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Abstract. The paper provides conditions sufficient for the existence of strictly
increasing solutions of the second-order non-autonomous difference equation

x(n+ 1) = x(n) +
(

n

n+ 1

)2 (
x(n)− x(n− 1) + h2f(x(n))

)
, n ∈ N,

where h > 0 is a parameter and f is Lipschitz continuous and has three real zeros
L0 < 0 < L.

In particular we prove that for each sufficiently small h > 0 there exists
a solution {x(n)}∞n=0 such that {x(n)}∞n=1 is increasing, x(0) = x(1) ∈ (L0, 0)
and limn→∞ x(n) > L. The problem is motivated by some models arising in
hydrodynamics.
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1 Formulation of problem

We will investigate the following second-order non-autonomous difference equa-
tion

x(n+ 1) = x(n) +
(

n

n+ 1

)2 (
x(n)− x(n− 1) + h2f(x(n))

)
, n ∈ N, (1.1)

where f is supposed to fulfil

L0 < 0 < L, f ∈ Liploc [L0,∞), f(L0) = f(0) = f(L) = 0, (1.2)

xf(x) < 0 for x ∈ (L0, L) \ {0}, f(x) ≥ 0 for x ∈ (L,∞), (1.3)
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∃B̄ ∈ (L0, 0) such that
∫ L

B̄
f(z) dz = 0. (1.4)

Let us note that f ∈ Liploc [L0,∞) means that for each [L0, A] ⊂ [L0,∞) there
exists KA > 0 such that |f(x)− f(y)| ≤ KA|x− y| for all x, y ∈ [L0, A]. A simple
example of a function f satisfying (1.2)–(1.4) is f(x) = c(x−L0)x(x−L), where
c is a positive constant.

A sequence {x(n)}∞n=0 which satisfies (1.1) is called a solution of equation
(1.1). For each values B,B1 ∈ [L0,∞) there exists a unique solution {x(n)}∞n=0

of equation (1.1) satisfying the initial conditions

x(0) = B, x(1) = B1. (1.5)

Then {x(n)}∞n=0 is called a solution of problem (1.1), (1.5).
In [17] we have shown that equation (1.1) is a discretization of differential

equations which generalize some models arising in hydrodynamics or in the non-
linear field theory, see [5], [6], [8], [12]. Increasing solutions of (1.1), (1.5) with
B = B1 ∈ (L0, 0) have a fundamental role in these models. Therefore, in [17], we
have described the set of all solutions of problem (1.1), (1.6), where

x(0) = B, x(1) = B, B ∈ (L0, 0). (1.6)

In this paper, using [17], we will prove that for each sufficiently small h > 0 there
exists at least one B ∈ (L0, 0) such that the corresponding solution of problem
(1.1), (1.6) fulfils

x(0) = x(1), lim
n→∞

x(n) > L, {x(n)}∞n=1 is increasing. (1.7)

Note that an autonomous case of (1.1) was studied in [16]. We would like to
point out that recently there has been a huge interest in studying the existence
of monotonous and nontrivial solutions of nonlinear difference equations. For
papers during last three years see for example [1], [2], [4], [9]–[11], [13]–[15], [19],
[20]–[24]. A lot of other interesting references can be found therein.

2 Four types of solutions

Here we present some results of [17] which we need in next sections. In particular,
we will use the following definitions and lemmas.

Definition 2.1 Let {x(n)}∞n=0 be a solution of problem (1.1), (1.6) such that

{x(n)}∞n=1 is increasing, lim
n→∞

x(n) = 0. (2.1)

Then {x(n)}∞n=0 is called a damped solution.
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Definition 2.2 Let {x(n)}∞n=0 be a solution of problem (1.1), (1.6) which fulfils

{x(n)}∞n=1 is increasing, lim
n→∞

x(n) = L. (2.2)

Then {x(n)}∞n=0 is called a homoclinic solution.

Definition 2.3 Let {x(n)}∞n=0 be a solution of problem (1.1), (1.6). Assume that
there exists b ∈ N, such that {x(n)}b+1

n=1 is increasing and

x(b) ≤ L < x(b+ 1). (2.3)

Then {x(n)}∞n=0 is called an escape solution.

Definition 2.4 Let {x(n)}∞n=0 be a solution of problem (1.1), (1.6). Assume that
there exists b ∈ N, b > 1, such that {x(n)}bn=1 is increasing and

0 < x(b) < L, x(b+ 1) ≤ x(b). (2.4)

Then {x(n)}∞n=0 is called a non-monotonous solution.

