Strictly increasing solutions of non-autonomous difference equations arising in hydrodynamics

Lukáš Rachůnek and Irena Rachůnková
Department of Mathematics, Faculty of Science, Palacký University, tř. 17. listopadu 12, 77146 Olomouc, Czech Republic, e-mail: rachunko@inf.upol.cz

Abstract

The paper provides conditions sufficient for the existence of strictly increasing solutions of the second-order non-autonomous difference equation $$
x(n+1)=x(n)+\left(\frac{n}{n+1}\right)^{2}\left(x(n)-x(n-1)+h^{2} f(x(n))\right), \quad n \in \mathbb{N}
$$ where $h>0$ is a parameter and f is Lipschitz continuous and has three real zeros $L_{0}<0<L$.

In particular we prove that for each sufficiently small $h>0$ there exists a solution $\{x(n)\}_{n=0}^{\infty}$ such that $\{x(n)\}_{n=1}^{\infty}$ is increasing, $x(0)=x(1) \in\left(L_{0}, 0\right)$ and $\lim _{n \rightarrow \infty} x(n)>L$. The problem is motivated by some models arising in hydrodynamics.

Keywords. Non-autonomous second-order difference equation, strictly increasing solutions, discretization.

Mathematics Subject Classification 2000. 39A11, 39A12, 39A70

1 Formulation of problem

We will investigate the following second-order non-autonomous difference equation

$$
\begin{equation*}
x(n+1)=x(n)+\left(\frac{n}{n+1}\right)^{2}\left(x(n)-x(n-1)+h^{2} f(x(n))\right), \quad n \in \mathbb{N} \tag{1.1}
\end{equation*}
$$

where f is supposed to fulfil

$$
\begin{gather*}
L_{0}<0<L, \quad f \in \operatorname{Lip}_{\text {loc }}\left[L_{0}, \infty\right), \quad f\left(L_{0}\right)=f(0)=f(L)=0, \tag{1.2}\\
x f(x)<0 \text { for } x \in\left(L_{0}, L\right) \backslash\{0\}, \quad f(x) \geq 0 \text { for } x \in(L, \infty), \tag{1.3}
\end{gather*}
$$

$$
\begin{equation*}
\exists \bar{B} \in\left(L_{0}, 0\right) \text { such that } \int_{\bar{B}}^{L} f(z) \mathrm{d} z=0 \tag{1.4}
\end{equation*}
$$

Let us note that $f \in \operatorname{Lip}_{\text {loc }}\left[L_{0}, \infty\right)$ means that for each $\left[L_{0}, A\right] \subset\left[L_{0}, \infty\right)$ there exists $K_{A}>0$ such that $|f(x)-f(y)| \leq K_{A}|x-y|$ for all $x, y \in\left[L_{0}, A\right]$. A simple example of a function f satisfying (1.2)-(1.4) is $f(x)=c\left(x-L_{0}\right) x(x-L)$, where c is a positive constant.

A sequence $\{x(n)\}_{n=0}^{\infty}$ which satisfies (1.1) is called a solution of equation (1.1). For each values $B, B_{1} \in\left[L_{0}, \infty\right)$ there exists a unique solution $\{x(n)\}_{n=0}^{\infty}$ of equation (1.1) satisfying the initial conditions

$$
\begin{equation*}
x(0)=B, \quad x(1)=B_{1} . \tag{1.5}
\end{equation*}
$$

Then $\{x(n)\}_{n=0}^{\infty}$ is called a solution of problem (1.1), (1.5).
In [17] we have shown that equation (1.1) is a discretization of differential equations which generalize some models arising in hydrodynamics or in the nonlinear field theory, see [5], [6], [8], [12]. Increasing solutions of (1.1), (1.5) with $B=B_{1} \in\left(L_{0}, 0\right)$ have a fundamental role in these models. Therefore, in [17], we have described the set of all solutions of problem (1.1), (1.6), where

$$
\begin{equation*}
x(0)=B, \quad x(1)=B, \quad B \in\left(L_{0}, 0\right) . \tag{1.6}
\end{equation*}
$$

In this paper, using [17], we will prove that for each sufficiently small $h>0$ there exists at least one $B \in\left(L_{0}, 0\right)$ such that the corresponding solution of problem (1.1), (1.6) fulfils

$$
\begin{equation*}
x(0)=x(1), \quad \lim _{n \rightarrow \infty} x(n)>L, \quad\{x(n)\}_{n=1}^{\infty} \text { is increasing } . \tag{1.7}
\end{equation*}
$$

Note that an autonomous case of (1.1) was studied in [16]. We would like to point out that recently there has been a huge interest in studying the existence of monotonous and nontrivial solutions of nonlinear difference equations. For papers during last three years see for example [1], [2], [4], [9]-[11], [13]-[15], [19], [20]-[24]. A lot of other interesting references can be found therein.

