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Abstract. The paper provides conditions sufficient for the existence of strictly
increasing solutions of the second-order non-autonomous difference equation

n
n+1

z(n+1) =z(n) + ( )2 (:c(n) —z(n—1)+ h2f(x(n))), neN,

where h > 0 is a parameter and f is Lipschitz continuous and has three real zeros
Lo<0< L.

In particular we prove that for each sufficiently small A > 0 there exists
a solution {z(n)}>°, such that {z(n)}>2, is increasing, z(0) = z(1) € (Lo,0)
and lim, .., z(n) > L. The problem is motivated by some models arising in
hydrodynamics.
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1 Formulation of problem

We will investigate the following second-order non-autonomous difference equa-
tion

n
n—+1

z(n+1)=xz(n)+ < )2 (x(n) —z(n—1)+ hzf(x(n))), neN, (1.1)

where f is supposed to fulfil
LO <0< L7 f € Liploc [L07 OO>7 f(LO) - f(0> - f(L) - 07 (12)

zf(x) <0 forz € (Lo, L)\ {0}, f(x)>0forze (L, 0), (1.3)
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3B € (Ly,0) such that /BL f(z)dz =0. (1.4)

Let us note that f € Lip,,.[Lo, o0) means that for each [Lg, A] C [Lg, o) there
exists K4 > 0 such that |f(z) — f(y)| < Ka|x —y| for all z,y € [Lo, A]. A simple
example of a function f satisfying (1.2)-(1.4) is f(z) = c(x — Lo)x(x — L), where
c is a positive constant.

A sequence {x(n)}>2, which satisfies (1.1) is called a solution of equation
(1.1). For each values B, By € [Lg,o0) there exists a unique solution {z(n)}2,
of equation (1.1) satisfying the initial conditions

2(0) =B, z(1) = B,. (1.5)

Then {z(n)}5°, is called a solution of problem (1.1), (1.5).

In [17] we have shown that equation (1.1) is a discretization of differential
equations which generalize some models arising in hydrodynamics or in the non-
linear field theory, see [5], [6], [8], [12]. Increasing solutions of (1.1), (1.5) with
B = By € (Ly,0) have a fundamental role in these models. Therefore, in [17], we
have described the set of all solutions of problem (1.1), (1.6), where

2(0) =B, z(1)=B, B e (L,0). (1.6)

In this paper, using [17], we will prove that for each sufficiently small » > 0 there
exists at least one B € (Lg,0) such that the corresponding solution of problem
(1.1), (1.6) fulfils

z(0) =2(1), lim x(n) > L, {z(n)};2, is increasing. (1.7)

n—o0

Note that an autonomous case of (1.1) was studied in [16]. We would like to
point out that recently there has been a huge interest in studying the existence
of monotonous and nontrivial solutions of nonlinear difference equations. For
papers during last three years see for example [1], [2], [4], [9]-[11], [13]-[15], [19],
[20]-[24]. A lot of other interesting references can be found therein.

2 Four types of solutions

Here we present some results of [17] which we need in next sections. In particular,
we will use the following definitions and lemmas.

Definition 2.1 Let {z(n)}22, be a solution of problem (1.1), (1.6) such that
{z(n)}s2, is increasing, giing z(n) = 0. (2.1)

Then {z(n)}5°, is called a damped solution.



Definition 2.2 Let {z(n)}>2, be a solution of problem (1.1), (1.6) which fulfils

{z(n)}>2 is increasing, lim x(n) = L. (2.2)

Then {z(n)}52, is called a homoclinic solution.

Definition 2.3 Let {x(n)}2, be a solution of problem (1.1), (1.6). Assume that
there exists b € N, such that {z(n)}2} is increasing and

z(b) < L <z(b+1). (2.3)
Then {z(n)}5°, is called an escape solution.

Definition 2.4 Let {z(n)}32, be a Solution of problem (1.1), (1.6). Assume that
there exists b € N, b > 1, Such that {z(n)}5_, is increasing and

0<z(b) <L, zb+1)<zb). (2.4)
Then {z(n)}5°, is called a non-monotonous solution.

Lemma 2.5 [17] (On four types of solutions)
Let {x(n)}>2, be a solution of problem (1.1), (1.6). Then {z(n)}>, is just one
of the following four types:

(I) {z(n)}2, is an escape solution;
(1) {z(n)
(III)  {z(n)}>2, is a damped solution;
(V) {z(n)
Lemma 2.6 [17] (Estimates of solutions)

Let {z(n)}2, be a solution of problem (1.1), (1.6). Then there exists a mazimal
b e NU{oo} satisfying

n)}ee, is a homoclinic solution;

n)}, is a non-monotonous solution.

z(n) € [B,L) form=1,...,b, ifbeN,

. (2.5)
xz(n) € [B,L) formeN, ifb=o0
Further, if b > 1, then moreover
{x(n)}2_, is increasing, (2.6)

Ax(n) < hy/(L —2Lo) My + h* M, (2.7)

forn=1,...;b—14fbeN, and forn € N if b = oo, where

My = max{|f(x)|: € [Lo, L]} (2.8)



In [17] we have proved that the set consisting of damped and non-monotonous
solutions of problem (1.1), (1.6) is nonempty for each sufficiently small A > 0.
This is contained in the next lemma.