Lemma 2.5 [17] (On four types of solutions)
Let {x(n)}∞n=0 be a solution of problem (1.1), (1.6). Then {x(n)}∞n=0 is just one
of the following four types:

(I) {x(n)}∞n=0 is an escape solution;

(II) {x(n)}∞n=0 is a homoclinic solution;

(III) {x(n)}∞n=0 is a damped solution;

(IV) {x(n)}∞n=0 is a non-monotonous solution.

Lemma 2.6 [17] (Estimates of solutions)
Let {x(n)}∞n=0 be a solution of problem (1.1), (1.6). Then there exists a maximal
b ∈ N ∪ {∞} satisfying

x(n) ∈ [B,L) for n = 1, . . . , b, if b ∈ N,
x(n) ∈ [B,L) for n ∈ N, if b =∞.

(2.5)

Further, if b > 1, then moreover

{x(n)}bn=1 is increasing, (2.6)

∆x(n) < h
√

(L− 2L0)M0 + h2M0 (2.7)

for n = 1, . . . , b− 1 if b ∈ N, and for n ∈ N if b =∞, where

M0 = max{|f(x)|: x ∈ [L0, L]}. (2.8)

3



In [17] we have proved that the set consisting of damped and non-monotonous
solutions of problem (1.1), (1.6) is nonempty for each sufficiently small h > 0.
This is contained in the next lemma.

Lemma 2.7 [17] (On the existence of non-monotonous or damped solutions)
Let B ∈ (B̄, 0), where B̄ is defined by (1.4). There exists hB > 0 such that if
h ∈ (0, hB], then the corresponding solution {x(n)}∞n=0 of problem (1.1), (1.6) is
non-monotonous or damped.

In Section 4 of this paper we prove that also the set of escape solutions of
problem (1.1), (1.6) is nonempty for each sufficiently small h > 0. Note that in
our next paper [18] we prove this assertion for the set of homoclinic solutions.

3 Properties of solutions

Now, we provide other properties of solutions important in the investigation of
escape solutions.

Lemma 3.1 Let {x(n)}∞n=0 be an escape solution of problem (1.1), (1.6). Then
{x(n)}∞n=1 is increasing.

Proof. Due to (1.1), {x(n)}∞n=0 fulfils

∆x(n) =
(

n

n+ 1

)2 (
∆x(n− 1) + h2f(x(n))

)
, n ∈ N. (3.1)

According to Definition 2.3 there exists b ∈ N, such that {x(n)}b+1
n=1 is increasing

and (2.3) holds. By (1.3) we get f(x(b + 1)) ≥ 0. Consequently, by (3.1) and

(2.3), ∆x(b+ 1) ≥
(
b+1
b+2

)2
∆x(b) > 0 and f(x(b+ 2)) ≥ 0. Similarly ∆x(b+ j) ≥(

b+j
b+1+j

)2
∆x(b+ j − 1) and

∆x(b+ j) ≥
(

b+ 1

b+ 1 + j

)2

∆x(b), j ∈ N. (3.2)

This yields that {x(n)}∞n=1 is increasing. �

Lemma 3.2 Assume that f(x) = 0 for x > L. Choose an arbitrary % > 0. Let
B1, B2 ∈ (L0, 0) and let {x(n)}∞n=0 and {y(n)}∞n=0 be a solution of problem (1.1),
(1.6) with B = B1 and B = B2, respectively. Let KL be the Lipschitz constant
for f on [L0, L]. Then

|x(n)− y(n)| ≤ |B1 −B2|e%
2KL , (3.3)∣∣∣∣∣∆x(n)−∆y(n)

h

∣∣∣∣∣ ≤ |B1 −B2|%KL e%
2KL , (3.4)

where n ∈ N, n ≤ %
h

.
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Proof. By (3.1) we have

(j + 1)2∆x(j)− j2∆x(j − 1) = h2j2f(x(j)), j ∈ N. (3.5)

Summing it for j = 1, . . . , k, we get by (1.6),

∆x(k) = h2 1

(k + 1)2

k∑
j=1

j2f(x(j)), k ∈ N. (3.6)

Summing it again for k = 1, . . . , n− 1, we get

x(n) = B1 + h2
n−1∑
k=1

1

(k + 1)2

k∑
j=1

j2f(x(j)), n ∈ N,

and similarly

y(n) = B2 + h2
n−1∑
k=1

1

(k + 1)2

k∑
j=1

j2f(y(j)), n ∈ N.

From this and by using summation by parts we easily obtain

|x(n)− y(n)| ≤ |B1 −B2|+ h2
n−1∑
k=1

1

(k + 1)2

k∑
j=1

j2|f(x(j))− f(y(j))|

≤ |B1 −B2|+ (n− 1)h2KL

n−1∑
j=1

|x(j)− y(j)|, n ∈ N.

