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Abstract
We discuss a reduction technique allowing one to combine an analysis of the existence of solutions with an
efficient construction of approximate solutions for a state-dependent multi-impulsive boundary value problem
which consists of the nonlinear system of differential equations
du(¥)
dt

subject to the state-dependent impulse condition

= f(t,u(t)) for a.e. t € [a,b],

u(t+) — u(t—) = v¢ (u(t—)) for ¢t € (a,b) such that g (t,u (t—)) =0,
and the nonlinear two-point boundary condition

V(u(a),u(b)) =0.
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1 Problem setting

We consider the nonlinear system of differential equations
du(t)
dt

with —co < a < b < oo and a continuous vector-function f : [a,b] x R® — R™. Eq. (1.1) is subject to the
state-dependent impulse condition

= f(t,u(t)) for a.e.t€ a,b], (1.1)

u(t+) — u(t—) =y (u (t—)) for t € (a,b) such that g (t,u (t—)) = 0. (1.2)

Here the impulse vector-functions ~; : R™ — R™ and the barrier function g : [a,b] X R™ — R are continuous,
and the impulse instants ¢ in (1.2) are unknown since they depend on a solution w through the equation
g(t,u(t—)) = 0. The impulsive problem (1.1), (1.2) is investigated together with the nonlinear two-point
boundary condition

V(u(a),u(b)) =0, (1.3)
where the vector-function V : R™ x R™ — R"™ is continuous. The set
G ={(t,z) € [a,b] x R" : g(t,x) = 0} (1.4)

determined by the function ¢ in (1.2) is called a barrier.

Studies of real life problems with state-dependent impulses can be found in [1]- [4], [13], [14]. But the majority
of existence results on impulsive boundary value problems concern fixed-time impulses. This is due to the fact
that state-dependent impulses significantly change properties of boundary value problems. This is explained
in detail in [6] or [7], where new existence results for boundary value problems with state-dependent impulses
as well as with fixed-time impulses are proven. The results about state-dependent impulses concern linear
boundary conditions and barriers in the form ¢ = g(x) which are special cases of (1.3) and (1.4), respectively.
Only solutions having exactly one intersection point with a barrier are discussed in the citied papers. Moreover,
at present, according to the authors’ knowledge, no numerical results for boundary value problems with state-
dependent impulses are available in the literature, except of [5]. In particular, [5] contains the existence result
for state-dependent impulsive boundary value problems with linear boundary conditions where a solution can
have just one intersection point with a barrier.

Here we study solutions of the fully nonlinear problem (1.1)-(1.3) which are allowed to meet a barrier having
the general form (1.4) finitely many times. Consequently, we specify solutions of problem (1.1)-(1.3) by the
next definition.



Definition 1 Let p € N. A left continuous vector-function u : [a,b] — R”™ is called a solution of problem
(1.1)-(1.3) with p jumps if (1.3) holds and there exist points ¢ < 71 < T2 < ... < 7, < b, such that the
restrictions

laim] (i ma) 5 oees |y )

have continuous derivatives and wu satisfies (1.1) for t € [a,b] \ {71, T2, ..., 7p}, and in addition the conditions
g(Ti,u(m)) =0, i=1,...,p, g(t,u(t))#0, t €a,b]\{m,..., 7}, (1.5)

U(Tl+) _U(T’L) =% (U(TZ))7 1= 1aapa (16)
are fulfilled.

2 Notation and subsidiary statements

1. For a vector x = col(z1,...,x,) € R™ the notation |z| = col(|x1], ..., |zs]) is used and the inequali-
ties between vectors are understood componentwise. The same convention is adopted implicitly for the
operations "max” and "min”.

2. 1,, is the unit matrix of dimension n.
. 0, is the zero matrix of dimension n.