Lemma 2.7 [17] (On the existence of non-monotonous or damped solutions)
Let B € (B,0), where B is defined by (1.4). There exists hg > 0 such that if
h € (0,hg|, then the corresponding solution {x(n)}>, of problem (1.1), (1.6) is
non-monotonous or damped.

In Section 4 of this paper we prove that also the set of escape solutions of
problem (1.1), (1.6) is nonempty for each sufficiently small A~ > 0. Note that in
our next paper [18] we prove this assertion for the set of homoclinic solutions.

3 Properties of solutions

Now, we provide other properties of solutions important in the investigation of
escape solutions.

Lemma 3.1 Let {x(n)}>, be an escape solution of problem (1.1), (1.6). Then

{z(n)}>2, is increasing.

Proof. Due to (1.1), {z(n)}2, fulfils

Ax(n) = (n Z 1>2 (Am(n —-1)+ hzf(x(n))), n € N. (3.1)

According to Definition 2.3 there exists b € N, such that {z(n)}2} is increasing

and (2.3) holds. By (1.3) we get f(z(b+ 1)) > 0. Consequently, by (3.1) and
b
(2.3), Az(b+1) > (53) Ax(b) > 0 and f(x(b+2)) > 0. Similarly Az(b+ j) >

: b+2
(biﬁ]) Az(b+j —1) and
b+1 \°
Ax(b+j) > | ——— | Az(b e N. 2
o049 > (i) Aa). e 32
This yields that {z(n)}5°, is increasing. O

Lemma 3.2 Assume that f(x) = 0 for x > L. Choose an arbitrary ¢ > 0. Let
By, By € (Lo, 0) and let {x(n)}5, and {y(n)}, be a solution of problem (1.1),
(1.6) with B = By and B = By, respectively. Let Ky, be the Lipschitz constant
for f on [Lo, L]. Then

[w(n) —y(n)| < |By = Bafe? "t (3.3)

|Ax(n) — Ay(n)

. < |By — By|oKp e” Kt (3.4)

where n € N, n < %.



Proof. By (3.1) we have

(7 + 1D)*Ax(j) — j*Ax(j — 1) = 1*j*f(2(5)), jEN. (3.5)

Summing it for j = 1,...,k, we get by (1.6),

Aa(k) = h gy j 7 ij?f(xg)), ke (3.6)
Summing it again for k =1,...,n — 1, we get
=N LN -
o) = B R S G ), el
and similarly
,ml LA _
y(n) =By +h kZ::l G jZ::lJ fw(), neN

From this and by using summation by parts we easily obtain

o) = y)| 1By~ Bl 412 Y- o 3 IS )) ~ F)
<[Bi— Bl + (n— VWKL Y. o) — y(i)l. neEN.

By the discrete analogue of the Gronwall-Bellman inequality (see e.g. [7], Lemma
4.34), we get

lz(n) — y(n)| < | By — Bo|e™ V"KL for p € N,

which yields (3.3).
By (3.6) and (3.3) we have for n € N, n < 2,

LSS 2150 - )

<h
T (n+1)? j=1

‘Am(n) — Ay(n)
I

< hK Y |2(j) — y(j)| < |Bi — BaloKy e e

i=1



4 Existence of escape solutions

Lemma 4.1 Assume that C € (Lo, B) and {By}2, C (Lo,C). Let {xx(n)}r2,
be a solution of problem (1.1), (1.6) with B = By, k € N. For k € N choose a
mazximal by, € NU{oo} such that xy(n) € [By, L) forn =1,..., by if by is finite,
and for n € N if by = oo, and {xp(n)}2e, is increasing if b, > 1. Then there
exists h* > 0 such that for any h € (0, h*], there exists a unique v, € N, v, < by,
such that

zp(ye) > C, zp(ye—1) < C. (4.1)

Moreover, if the sequence {vy}32, is unbounded, then there exists { € N such

that the solution {xy(n)}>2, of problem (1.1), (1.6) with B = By € (Lo, B) is an
escape solution.

Proof. Choose hy > 0 such that

ho\/ (L — 2L0)M0 + h(Q)MO < |C‘ (42)

For k € N denote by {xx(n)}22, a solution of problem (1.1), (1.6) with B = B.
The existence of by is guaranteed by Lemma 2.6. By Lemma 2.5, {zx(n)}22,
is just one of the types (I)-(IV), and if h € (0, ho], then the monotonicity of
{1 (n)}2, yields a unique v, € N, 7, < by, satisfying (4.1).
For h € (0, hg), consider the sequence {7}, and assume that it is un-
bounded. Then we have
lim ~y;, = oo. (4.3)

k—o0

(Otherwise we take a subsequence.) Assume on the contrary that for any k € N,
{zr(n)}5°, is not an escape solution. Choose k € N. If {xx(n)}32, is damped,
then by Definition 2.1, we have b, = oo and