By the discrete analogue of the Gronwall-Bellman inequality (see e.g. [7], Lemma
4.34), we get

|x(n)− y(n)| ≤ |B1 −B2|e(n−1)2h2KL for n ∈ N,

which yields (3.3).
By (3.6) and (3.3) we have for n ∈ N, n ≤ %

h
,∣∣∣∣∣∆x(n)−∆y(n)

h

∣∣∣∣∣ ≤ h
1

(n+ 1)2

n∑
j=1

j2|f(x(j))− f(y(j))|

≤ hKL

n∑
j=1

|x(j)− y(j)| ≤ |B1 −B2|%KL e%
2KL .

�
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4 Existence of escape solutions

Lemma 4.1 Assume that C ∈ (L0, B̄) and {Bk}∞k=1 ⊂ (L0, C). Let {xk(n)}∞n=0

be a solution of problem (1.1), (1.6) with B = Bk, k ∈ N. For k ∈ N choose a
maximal bk ∈ N ∪ {∞} such that xk(n) ∈ [Bk, L) for n = 1, . . . , bk if bk is finite,
and for n ∈ N if bk = ∞, and {xk(n)}bkn=1 is increasing if bk > 1. Then there
exists h∗ > 0 such that for any h ∈ (0, h∗], there exists a unique γk ∈ N, γk < bk,
such that

xk(γk) ≥ C, xk(γk − 1) < C. (4.1)

Moreover, if the sequence {γk}∞k=1 is unbounded, then there exists ` ∈ N such
that the solution {x`(n)}∞n=0 of problem (1.1), (1.6) with B = B` ∈ (L0, B̄) is an
escape solution.

Proof. Choose h0 > 0 such that

h0

√
(L− 2L0)M0 + h2

0M0 < |C|. (4.2)

For k ∈ N denote by {xk(n)}∞n=0 a solution of problem (1.1), (1.6) with B = Bk.
The existence of bk is guaranteed by Lemma 2.6. By Lemma 2.5, {xk(n)}∞n=0

is just one of the types (I)–(IV), and if h ∈ (0, h0], then the monotonicity of
{xk(n)}bkn=0 yields a unique γk ∈ N, γk < bk, satisfying (4.1).

For h ∈ (0, h0), consider the sequence {γk}∞k=1 and assume that it is un-
bounded. Then we have

lim
k→∞

γk =∞. (4.3)

(Otherwise we take a subsequence.) Assume on the contrary that for any k ∈ N,
{xk(n)}∞n=0 is not an escape solution. Choose k ∈ N. If {xk(n)}∞n=0 is damped,
then by Definition 2.1, we have bk =∞ and

xk(bk) := lim
k→∞

xk(n) = 0, ∆xk(bk) := lim
k→∞

∆xk(n) = 0. (4.4)

If {xk(n)}∞n=0 is homoclinic, then by Definition 2.2, we have bk =∞ and

xk(bk) := lim
k→∞

xk(n) = L, ∆xk(bk) := lim
k→∞

∆xk(n) = 0. (4.5)

If {xk(n)}∞n=0 is non-monotonous, then by Definition 2.4, we have bk <∞ and

xk(bk) ∈ (0, L), ∆xk(bk) ≤ 0. (4.6)

To summarize if {xk(n)}∞n=0 is not an escape solution, then by (4.4), (4.5) and
(4.6), we have

xk(bk) ∈ [0, L], ∆xk(bk) ≤ 0. (4.7)

Since ∆xk(0) = 0, there exists γ̄k ∈ N satisfying

γk ≤ γ̄k < bk, ∆xk(γ̄k) = max{∆xk(j): γk ≤ j ≤ bk − 1}. (4.8)
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Consider (3.5) with x = xk. By dividing it by j2, multiplying such obtained
equality by xk(j + 1)− xk(j − 1) and summing in j from 1 to n we get

(∆xk(n))2 − h2
n∑
j=1

f(xk(j))(xk(j + 1)− xk(j − 1))

= −
n∑
j=1

2j + 1

j2
∆xk(j)(xk(j + 1)− xk(j − 1)), n ∈ N.

(4.9)

Denote

Ek(n+ 1) = (∆xk(n))2 − h2
n∑
j=1

f(xk(j))(xk(j + 1)− xk(j − 1)). (4.10)

Then we get

Ek(n+ 1) = −
n∑
j=1

2j + 1

j2
∆xk(j)(xk(j + 1)− xk(j − 1)), n ∈ N. (4.11)

Let us put n = γk − 1 and n = bk − 1 to (4.11) and subtract. By (4.7) and (4.8)
we get

Ek(γk)− Ek(bk) =
bk−1∑
j=γk

2j + 1

j2
∆xk(j)(xk(j + 1)− xk(j − 1))

≤ 2
2γk + 1

γ2
k

∆xk(γ̄k)(L− L0).