. r(K) is the maximal, in modulus, eigenvalue of a matrix K.

ot s W

. For D € R and f : [a,b] x D — R™ the notation f € Lip(K, D) means that there exists a square matrix
K with non-negative entries satisfying the componentwise Lipschitz condition

If(t,ur) — f(t,ug)| < K|ug —us|, t €la,b], up,us € D.
6. For a non-negative vector p € R™, a componentwise p—neighbourhood of a point z € R™ is defined as
B(z,p) ={veR": |lv—2z| <p}. (2.1)
7. For given two sets D; C R™ and Dy C R™ we introduce the set

%(Dl,Dg) = (1 — 9)21 + 022, zZ1 € Dl, 29 € DQ, 0 € [O, 1} . (22)

8. On the base of a continuous vector-function f : [a,b] x D — R™, we introduce the vector

0(D) := 1 ((t7w)max f(t,z) —  min f(t,x)) , (2.3)

2 €la,b]x D (t,z)€la,b]x D
where D C R" is a compact set.

Lemma 1 ([11], Lemma 3.13). Let —oo < tg < t; < 0o and

t—t
o (tito, tr) = 2 (t —to) (1 — O ), teltots) (2.4)
t1 —to
Then b
| (t o, t1)| < % t € [to, t1], (2.5)
and for an arbitrary continuous vector-function z : [to, t1] — R™, the estimate
- t1 max z(s) — min z(s)
— to, to,t
/z(s) ds — —0 /z(s) ds| < an(t;to, p) et Sl et 1], (2.6)
t — to 2
to to

1s true.



Lemma 2 ( [11], Lemma 5.16). Let for t € [to,t1] the sequence of continuous functions {cu, (t;to,t1)}-_, be

defined by the recurrence relation

m=1

t tq

t—t
am+1(t;t07t1) = (]_ — " ; >/am(s to,tl d8+ / S t()7t1 (27)
1— b0
to

where aq(t;to, t1) is given in (2.4). Then for m € N, the estimate

10 /3(t1 —to)\ ™
ama1(t;to,t1) < 9 <(1100)) ai(t;to, t), t € [to,t1], (2.8)

holds.

3 Sets of parameters and reduction to model types

Let p € N. The idea that we going to follow is to approximate a solution u of problem (1.1)-(1.3) with p jumps
(see Definition 1) by suitable sequences of functions separately on the interval [a, 71| preceding to unknown
moments Ti,Ta, ..., 7, of jumps and then on the intervals

[7—17 TQ] ) [T27 7-3} JREES) [Tp—h TP]7 [Tpa TP+1] = [Tpa b]v

corresponding to the after-jump evolution. The jump moments are treated as parameters to be determined
later. The key role in our analysis will be played by the values 1,7y, ..., 7, and A AL AR representing,
respectively, the unknown jump moments of the solution and its pre-jump values, and &, APt representing the
values of the solution at the points a and b.

Consider (p + 2) compact sets
Qay Q, ooy Qp, Qi1 CRY, (3.1)

and by shifting with the jump ~; from (1.6) define the sets
Qf ={z+y@):xe}, k=1,...,p
Let us focus on a solution u of problem (1.1)-(1.3) with p jumps by Definition 1 such that

u(a) € Qq, u(Tpt1) € Qpya,
u(ty) € Q, u(re+) € QL k=1,..,p.

To this end we choose vectors pl®, plll, pl, ... plPl € R™ and according to (2.1), (2.2), we construct the sets
U, = U  Bv,p4 3.2
vennan 2P (3-2)
Uy, = U B(v,p™, k=1,...,p. (3.3)

vE’H(Q;r,QkJrl)
Now, in Section 4 we study one auxiliary parametrized two-point BVP

da(t)
o =/ ®a®), telan], (3.4)

w(a) = ¢, x(n) = A,

and then in Section 5 we discuss p auxiliary parametrized two-point BVPs

dy ( )
= £ (ta™®). el 55
y[k] (Tk+) - )‘[k] + ’Yk(/\[k])a y[k] (Tk+1) = )‘[kJrl]? k= ]-7 27 - Dy

where

a<T <. <Tp <Tpy1 =0, &=col(&,&2,....,&) € Qq, } 56)
3.6

A = col A AR Ay e k=12, p+1,

are considered as unknown parameters. We assume that U, and Uy, defined in (3.2) and (3.3) are domains for
the values z(t) and y!*l(t) of solutions to problems (3.4) and (3.5).