2 Four types of solutions

Here we present some results of [17] which we need in next sections. In particular, we will use the following definitions and lemmas.

Definition 2.1 Let $\{x(n)\}_{n=0}^{\infty}$ be a solution of problem (1.1), (1.6) such that

$$
\begin{equation*}
\{x(n)\}_{n=1}^{\infty} \text { is increasing, } \quad \lim _{n \rightarrow \infty} x(n)=0 . \tag{2.1}
\end{equation*}
$$

Then $\{x(n)\}_{n=0}^{\infty}$ is called a damped solution.

Definition 2.2 Let $\{x(n)\}_{n=0}^{\infty}$ be a solution of problem (1.1), (1.6) which fulfils

$$
\begin{equation*}
\{x(n)\}_{n=1}^{\infty} \text { is increasing, } \quad \lim _{n \rightarrow \infty} x(n)=L . \tag{2.2}
\end{equation*}
$$

Then $\{x(n)\}_{n=0}^{\infty}$ is called a homoclinic solution.
Definition 2.3 Let $\{x(n)\}_{n=0}^{\infty}$ be a solution of problem (1.1), (1.6). Assume that there exists $b \in \mathbb{N}$, such that $\{x(n)\}_{n=1}^{b+1}$ is increasing and

$$
\begin{equation*}
x(b) \leq L<x(b+1) . \tag{2.3}
\end{equation*}
$$

Then $\{x(n)\}_{n=0}^{\infty}$ is called an escape solution.
Definition 2.4 Let $\{x(n)\}_{n=0}^{\infty}$ be a solution of problem (1.1), (1.6). Assume that there exists $b \in \mathbb{N}, b>1$, such that $\{x(n)\}_{n=1}^{b}$ is increasing and

$$
\begin{equation*}
0<x(b)<L, \quad x(b+1) \leq x(b) . \tag{2.4}
\end{equation*}
$$

Then $\{x(n)\}_{n=0}^{\infty}$ is called a non-monotonous solution.
Lemma 2.5 [17] (On four types of solutions)
Let $\{x(n)\}_{n=0}^{\infty}$ be a solution of problem (1.1), (1.6). Then $\{x(n)\}_{n=0}^{\infty}$ is just one of the following four types:
(I) $\{x(n)\}_{n=0}^{\infty}$ is an escape solution;
(II) $\{x(n)\}_{n=0}^{\infty}$ is a homoclinic solution;
(III) $\{x(n)\}_{n=0}^{\infty}$ is a damped solution;
(IV) $\{x(n)\}_{n=0}^{\infty}$ is a non-monotonous solution.

Lemma 2.6 [17] (Estimates of solutions)
Let $\{x(n)\}_{n=0}^{\infty}$ be a solution of problem (1.1), (1.6). Then there exists a maximal $b \in \mathbb{N} \cup\{\infty\}$ satisfying

$$
\begin{gather*}
x(n) \in[B, L) \quad \text { for } n=1, \ldots, b, \quad \text { if } b \in \mathbb{N}, \\
x(n) \in[B, L) \quad \text { for } n \in \mathbb{N}, \quad \text { if } b=\infty . \tag{2.5}
\end{gather*}
$$

Further, if $b>1$, then moreover

$$
\begin{gather*}
\{x(n)\}_{n=1}^{b} \quad \text { is increasing, } \tag{2.6}\\
\Delta x(n)<h \sqrt{\left(L-2 L_{0}\right) M_{0}}+h^{2} M_{0} \tag{2.7}
\end{gather*}
$$

for $n=1, \ldots, b-1$ if $b \in \mathbb{N}$, and for $n \in \mathbb{N}$ if $b=\infty$, where

$$
\begin{equation*}
M_{0}=\max \left\{|f(x)|: x \in\left[L_{0}, L\right]\right\} . \tag{2.8}
\end{equation*}
$$

In [17] we have proved that the set consisting of damped and non-monotonous solutions of problem (1.1), (1.6) is nonempty for each sufficiently small $h>0$. This is contained in the next lemma.

