ2 on [0, T ]. Thus, by Theorem 3.3 there is

a solution u of (1.1)–(1.3) fulfilling (3.29).

The special case of constant lower/upper functions is considered in the second

couple of corollaries.

3.6. Corollary. Let (1.10), (3.1) and (3.2) hold. Assume that there are α, β ∈ R

such that α > β,

f(t, α, 0) ≤ 0 ≤ f(t, β, 0) for a.e. t ∈ [0, T ], (3.30)

Ji(α) = α, Ji(β) = β for i = 1, 2, . . . ,m (3.31)

and

x > α =⇒ Ji(x) > α, x < β =⇒ Ji(x) < β
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are true for i = 1, 2, . . . ,m. Then the problem (1.1)–(1.3) has a solution u such

that β ≤ u(tu+) ≤ α for some tu ∈ [0, T ).

Proof follows from Theorem 3.1 if we take into account Remarks 1.4 and 3.2.

Similarly, using Theorem 3.3 and Proposition 1.3, we get for the well-ordered

case (cf. also [11, Corollary 3.3]):

3.7. Corollary. Let (1.10) and (3.2) hold. Assume that there are α, β ∈ R such

that α ≤ β, (3.30), (3.31) and

α ≤ x ≤ β =⇒ α ≤ Ji(x) ≤ β for i = 1, 2, . . . ,m (3.32)

are true. Let (3.25) be satisfied with σ1 = α, σ2 = β on [0, T ] and h, ω from Theorem

3.3. Then the problem (1.1)–(1.3) has a solution u such that α ≤ u ≤ β on [0, T ].

Corollary 3.7 extends the scalar case of [4, Corollary 2]. In particular, it applies

to the closing example of [4], i.e. to (1.1)–(1.3) with an arbitrary division D =

{t1, t2, . . . , tm} of [0, T ] and

f(t, x, y) = tg(x) +
1

2
t2 + y2, Ji(x) = x, Mi(y) = y + sin(2 y)

for t ∈ [0, T ], x, y ∈ R and i = 1, 2, . . . ,m.

3.8. Example. Consider the problem (1.1)–(1.3) with an arbitrary division D =

{t1, t2, . . . , tm} of [0, T ]. For a.e. t ∈ [0, T ] and for all x, y ∈ R, i = 1, 2, . . . ,m, define

f(t, x, y) =
n∑

k=1

p(t)− |x− 2| sin(5
2
πx) + y√

|t− ck|
+ q(t) y2,

Ji(x) = x + ai (x− 1) (x− 2) (x− 3), Mi(y) = y + y sin(bi y).

Here we assume that p, q ∈ L∞[0, T ], ‖p‖∞ ≤ 1, ai ∈ [−1
2
, 4], bi ∈ R for i =

1, 2, . . . ,m and ck ∈ (0, T ) \ D, k = 1, 2, . . . , n, n ∈ N. Let us put α = 1 and β = 3.
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Then we can check that (3.30)–(3.32) hold. Moreover, for a.e. t ∈ [0, T ] and for all

x ∈ [1, 3], y ∈ R, we have

|f(t, x, y)| ≤
n∑

k=1

2 + |y|√
|t− ck|

+ ‖q‖∞ y2 ≤ ω(|y|) (|y|+ h(t)),

where

ω(s) = 2 + s (1 + ‖q‖∞) for s ∈ R and h(t) =
n∑

k=1

1√
|t− ck|

for a.e. t ∈ [0, T ],

i.e. ω and h fulfil the assumptions of Theorem 3.3. We summarize that the assump-

tions of Corollary 3.7 are satisfied and hence the given problem has a solution u

such that 1 ≤ u ≤ 3 on [0, T ].

Notice that our function f ∈ Car([0, T ]×R2) is not continuous in t on (0, T )\D

as needed in [1], [4], [6], [8], [12] and does not satisfy the classical Nagumo growth

conditions imposed in [4]–[7] and [12]. Moreover, f is not monotonous and the

impulse functions Ji and Mi do not satisfy neither the monotonicity conditions from

[1], [2], [5]–[8] nor the implications (3.2) and (3.32) with strict inequalities as needed

in [4, Corollary 2]. Therefore, none of these previous papers can give an existence

result which apply to this example.

Our main result is illustrated by the next example.

3.9. Example. Consider the problem (1.1)–(1.3) with an arbitrary division D =

{t1, t2, . . . , tm} of [0, T ]. For a.e. t ∈ [0, T ] and for all x, y ∈ R, i = 1, 2, . . . ,m define

f(t, x, y) =
n∑

k=1

1√
|t− ck|

(
p(t) + 1 +

1− 5 x

x2 + 1

)
+ q(t) arctg(y) (3.33)

and

Ji(x) = x + ai (x
3 − x), Mi(y) = y + y sin(bi y),

where p ∈ L∞[0, T ], ‖p‖∞ ≤ 1, q ∈ L[0, T ], ai ∈ [0,∞), bi ∈ R and ck ∈ (0, T ) \D,

k = 1, 2, . . . , n, n ∈ N. We see that for α = 1 and β = 0 the assumptions of Corollary
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3.6 are fulfilled. Hence the given problem has a solution u for which u(τu+) ∈ [0, 1]

for some τu ∈ [0, T ].

3.10. Remark. According to Definition 1.2 and Corollary 3.6, the problem (1.1)–

(1.3) in Example 3.9 has just two constant upper functions σ2 = 0 and σ̃2 = −1

on [0, T ] and the unique constant lower function σ1 = 1 on [0, T ]. It means that

a well-ordered couple of them does not exist. As all the previous papers rely on

the existence of a well-ordered couple of lower/upper functions and provide only

existence criteria based on constant lower/upper functions (see [4, Corollary 2 and

Theorem 4], [12, Theorem 4.1] or Corollary 3.7 in this paper), it is apparent that

they cannot decide about the solvability in Example 3.9. Moreover, an existence

decision for Example 3.9 cannot be obtained neither by means of our Corollary 3.5,

where well-ordered piecewise constant lower/upper functions are needed. Indeed,

if for some j ∈ {1, 2, . . . ,m} the equalities p(t) = 1 and p(t) = −1 hold on some

subsets of [tj−1, tj) of positive measure, then, by (3.33), the inequalities

f(t, αj, 0) ≤ 0 ≤ f(t, βj, 0)

can be satisfied a.e. on [tj−1, tj) only if βj ≤ 1
5

and αj ∈ [1, 3
2
], i.e. only if βj < αj.

It means that our problem in Example 3.9 does not even have a well-ordered pair

of piecewise constant lower/upper functions.
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