4 Iterations for the first pre-jump evolution

To study problem (3.4) on [a, 71] X Uy, we introduce the parameterized sequences of vector-functions
T (t) =z (t; 71,6, A), tela, ],

with the parameters 7, &, AY from (3.6) by the relations

zo(t) = € + Ttl__aa ()\[1] _ 5) - (1 - Ttl__aa> £+ :1__2/\[117 (4.1)
Tm(t) = 20(t) +/f(s,:cm_1(s))ds— Ttl__“a/f(s,xm_l(s))ds, m e N. (4.2)

The following statement establishes the uniform convergence of sequence (4.2).

Theorem 1 (Uniform convergence) Assume that there exist a non-negative vector ol and o matriz K, such
that

gl 5 0 L), 1K) < % (4.3)
where U, and §(U,) are defined according to (3.2) and (2.3), and let f satisfy in addition
f € Lip(Kq,Uy,). (4.4)
Then, for any m > 0 and the parameters from (3.6)
1. Vector-functions (4.2) are continuously differentiable on [a, ] and
Emla) =&, xm(m) =M {z,(t)  t € [a, 7]} C U,
2. There exists a vector-function xo satisfying
ZToo(t) = lim zp,(t) wniformly on [a,T]. (4.5)

m—r oo

3. The limit v s a unique continuously differentiable solution with values in U, of the perturbed boundary
value problem on [a, T1]

dx(t) 1

= ft,x(t) +

dt T —a

z(a) =&, x(r) = A,

v, (4.6)

where ¥, € R"™ depending on the parameters 11,&, N1 is given by the formula
T1
Uy = A g - /f(s,:coo(s))ds.

4. This error estimate holds on [a,11):
|Zoo (t) — @ (1)

< gon(ta QL (1, - Q) 3(th)

where 30 )
—a
Qo = —10 Ka (4.7)

and oy (t;a,m) is from (2.4).



Proof. Note, that (4.6) is an ordinary differential equation and differs from the original equation (1.1) by

the additive constant forcing term ¥, /(7 —a). We will argue similarly as in [11]
71 € (a,b), € € Qq, A € Qp, we get by (2.2), (3.2) and (4.1),

{zo(t) :t e [CL,Tl]} C H(Qa,Ql) C Lla.

Consider m € N and assume that
{zm(t) 1 t € [a, 1]} CUg.

Then, by (2.3), (2.5), (2.6), (4.2) and (4.3),

i1 (t) — 20(t)] < a1(tia,m) 6(Ua) < pl,

Hence
{Zmi1(t) 1t € la, 1]} T Uy,.

Further, using (2.7), (4.2), (4.4) and (4.8), we get

22(t) — 21 ()] < Ko ((1—

< Ko 0(Us,) aa(t;a,m), tE€la,m],

and, by induction,
[Tmi1 () = 2 (8)] < KJ'6(Ua) i (ta,71), T € [a, 7],

Consequently, according to (2.8), (4.3) and (4.7), we obtain 7(Q,) < 1 and

10 <S(b —a)

9 10

Consider m, j € N. Then, (4.9) yields

< 10 om s,

|$7n+1(t) - xm(t” S K(T 5(2/{11) 9

) ai(t;a, )

()|<—a1(taﬁ sz:Qz <§al(taTl)Q (

=0

[Tt (F) —

and the remaining assertions of Theorem 1 follow.