Lemma 2.7 [17] (On the existence of non-monotonous or damped solutions) Let $B \in(\bar{B}, 0)$, where \bar{B} is defined by (1.4). There exists $h_{B}>0$ such that if $h \in\left(0, h_{B}\right]$, then the corresponding solution $\{x(n)\}_{n=0}^{\infty}$ of problem (1.1), (1.6) is non-monotonous or damped.

In Section 4 of this paper we prove that also the set of escape solutions of problem (1.1), (1.6) is nonempty for each sufficiently small $h>0$. Note that in our next paper [18] we prove this assertion for the set of homoclinic solutions.

3 Properties of solutions

Now, we provide other properties of solutions important in the investigation of escape solutions.
Lemma 3.1 Let $\{x(n)\}_{n=0}^{\infty}$ be an escape solution of problem (1.1), (1.6). Then $\{x(n)\}_{n=1}^{\infty}$ is increasing.

Proof. Due to (1.1), $\{x(n)\}_{n=0}^{\infty}$ fulfils

$$
\begin{equation*}
\Delta x(n)=\left(\frac{n}{n+1}\right)^{2}\left(\Delta x(n-1)+h^{2} f(x(n))\right), \quad n \in \mathbb{N} \tag{3.1}
\end{equation*}
$$

According to Definition 2.3 there exists $b \in \mathbb{N}$, such that $\{x(n)\}_{n=1}^{b+1}$ is increasing and (2.3) holds. By (1.3) we get $f(x(b+1)) \geq 0$. Consequently, by (3.1) and (2.3), $\Delta x(b+1) \geq\left(\frac{b+1}{b+2}\right)^{2} \Delta x(b)>0$ and $f(x(b+2)) \geq 0$. Similarly $\Delta x(b+j) \geq$ $\left(\frac{b+j}{b+1+j}\right)^{2} \Delta x(b+j-1)$ and

$$
\begin{equation*}
\Delta x(b+j) \geq\left(\frac{b+1}{b+1+j}\right)^{2} \Delta x(b), \quad j \in \mathbb{N} \tag{3.2}
\end{equation*}
$$

This yields that $\{x(n)\}_{n=1}^{\infty}$ is increasing.
Lemma 3.2 Assume that $f(x)=0$ for $x>L$. Choose an arbitrary $\varrho>0$. Let $B_{1}, B_{2} \in\left(L_{0}, 0\right)$ and let $\{x(n)\}_{n=0}^{\infty}$ and $\{y(n)\}_{n=0}^{\infty}$ be a solution of problem (1.1), (1.6) with $B=B_{1}$ and $B=B_{2}$, respectively. Let K_{L} be the Lipschitz constant for f on $\left[L_{0}, L\right]$. Then

$$
\begin{align*}
|x(n)-y(n)| & \leq\left|B_{1}-B_{2}\right| \mathrm{e}^{\varrho^{2} K_{L}} \tag{3.3}\\
\left|\frac{\Delta x(n)-\Delta y(n)}{h}\right| & \leq\left|B_{1}-B_{2}\right| \varrho K_{L} \mathrm{e}^{\varrho^{2} K_{L}} \tag{3.4}
\end{align*}
$$

where $n \in \mathbb{N}, n \leq \frac{\varrho}{h}$.

Proof. By (3.1) we have

$$
\begin{equation*}
(j+1)^{2} \Delta x(j)-j^{2} \Delta x(j-1)=h^{2} j^{2} f(x(j)), \quad j \in \mathbb{N} . \tag{3.5}
\end{equation*}
$$

Summing it for $j=1, \ldots, k$, we get by (1.6),

$$
\begin{equation*}
\Delta x(k)=h^{2} \frac{1}{(k+1)^{2}} \sum_{j=1}^{k} j^{2} f(x(j)), \quad k \in \mathbb{N} . \tag{3.6}
\end{equation*}
$$