(b)) == lim zg(n) =0, Axg(by) := kh_)rgo Azg(n) = 0. (4.4)
If {zx(n)}22, is homoclinic, then by Definition 2.2, we have by = co and
x(by) = I}Lrgo xp(n) =L, Axp(b) = ]}1_{{)10 Azxg(n) = 0. (4.5)
If {zx(n)}72, is non-monotonous, then by Definition 2.4, we have b, < oo and
xp(by) € (0, L), Axy(by) <O0. (4.6)

To summarize if {zy(n)}22, is not an escape solution, then by (4.4), (4.5) and
(4.6), we have

Since Axy(0) = 0, there exists 7, € N satisfying
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Consider (3.5) with # = z;. By dividing it by j?, multiplying such obtained
equality by zx(j + 1) — 2x(j — 1) and summing in j from 1 to n we get

(Azy(n))” — h? Zf () (xp(f+1) —xp(j — 1))
n 2‘+ (4.9)
==Y A+ 1) —m( — 1), neN.
Denote
En(n+1) = (Azp(n —hQZf (e (2p(G +1) — (5 — 1)). (4.10)
Then we get

Let us put n =7, — 1 and n = by — 1 to (4.11) and subtract. By (4.7) and (4.8)
we get

Eun) — Eulb) = 3 QJf A () (G + 1) — el — 1))
JI=k (4.12)

2 1
k:

Let us put n =7, — 1 and n = by — 1 to (4.10) and subtract. We get

Ex() — Eil(be) = (Azg(ye — 1))* = (Azy (b, — 1))°

b —1 _ _ 4.13
1 1
Y fla xk(] +1) . 2i(j — 1) (4.13)
J="k
Choose € > 0 and Ay > 0 such that
1 /L
e < 5/0 F(2)dz, M, < Ve (4.14)

Let b, < oo. Then (4.6) holds. Since Azg(by — 1) > 0, f(zx(bx)) < 0 and
Axg(br) <0, (3.1) yields

(bkb—: 1> |Azg(br)| + Azg(by — 1) = h2‘f(xk(bk))‘a

and hence

0 < Azp(by — 1) < —h2f(z(b)) < B2My < hy/z for h € (0,hy].  (4.15)

7



Clearly, if b, = oo, then by (4.4) and (4.5), inequality (4.15) holds, as well.
Having in mind (1.2) and (1.3), we deduce similarly as in the proof of Theorem
2.7 that there exists 0 > 0 such that if

z(j+1) —2p(j — 1)

then -
. L
S i) LA ZD s Py @)
J=k

Let hy > 0 be such that
h ( (L — 2Lo) My + h2M0> <. (4.18)

If h € (0, ho, then (2.7) implies (4.16) and hence (4.17) holds.
Now, let us put h* = min{hg, hi,hao} and choose h € (0,h*]. Then, (4.2),
(4.14), (4.18), (4.13)(4.17) yield

Ek(’j/k) — Ek(bk) > —h2€ + 2h* (/CL f(Z) dz — 8)
(4.19)

= 2h? (/CLf(Z)dZ—;é“) > h% > 0.

Finally, (4.12) and (4.19) imply
29 +1

0< h2€ < Ek(’}/k:) — Ek(bk) <2 72 A$k(’7]§)(L — Lo),
k
and 2 )
g
Tk Awg().

2(L — Lo) 27y +1
Letting & — oo, we obtain by (4.3), that limg ., Azg(J%) = oo, contrary to
(4.16). Therefore an escape solution {z(n)};2, of problem (1.1), (1.6) with
B = By € (Ly, B) must exist. O

Now, we are in a position to prove the next main result.

Theorem 4.2 (On the existence of escape solutions)
There exists h* > 0 such that for any h € (0, h*] there exists an escape solution

{ze(n)}52 of problem (1.1), (1.6) for some B = B, € (Ly, B).

Proof. Choose h > 0 C € (Ly, B) and let K be the Lipschitz constant for f
on [Lg, L]. Consider a sequence {B;}72, C (Lg,C) such that limy_,. Bx = Lo.
Then, for each m € N there exists k,, € N such that

|By,, — Lo| < e ™5e(C — Ly). (4.20)
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Let 2¢(0) = xo(n) = Lo for n € N. Then the sequence {z((n)}>°, is the unique
solution of problem (1.1), (1.6) with B = Ly. Let {zx(n)}>°, be a solution of
problem (1.1), (1.6) with B = By, k € N, and let {v;}32,; be the sequence of
Lemma 4.1. Then it suffices to prove that {7x}7>, is unbounded. According to
Lemma 3.2, for each m € N,

2, () — zo(n)| < | By, — Lole™ X, n< (4.21)

Consequently, (4.20) and (4.21) give

21, (n) = ao(n)| < €'~ Lo, n< 7
and hence
m
Therefore
m

Ve () > 5 ME N,
which yields that {~;}%2; is unbounded. Hence the assertion follows from Lemma
4.1. U
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