5 Iterations for after-jumps evolutions

Let k € {1,...
vector-functions

yll(t) == ylt]

with the parameters 74, 741, A¥), A+ from (3.6) by the relations

(t7 Thky Tk+1, )‘[k]a )‘[k+1])a

t € la, ).

t—a t t—a [T
— d
120 [t - antollas+ 22

t € [Tk, Thr1),

using Lemmas 1 and 2. Since

(4.8)
|x1(s) — zo(s)] ds>
m €N
tela,nn], meN (4.9)
Qa) ( a), te [G,Tﬂ
a

,p}. To study problem (3.5) on [7x,Tk+1] X Uy we introduce the parameterized sequence of

(5.1)

))ds, m € N.

t—T
6 (1) = (AW 4 (AF)) 4 ——T (A1) — AW — 5 (A1) )
Tk+1 — Tk
t— Tk [k] [k] L= Th [kt
= (1 ——— ) A" + 3 (A™) + ———=A",
Tk+1 — Tk Tk+1 — Tk
s Thk4+1
— T
yll(t) /fsy,[ﬁ]ls — /fsyy[ﬁ]l
Tk+1 — Tk

(5.2)



Theorem 2 (Uniform convergence) Assume that for k € {1,2,...,p} there exist a non-negative vector p!*! and

a matriz K;, such that
10

b—a
Wsb-a K< 0 |
Pz oUy), r( k><3(b—a)’ (5.3)
where Uy, and §(Uy) are defined according to (3.3) and (2.3), and let f satisfy in addition

fe Lip(Kk,uk). (54)
Then, for any m >0, k € {1,...,p} and the parameters from (3.6)

1. Vector-functions (5.2) are continuously differentiable on |1y, T+1] and

Y () = Ay AN B () = AR {y}fﬁ (t):te [Tk,Tk+1]} C Uy,.

2. There exists a vector-function ygf)] satisfying
Yy @) = lim yF(t)  uniformly on [1y, The1). (5.5)
m—roo

8. The limit yL’fJ is a unique continuously differentiable solution with values in Uy of the perturbed boundary

value problem on [Tk, T+1)

—f (t7y[k] (t)) PN S— (5.6)

Tk+1 — Tk

dy™ (1)
at

Pm) =AM ), () = A,

where Uy, € R™ depending on the parameters g, Ti+1, MELXEH s given by the formula

Th+1
W= N Ay () [ s,y (s)) d.

Tk

4. This error estimate holds on [Ty, Tk41]:
s -yl )|

10 _
< Hal(tQTvak+l)Q? (1o — Qu) ™' 0(Us),

where
3(b—a)

Qr=—"7,

Ky,

and oy (t; Tg, Tt1) 18 from (2.4).

Proof. Note, that (5.6) is an ordinary differential equation and differs from the original equation (1.1) by
the additive constant forcing term Wy /(7511 — 7%). So, we can argue as in the proof of Theorem 1. O

Under the conditions of the above theorems, we can construct for m > 0 the vector-functions

() 1= { T (t) if  t€la,m],

y'gcl](t) lf te (TkuTk+1]7 k = 172a D,y

and their limit
Toolt) i  t€la,m],
Uoo (1) :=

yc[i](t) if  te(m, ], E=1,2,..,p,



where
Uso & [@,b] = Uy UULU---UU, CR"

depends on the parameters 71, ..., 7, € (a,b), £ € Q,, ¥l € Oy, k =1,...,p+1. The vector-function (5.7) with
suitable values of these parameters is a solution of the original impulsive boundary value problem (1.1)-(1.3)
with p jumps. The appropriate values of the parameters are specified in the next section.

If some problem under investigation is such that conditions (4.3), (4.4) or (5.3), (5.4) are not fulfilled we
suggest to modify an interval halving procedure to this problem. The interval halving procedure is described
in [8], [9] or [10] for problems without impulses.

6 Determining equations

We note again, that equations (4.6) and (5.6) are ordinary differential equations that differ from the original
equation (1.1) by constant forcing terms. This simple observation allows us to argue as in [11] and get that
the limits 2, and y([fz]’ k=1,2,...,p, in Theorems 1 and 2 are related to the original impulsive boundary value

(1.1)-(1.3) with p jumps in the following way.