Summing it again for $k=1, \ldots, n-1$, we get

$$
x(n)=B_{1}+h^{2} \sum_{k=1}^{n-1} \frac{1}{(k+1)^{2}} \sum_{j=1}^{k} j^{2} f(x(j)), \quad n \in \mathbb{N},
$$

and similarly

$$
y(n)=B_{2}+h^{2} \sum_{k=1}^{n-1} \frac{1}{(k+1)^{2}} \sum_{j=1}^{k} j^{2} f(y(j)), \quad n \in \mathbb{N} .
$$

From this and by using summation by parts we easily obtain

$$
\begin{aligned}
\mid x(n)- & \left.y(n)\left|\leq\left|B_{1}-B_{2}\right|+h^{2} \sum_{k=1}^{n-1} \frac{1}{(k+1)^{2}} \sum_{j=1}^{k} j^{2}\right| f(x(j))-f(y(j)) \right\rvert\, \\
& \leq\left|B_{1}-B_{2}\right|+(n-1) h^{2} K_{L} \sum_{j=1}^{n-1}|x(j)-y(j)|, \quad n \in \mathbb{N} .
\end{aligned}
$$

By the discrete analogue of the Gronwall-Bellman inequality (see e.g. [7], Lemma 4.34), we get

$$
|x(n)-y(n)| \leq\left|B_{1}-B_{2}\right| e^{(n-1)^{2} h^{2} K_{L}} \quad \text { for } n \in \mathbb{N},
$$

which yields (3.3).
By (3.6) and (3.3) we have for $n \in \mathbb{N}, n \leq \frac{\varrho}{h}$,

$$
\begin{gathered}
\left|\frac{\Delta x(n)-\Delta y(n)}{h}\right| \leq h \frac{1}{(n+1)^{2}} \sum_{j=1}^{n} j^{2}|f(x(j))-f(y(j))| \\
\leq h K_{L} \sum_{j=1}^{n}|x(j)-y(j)| \leq\left|B_{1}-B_{2}\right| \varrho K_{L} \mathrm{e}^{\varrho^{2} K_{L}} .
\end{gathered}
$$

4 Existence of escape solutions

Lemma 4.1 Assume that $C \in\left(L_{0}, \bar{B}\right)$ and $\left\{B_{k}\right\}_{k=1}^{\infty} \subset\left(L_{0}, C\right)$. Let $\left\{x_{k}(n)\right\}_{n=0}^{\infty}$ be a solution of problem (1.1), (1.6) with $B=B_{k}, k \in \mathbb{N}$. For $k \in \mathbb{N}$ choose a maximal $b_{k} \in \mathbb{N} \cup\{\infty\}$ such that $x_{k}(n) \in\left[B_{k}, L\right)$ for $n=1, \ldots, b_{k}$ if b_{k} is finite, and for $n \in \mathbb{N}$ if $b_{k}=\infty$, and $\left\{x_{k}(n)\right\}_{n=1}^{b_{k}}$ is increasing if $b_{k}>1$. Then there exists $h^{*}>0$ such that for any $h \in\left(0, h^{*}\right]$, there exists a unique $\gamma_{k} \in \mathbb{N}, \gamma_{k}<b_{k}$, such that

$$
\begin{equation*}
x_{k}\left(\gamma_{k}\right) \geq C, \quad x_{k}\left(\gamma_{k}-1\right)<C . \tag{4.1}
\end{equation*}
$$

Moreover, if the sequence $\left\{\gamma_{k}\right\}_{k=1}^{\infty}$ is unbounded, then there exists $\ell \in \mathbb{N}$ such that the solution $\left\{x_{\ell}(n)\right\}_{n=0}^{\infty}$ of problem (1.1), (1.6) with $B=B_{\ell} \in\left(L_{0}, \bar{B}\right)$ is an escape solution.

Proof. Choose $h_{0}>0$ such that

$$
\begin{equation*}
h_{0} \sqrt{\left(L-2 L_{0}\right) M_{0}}+h_{0}^{2} M_{0}<|C| . \tag{4.2}
\end{equation*}
$$

For $k \in \mathbb{N}$ denote by $\left\{x_{k}(n)\right\}_{n=0}^{\infty}$ a solution of problem (1.1), (1.6) with $B=B_{k}$. The existence of b_{k} is guaranteed by Lemma 2.6. By Lemma 2.5, $\left\{x_{k}(n)\right\}_{n=0}^{\infty}$ is just one of the types (I)-(IV), and if $h \in\left(0, h_{0}\right]$, then the monotonicity of $\left\{x_{k}(n)\right\}_{n=0}^{b_{k}}$ yields a unique $\gamma_{k} \in \mathbb{N}, \gamma_{k}<b_{k}$, satisfying (4.1).