(4.12)

Let us put n = γk − 1 and n = bk − 1 to (4.10) and subtract. We get

Ek(γk)− Ek(bk) = (∆xk(γk − 1))2 − (∆xk(bk − 1))2

+2h2
bk−1∑
j=γk

f(xk(j))
xk(j + 1)− xk(j − 1)

2
.

(4.13)

Choose ε > 0 and h1 > 0 such that

ε <
1

2

∫ L

C
f(z) dz, h1M0 <

√
ε. (4.14)

Let bk < ∞. Then (4.6) holds. Since ∆xk(bk − 1) > 0, f(xk(bk)) < 0 and
∆xk(bk) ≤ 0, (3.1) yields(

bk + 1

bk

)2

|∆xk(bk)|+ ∆xk(bk − 1) = h2|f(xk(bk))|,

and hence

0 < ∆xk(bk − 1) ≤ −h2f(xk(bk)) < h2M0 < h
√
ε for h ∈ (0, h1]. (4.15)
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Clearly, if bk = ∞, then by (4.4) and (4.5), inequality (4.15) holds, as well.
Having in mind (1.2) and (1.3), we deduce similarly as in the proof of Theorem
2.7 that there exists δ > 0 such that if

xk(j + 1)− xk(j − 1)

2
< δ, j = γk, . . . , bk − 1, (4.16)

then
bk−1∑
j=γk

f(xk(j))
xk(j + 1)− xk(j − 1)

2
>
∫ L

C
f(z) dz − ε. (4.17)

Let h2 > 0 be such that

h2

(√
(L− 2L0)M0 + h2M0

)
< δ. (4.18)

If h ∈ (0, h2], then (2.7) implies (4.16) and hence (4.17) holds.
Now, let us put h∗ = min{h0, h1, h2} and choose h ∈ (0, h∗]. Then, (4.2),

(4.14), (4.18), (4.13)–(4.17) yield

Ek(γk)− Ek(bk) > −h2ε+ 2h2

(∫ L

C
f(z) dz − ε

)

= 2h2

(∫ L

C
f(z) dz − 3

2
ε

)
> h2ε > 0.

(4.19)

Finally, (4.12) and (4.19) imply

0 < h2ε < Ek(γk)− Ek(bk) ≤ 2
2γk + 1

γ2
k

∆xk(γ̄k)(L− L0),

and
h2ε

2(L− L0)
· γ2

k

2γk + 1
< ∆xk(γ̄k).

Letting k → ∞, we obtain by (4.3), that limk→∞∆xk(γ̄k) = ∞, contrary to
(4.16). Therefore an escape solution {x`(n)}∞n=0 of problem (1.1), (1.6) with
B = B` ∈ (L0, B̄) must exist. �

Now, we are in a position to prove the next main result.

Theorem 4.2 (On the existence of escape solutions)
There exists h∗ > 0 such that for any h ∈ (0, h∗] there exists an escape solution
{x`(n)}∞n=0 of problem (1.1), (1.6) for some B = B` ∈ (L0, B̄).

Proof. Choose h > 0 C ∈ (L0, B̄) and let KL be the Lipschitz constant for f
on [L0, L]. Consider a sequence {Bk}∞k=1 ⊂ (L0, C) such that limk→∞Bk = L0.
Then, for each m ∈ N there exists km ∈ N such that

|Bkm − L0| < e−m
2KL(C − L0). (4.20)
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Let x0(0) = x0(n) = L0 for n ∈ N. Then the sequence {x0(n)}∞n=0 is the unique
solution of problem (1.1), (1.6) with B = L0. Let {xk(n)}∞n=0 be a solution of
problem (1.1), (1.6) with B = Bk, k ∈ N, and let {γk}∞k=1 be the sequence of
Lemma 4.1. Then it suffices to prove that {γk}∞k=1 is unbounded. According to
Lemma 3.2, for each m ∈ N,

|xkm(n)− x0(n)| ≤ |Bkm − L0|em
2KL , n ≤ m

h
. (4.21)

Consequently, (4.20) and (4.21) give

|xkm(n)− x0(n)| ≤ C − L0, n ≤ m

h
,

and hence
xkm(n) ≤ C, n ≤ m

h
.

Therefore
γkm(n) ≥ m

h
, m ∈ N,

which yields that {γk}∞k=1 is unbounded. Hence the assertion follows from Lemma
4.1. �
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[10] L. X. Hu, W. T. Li, S. Stević. Global asymptotic stability of a second
order rational difference equation. J. Difference Equ. Appl. 14 (2008), 779–
797.
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[13] I. Rach̊unková, L. Rach̊unek. Singular discrete problem arising in the
theory of shallow membrane caps. J. Difference Equ. Appl. 14 (2008), 747–
767.
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