Theorem 3 Let the conditions of Theorems 1 and 2 be fulfilled and let xo, and ygé], k=1,...,p, be from (4.5)
and (5.5). Then the following assertions hold.

1. Assume that the system of algebraic determining equations for unknown parameters Ti,...,Tp, &, AT
k=1,....p+1,
T1
U, =M — ¢ — [ f(s,25(s))ds = 0,
a
Tk+1
Wy 1= AR A ) = [ f s,y () ds = 0, k= 1,2,..,p, (6.1)
Tk
g(Tk7)\[k]):O’ kzl,""p7
V(g AP =0,
has a solution
TS T &N =1 p (6.2)

where a < 1§ <Tf <o <TH<b, £ E€Q, N e Qp k=1,...,p+1.

Finally, consider the limits x%_ and ygi]* determined in (4.5) and (5.5) by means of values (6.2) and assume

that
gt x5, (1)) #0, T € la,7]),
gty (1) £0, telr i), k=1,2,.,p—1, (6.3)
gty (1) #0,  te[rrb).
Then the vector-function
() if tela ],
wi(t) =< o) i te Gt k=120 -1, (6.4)
g2t if te ()

is a solution of the impulsive boundary value (1.1)-(1.3) with p jumps at the moments 71,75, ..., T, .
2. If u is a solution of problem (1.1)-(1.3) with p jumps at the moments 71,75, <y Ty Such that
{u(t) -t € [a, 7]} CUa,  {ult) 1t € (77,0]} CUp,
{ut) st e (78,75} CU, k=1,2,...,p— 1, (6.5)

U(CL) € Qa7 U(b) € QP-‘rla ’LL(T]:) € Qk? k= 17' - Dy



then the values
¢ =ula), 7, AR =u(r), k=1,...,p, Al = u(b)

necessarily satisfy the system of determining equations (6.1).

Remark 1 The system of algebraic determinig equations (6.1) consists of (p + 2)n + p scalar equations for
(p + 2)n + p scalar unknown parameters (3.6). So, the number of equations coincides with the number of
unknown parameters involved. Under the conditions of Theorem 3, system (6.1) with condition (6.3) allows
one to determine all possible solutions u of problem (1.1)-(1.3) with values satisfying (6.5) and having p jumps.
Consequently the argument based on Theorem 3 allows one to deal with multiple solutions of the problem.

Remark 2 In general, problem (1.1)-(1.3) can have a solution u with p jumps and another solution v with
q jumps, where p # ¢q. Therefore, if we want to find solutions of problem (1.1)-(1.3) having various number of
jumps at intersection points with barrier (1.4), we follow these steps:

Step 1. Choose p = 1 and use our scheme with only one possible jump at the point 7. Then system (6.1)
of 3n + 1 scalar algebraic equations has the form

v, = Oa Uy = 07 g(Tla )‘[1]) = 07 V(fa b) =0. (66)

1. If (6.6) has not a solution, then a solution u of problem (1.1)-(1.3) satisfying u(a) € €, and having one
jump does not exist.

2. Assume that system (6.6) has a solution
e (ab), € e, MNIreq, k=12, (6.7)
and let

g(t, x5, (t) #0, te€la,17), }
(6.8)

gty (1) £0, te[r,0],

where z% and yc[,lo]* are the limits determined in (4.5) and (5.5) by means of values (6.7). Then, according
to (6.4), we can conclude that the vector-function

xr (t) i t€a,Ti],
(t) := {

g it te (.0

*

Uoo

is a solution of the impulsive boundary value problem (1.1)-(1.3) with one jump at the moment 75.

3. If (6.8) is not fulfilled, that is g(-, 2% (-)) has one or more roots in (a,7;) or g(,y&]*()) has one or more
roots in (77, ), then according to Definition 1 a solution « of problem (1.1)-(1.3) satisfying u(a) € Q, and
having one jump does not exist.