For $h \in\left(0, h_{0}\right)$, consider the sequence $\left\{\gamma_{k}\right\}_{k=1}^{\infty}$ and assume that it is unbounded. Then we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \gamma_{k}=\infty \tag{4.3}
\end{equation*}
$$

(Otherwise we take a subsequence.) Assume on the contrary that for any $k \in \mathbb{N}$, $\left\{x_{k}(n)\right\}_{n=0}^{\infty}$ is not an escape solution. Choose $k \in \mathbb{N}$. If $\left\{x_{k}(n)\right\}_{n=0}^{\infty}$ is damped, then by Definition 2.1, we have $b_{k}=\infty$ and

$$
\begin{equation*}
x_{k}\left(b_{k}\right):=\lim _{k \rightarrow \infty} x_{k}(n)=0, \quad \Delta x_{k}\left(b_{k}\right):=\lim _{k \rightarrow \infty} \Delta x_{k}(n)=0 . \tag{4.4}
\end{equation*}
$$

If $\left\{x_{k}(n)\right\}_{n=0}^{\infty}$ is homoclinic, then by Definition 2.2, we have $b_{k}=\infty$ and

$$
\begin{equation*}
x_{k}\left(b_{k}\right):=\lim _{k \rightarrow \infty} x_{k}(n)=L, \quad \Delta x_{k}\left(b_{k}\right):=\lim _{k \rightarrow \infty} \Delta x_{k}(n)=0 . \tag{4.5}
\end{equation*}
$$

If $\left\{x_{k}(n)\right\}_{n=0}^{\infty}$ is non-monotonous, then by Definition 2.4, we have $b_{k}<\infty$ and

$$
\begin{equation*}
x_{k}\left(b_{k}\right) \in(0, L), \quad \Delta x_{k}\left(b_{k}\right) \leq 0 \tag{4.6}
\end{equation*}
$$

To summarize if $\left\{x_{k}(n)\right\}_{n=0}^{\infty}$ is not an escape solution, then by (4.4), (4.5) and (4.6), we have

$$
\begin{equation*}
x_{k}\left(b_{k}\right) \in[0, L], \quad \Delta x_{k}\left(b_{k}\right) \leq 0 . \tag{4.7}
\end{equation*}
$$

Since $\Delta x_{k}(0)=0$, there exists $\bar{\gamma}_{k} \in \mathbb{N}$ satisfying

$$
\begin{equation*}
\gamma_{k} \leq \bar{\gamma}_{k}<b_{k}, \quad \Delta x_{k}\left(\bar{\gamma}_{k}\right)=\max \left\{\Delta x_{k}(j): \gamma_{k} \leq j \leq b_{k}-1\right\} . \tag{4.8}
\end{equation*}
$$

Consider (3.5) with $x=x_{k}$. By dividing it by j^{2}, multiplying such obtained equality by $x_{k}(j+1)-x_{k}(j-1)$ and summing in j from 1 to n we get

$$
\begin{align*}
& \left(\Delta x_{k}(n)\right)^{2}-h^{2} \sum_{j=1}^{n} f\left(x_{k}(j)\right)\left(x_{k}(j+1)-x_{k}(j-1)\right) \\
= & -\sum_{j=1}^{n} \frac{2 j+1}{j^{2}} \Delta x_{k}(j)\left(x_{k}(j+1)-x_{k}(j-1)\right), \quad n \in \mathbb{N} . \tag{4.9}
\end{align*}
$$

Denote

$$
\begin{equation*}
E_{k}(n+1)=\left(\Delta x_{k}(n)\right)^{2}-h^{2} \sum_{j=1}^{n} f\left(x_{k}(j)\right)\left(x_{k}(j+1)-x_{k}(j-1)\right) . \tag{4.10}
\end{equation*}
$$

Then we get

$$
\begin{equation*}
E_{k}(n+1)=-\sum_{j=1}^{n} \frac{2 j+1}{j^{2}} \Delta x_{k}(j)\left(x_{k}(j+1)-x_{k}(j-1)\right), \quad n \in \mathbb{N} . \tag{4.11}
\end{equation*}
$$