Step 2. If we failed in searching a solution with one jump, there is a possibility that there exists a solution
of problem (1.1)-(1.3) with more intersection points with barrier (1.4) and with corresponding jumps at these
points. Note, that a solution with more jumps can exist even in cases where we found a one-jump solution in
Step 1. See Example 1. Therefore we repeat our scheme for higher p.

1. For p = 2 system (6.1) of 4n + 2 scalar algebraic equations has the form

U, =0, U,=0, glm, \N=0 k=12 V(b =0 (6.9)

2. If (6.9) has not a solution, then a solution u of problem (1.1)-(1.3) satisfying u(a) € Q, and having two
jumps does not exist.

3. Assume that system (6.9) has a solution

1,75 € (a,b), € €Q,, MreQ, k=1,23, (6.10)



and let
g(t, x5, () #0, te€la,77),

g(tyhd () #£0, telr,m3), (6.11)

gty () #£0, telrs,0],
[k]*

where z_ and ys , k = 1,2, are determined in (4.5) and (5.5) by means of values (6.10). Then, due to
(6.4), we can conclude that the vector-function

xi () if t€la,Ty],
wl ()= w0 i te (),

y(t) i te (5.0,
is a solution of the impulsive boundary value problem (1.1)-(1.3) with two jumps at the moments 75, 5.

4. If (6.11) is not fulfilled, then a solution w of problem (1.1)-(1.3) satisfying u(a) € €, and having two
jumps does not exist.

5. We continue our calculations for p > 3.

Practical realization of this computation is discussed in Sections 7 and 8 and illustrated in Section 9.

7 Approximation of solutions

Let us fix m € N. The solvability of the determining algebraic system (6.1) can be established by studying its
approximate version

Uy o= A — ¢ — jflf(s,a:m(s)) ds =0,

Tk+1

Wy o= AR AR f Fs, 9l (s)ds =0, k=1,2,...,p, (7.1)
g, XYy =0, E=1,...
V(& APy =0,
with the additional conditions
g(t,zm(t) #0, t€a,11),
gty ) £0, tem i), k=1,2,...p—1, (7.2)
gt gl (1) #0, € [r,b],

where
A< <Tp< < Tpo1 <Tp < Tpg1 =b.

Clearly, the approximate determining system (7.1) is obtained from the exact system (6.1) by replacing the

limits 2o and y= from (4.5) and (5.5) by the iterations z,, and v from (4.2) and (5.2), respectively. It is
important, that all the terms involved in (7.1) and (7.2) can be constructed explicitly.

Assume that the values
7—177-27" (a b) geQaa X[k] EQ/C’ k:1a7p+17 (73)

are a solution of system (7.1). Consider the vector-functions Z,, and 7 determined in (4.2) and (5.2) by means
of values (7.3). If Z,,, and @[ﬁ] satisfy (7.2) with 7, = 7¢, k = 1,...,p, then the vector-function

/l’\m(t)7 te [a77/:1] )
at):={ @), te G Tl k=1,2,...p—1, (7.4)

GEt),  te (Fh)



undergoes the jump of the value 4 (X[k]) at the moment 7, k = 1,...,p. Recalling Theorems 1 and 2, we have

the estimates for the limits T, and g?c[i]

~ ~ 10 ~ m

|Too — T (£)] < joq(t;a,ﬁ —a)Qu (1, — Qa) 6(Ua), (7.5)
A A 0 )
G (1) = T 0)| < o (BT Trpr — )QE (Ln — Qu) ™1 0U), k=1,....p. (7.6)

Estimates (7.5), (7.6) allow one to regard (7.4) as the m—th approximation to a solution of problem (1.1)-(1.3)
with p jumps. The solvability analysis based on the properties of the approximate determining system (7.1) can
be carried out using the topological degree methods as it is done in [11] or [12] for problems without impulses.
This topic is not treated here.