Let us put $n=\gamma_{k}-1$ and $n=b_{k}-1$ to (4.11) and subtract. By (4.7) and (4.8) we get

$$
\begin{align*}
E_{k}\left(\gamma_{k}\right)-E_{k}\left(b_{k}\right) & =\sum_{j=\gamma_{k}}^{b_{k}-1} \frac{2 j+1}{j^{2}} \Delta x_{k}(j)\left(x_{k}(j+1)-x_{k}(j-1)\right) \tag{4.12}\\
& \leq 2 \frac{2 \gamma_{k}+1}{\gamma_{k}^{2}} \Delta x_{k}\left(\bar{\gamma}_{k}\right)\left(L-L_{0}\right)
\end{align*}
$$

Let us put $n=\gamma_{k}-1$ and $n=b_{k}-1$ to (4.10) and subtract. We get

$$
\begin{gather*}
E_{k}\left(\gamma_{k}\right)-E_{k}\left(b_{k}\right)=\left(\Delta x_{k}\left(\gamma_{k}-1\right)\right)^{2}-\left(\Delta x_{k}\left(b_{k}-1\right)\right)^{2} \\
+2 h^{2} \sum_{j=\gamma_{k}}^{b_{k}-1} f\left(x_{k}(j)\right) \frac{x_{k}(j+1)-x_{k}(j-1)}{2} . \tag{4.13}
\end{gather*}
$$

Choose $\varepsilon>0$ and $h_{1}>0$ such that

$$
\begin{equation*}
\varepsilon<\frac{1}{2} \int_{C}^{L} f(z) \mathrm{d} z, \quad h_{1} M_{0}<\sqrt{\varepsilon} \tag{4.14}
\end{equation*}
$$

Let $b_{k}<\infty$. Then (4.6) holds. Since $\Delta x_{k}\left(b_{k}-1\right)>0, f\left(x_{k}\left(b_{k}\right)\right)<0$ and $\Delta x_{k}\left(b_{k}\right) \leq 0$, (3.1) yields

$$
\left(\frac{b_{k}+1}{b_{k}}\right)^{2}\left|\Delta x_{k}\left(b_{k}\right)\right|+\Delta x_{k}\left(b_{k}-1\right)=h^{2}\left|f\left(x_{k}\left(b_{k}\right)\right)\right|
$$

and hence

$$
\begin{equation*}
0<\Delta x_{k}\left(b_{k}-1\right) \leq-h^{2} f\left(x_{k}\left(b_{k}\right)\right)<h^{2} M_{0}<h \sqrt{\varepsilon} \quad \text { for } h \in\left(0, h_{1}\right] . \tag{4.15}
\end{equation*}
$$

Clearly, if $b_{k}=\infty$, then by (4.4) and (4.5), inequality (4.15) holds, as well. Having in mind (1.2) and (1.3), we deduce similarly as in the proof of Theorem 2.7 that there exists $\delta>0$ such that if

$$
\begin{equation*}
\frac{x_{k}(j+1)-x_{k}(j-1)}{2}<\delta, \quad j=\gamma_{k}, \ldots, b_{k}-1, \tag{4.16}
\end{equation*}
$$

then

$$
\begin{equation*}
\sum_{j=\gamma_{k}}^{b_{k}-1} f\left(x_{k}(j)\right) \frac{x_{k}(j+1)-x_{k}(j-1)}{2}>\int_{C}^{L} f(z) \mathrm{d} z-\varepsilon \tag{4.17}
\end{equation*}
$$

Let $h_{2}>0$ be such that

$$
\begin{equation*}
h_{2}\left(\sqrt{\left(L-2 L_{0}\right) M_{0}}+h_{2} M_{0}\right)<\delta \tag{4.18}
\end{equation*}
$$

If $h \in\left(0, h_{2}\right]$, then (2.7) implies (4.16) and hence (4.17) holds.
Now, let us put $h^{*}=\min \left\{h_{0}, h_{1}, h_{2}\right\}$ and choose $h \in\left(0, h^{*}\right]$. Then, (4.2), (4.14), (4.18), (4.13)-(4.17) yield

$$
\begin{gather*}
E_{k}\left(\gamma_{k}\right)-E_{k}\left(b_{k}\right)>-h^{2} \varepsilon+2 h^{2}\left(\int_{C}^{L} f(z) \mathrm{d} z-\varepsilon\right) \tag{4.19}\\
=2 h^{2}\left(\int_{C}^{L} f(z) \mathrm{d} z-\frac{3}{2} \varepsilon\right)>h^{2} \varepsilon>0 .
\end{gather*}
$$

Finally, (4.12) and (4.19) imply

$$
0<h^{2} \varepsilon<E_{k}\left(\gamma_{k}\right)-E_{k}\left(b_{k}\right) \leq 2 \frac{2 \gamma_{k}+1}{\gamma_{k}^{2}} \Delta x_{k}\left(\bar{\gamma}_{k}\right)\left(L-L_{0}\right)
$$

and

$$
\frac{h^{2} \varepsilon}{2\left(L-L_{0}\right)} \cdot \frac{\gamma_{k}^{2}}{2 \gamma_{k}+1}<\Delta x_{k}\left(\bar{\gamma}_{k}\right)
$$

Letting $k \rightarrow \infty$, we obtain by (4.3), that $\lim _{k \rightarrow \infty} \Delta x_{k}\left(\bar{\gamma}_{k}\right)=\infty$, contrary to (4.16). Therefore an escape solution $\left\{x_{\ell}(n)\right\}_{n=0}^{\infty}$ of problem (1.1), (1.6) with $B=B_{\ell} \in\left(L_{0}, \bar{B}\right)$ must exist.

Now, we are in a position to prove the next main result.
Theorem 4.2 (On the existence of escape solutions)
There exists $h^{*}>0$ such that for any $h \in\left(0, h^{*}\right]$ there exists an escape solution $\left\{x_{\ell}(n)\right\}_{n=0}^{\infty}$ of problem (1.1), (1.6) for some $B=B_{\ell} \in\left(L_{0}, \bar{B}\right)$.

Proof. Choose $h>0 C \in\left(L_{0}, \bar{B}\right)$ and let K_{L} be the Lipschitz constant for f on $\left[L_{0}, L\right]$. Consider a sequence $\left\{B_{k}\right\}_{k=1}^{\infty} \subset\left(L_{0}, C\right)$ such that $\lim _{k \rightarrow \infty} B_{k}=L_{0}$. Then, for each $m \in \mathbb{N}$ there exists $k_{m} \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|B_{k_{m}}-L_{0}\right|<e^{-m^{2} K_{L}}\left(C-L_{0}\right) \tag{4.20}
\end{equation*}
$$

Let $x_{0}(0)=x_{0}(n)=L_{0}$ for $n \in \mathbb{N}$. Then the sequence $\left\{x_{0}(n)\right\}_{n=0}^{\infty}$ is the unique solution of problem (1.1), (1.6) with $B=L_{0}$. Let $\left\{x_{k}(n)\right\}_{n=0}^{\infty}$ be a solution of problem (1.1), (1.6) with $B=B_{k}, k \in \mathbb{N}$, and let $\left\{\gamma_{k}\right\}_{k=1}^{\infty}$ be the sequence of Lemma 4.1. Then it suffices to prove that $\left\{\gamma_{k}\right\}_{k=1}^{\infty}$ is unbounded. According to Lemma 3.2, for each $m \in \mathbb{N}$,

$$
\begin{equation*}
\left|x_{k_{m}}(n)-x_{0}(n)\right| \leq\left|B_{k_{m}}-L_{0}\right| e^{m^{2} K_{L}}, \quad n \leq \frac{m}{h} . \tag{4.21}
\end{equation*}
$$

Consequently, (4.20) and (4.21) give

$$
\left|x_{k_{m}}(n)-x_{0}(n)\right| \leq C-L_{0}, \quad n \leq \frac{m}{h}
$$

and hence

$$
x_{k_{m}}(n) \leq C, \quad n \leq \frac{m}{h}
$$

Therefore

$$
\gamma_{k_{m}}(n) \geq \frac{m}{h}, \quad m \in \mathbb{N}
$$

which yields that $\left\{\gamma_{k}\right\}_{k=1}^{\infty}$ is unbounded. Hence the assertion follows from Lemma 4.1.

Acknowledgments

The paper was supported by the Council of Czech Government MSM 6198959214.
The authors thank the referees for valuable comments.

References

[1] A. M. Amleh, E. Camouzis, G. Ladas. On second-order rational difference equations. J. Difference Equ. Appl. 13 (2007), 969-1004.
[2] K. Berenhaut, S. Stević. The difference equation $x_{n+1}=\alpha+$ $x_{n-k} /\left(\sum_{i=0}^{k-1} c_{i} x_{n-i}\right)$ has solutions converging to zero. J. Math. Anal. Appl. 326 (2007), 1466-1471.
[3] H. Berestycki, P. L. Lions, L. A. Peletier. An ODE approach to the existence of positive solutions for semilinear problems in \mathbb{R}^{N}. Indiana University Mathematics Journal 30, 1 (1981), 141-157.
[4] L. Berg. On the asymptotics of difference equation $x_{n-3}=x_{n}\left(1+x_{n-1} x_{n-2}\right)$. J. Difference Equ. Appl. 14 (1) (2008), 105-108.
[5] G. H. Derrick. Comments on nonlinear wave equations as models for elementary particles. J. Math. Physics 5 (1965), 1252-1254.
[6] F. Dell'Isola, H. Gouin, G. Rotoli. Nucleation of spherical shell-like interfaces by second gradient theory: numerical simulations. Eur. J. Mech B/Fluids 15 (1996), 545-568.
[7] S. N. Elaydi. An Introduction to Difference Equations. 2nd ed. Springer, New York 1999.
[8] H. Gouin, G. Rotoli. An analytical approximation of density profile and surface tension of microscopic bubbles for Van der Waals fluids. Mech. Research Communic. 24 (1997), 255-260.
[9] L. Gutnik, S. Stević. On the behaviour of the solutions of a second order difference equation. Discrete Dyn. Nat. Soc. Vol. 2007, Article ID 27562, (2007), 14 pages.
[10] L. X. Hu, W. T. Li, S. Stević. Global asymptotic stability of a second order rational difference equation. J. Difference Equ. Appl. 14 (2008), 779797.
[11] B. Iričanin, S. Stević. Eventually constant solutions of a rational difference equation. Appl. Math. Comput. 215 (2009), 854-856.
[12] G. Kitzhofer, O. Коch, P. Lima, E. Weinmüller. Efficient numerical solution of the density profile equation in hydrodynamics. J. Sci. Comput. 32 (2007), 411-424.
[13] I. Rachưnková, L. Rachưnek. Singular discrete problem arising in the theory of shallow membrane caps. J. Difference Equ. Appl. 14 (2008), 747767.
[14] I. Rachůnková, L. Rachůnek. Singular discrete and continuous mixed boundary value problems. Math. Comp. Modelling 49 (2009), 413-422.
[15] L. Rachůnek, I. Rachưnková. Approximation of differential problems with singularities and time discontinuities. Nonlinear Analysis, TMA. 71 (2009), e1448-e1460.
[16] L. RachŮnek, I. RachŮnková. On a homoclinic point of some autonomous second-order difference equation. J. Difference Equ. Appl. (2009), DOI: 10.1080/10236190903257834.
[17] L. RachŮNEK. On four types of solutions. Submitted. http://phoenix.inf.upol.cz/~rachunekl/mathair/rr7.pdf
[18] L. RachŮNek, I. RachŮNková. Homoclinic solutions of non-autonomous difference equations arising in hydrodynamics. In preparation.
[19] B. D. Rouhani, H. Khatibzadeh. A note on the asymptotic behavior of solutions to a second order difference equation. J. Difference Equ. Appl. 14 (2008), 429-432.
[20] S. Stević. Asymptotics of some classes of higher order difference equations. Discrete Dyn. Nat. Soc. Vol. 2007, Article ID 56813, (2007), 20 pages.
[21] S. Stević. Asymptotic periodicity of a higher order difference equation. Discrete Dyn. Nat. Soc. Vol. 2007, Article ID 13737, (2007), 9 pages.
[22] S. Stević. Existence of nontrivial solutions of a rational difference equation. Appl. Math. Lett. 20 (2007), 28-31.
[23] S. Stević. Nontrivial solutions of a higher-order rational difference equation. Mat. Zametki 84 (5) (2008), 772-780.
[24] T. Sun, H. Xi. Existence of monotone solutions of a difference equation. Discrete Dyn. Nat. Soc. Vol. 2008, Article ID 917560, (2008), 8 pages.