8 Frozen parameter scheme

The simplest way how to choose the parameter sets (3.1) is to take a compact convex set

Q, CR"
and put
Qo =Q, Qf =Q, ..., Q;‘_lzﬁp, Q;:QPH, (8.1)
where
Qf ={z+wm@) 2}, k=1,...,p. (8.2)

Then the sets, which are included in (3.2) have the form

U, = E%B(v,p[a]), U, = U Blv,p*), k=1,...,p (8.3)

veﬂz

If the assumptions of Theorems 1 and 2 are fulfilled on the sets (8.1)-(8.3) we suggest the following algorithm
for an approximate solution of problem (1.1)-(1.3) with p jumps using frozen parameters.

1. Due to (4.1) introduce a vector-function xo depending on the parameters 71, &, Al from (3.6). Then

calculate the first iteration x; by means of (4.2). Similarly, for k¥ = 1,...,p, use formula (5.1) and
introduce a vector-function y([)k] which depends on the parameters 74, 7o11, AF!, AP+ from (3.6). Then
calculate the first iteration ygk] by means of (5.2).

2. Put m = 1 in the approximate determining system (7.1), find its solution called first frozen parameters
and write this solution as in (7.3).

3. By means of x; and ygk], k=1,...,p, constructed in Step 1 and by the first frozen parameters found in
Step 2, introduce the vector-functions

Xi(t) == a1 (671,61, ¢ € [a, 7],
Y ) o= o R, R, NEL ARt € [ ], k=1, p— 1,

YIP(E) = P (17,0, A0, 30H0), € [, ).
4. Define the second frozen iterations

‘%\Q(t) = xQ(t;Tlafa)‘[l])a te [a77-1]a

ygc](t) : ygg] (t;Tk7Tk+17>\[k]7A[k+l])7 te [Tk77—k+1]a k= 17 By 2

10



according to (4.1), (4.2) and (5.1), (5.2) as follows:

t T1

Z2(t) =xo(t)+ff(s Xi(s))

(s, X1(s))ds, t € [a,71],

Tk+1

t —
(1) = gt / F(s, ¥ sy ds — =Tk / £(s, Y (s) s,
Tk+1 — Tk
Tk
1,.

tE[Tk,Tk+1] k)—
So, the first iterations x; and ygk] in (4.2) and (5.2) are replaced by X; and Yl[k] introduced in Step 3,
respectively.

. Put m = 2, modify the approximate system of determining equations (7.1) by substituting there the

second frozen iterations T and yg“] from Step 4. The resulting modified system of (p + 2)n + p scalar
algebraic equations has the form

o~

\IJQ,Q = )‘[1] _g_ff(57/x\2 S )dSZO,

Tp g = AR — AF — oy (AR — f F(s,050(s))ds =0, k =1,2,...,p, (8.4)
g(Tka )‘[k]) =0, k=1,..
V(g APty = 0.

Find a solution of (8.4) called the second frozen parameters and write this solution as in (7.3).

. By means of Z3 and @ék]7 k=1,...,p, constructed in Step 4 and by the second frozen parameters found
in Step 5, introduce the vector-functions

Xo(t) = To(t;71, & A, t € [a, 1],
Y () = 58t R, Fogrs N ARt € [ ], k=1, ,p— 1,
Y () == g2 (157, 0, NPLXPH) ¢ € [, 1)
. Define the third frozen iterations

Z3(t) = Z3(t; 1, &, N, t € [a, 7],

@\gk]( t) = yg ](t Ties Top1, AL )\U”l]), te [, k1), K=1,...,p,
by

Z3(t) zxo(t)—i-ff(s,Xg(s))ds— P ff s, Xa(s))ds, t € la, 1],

90 = ol0) + [ 16, Y0 s — 2= T (s, v () ds

Tk+1—Tk
Tk

tG[Tk+,Tk+1}, k:].,...,p

Hence, by analogy, the second iterations xo and ygﬂ in (4.2) and (5.2) are replaced by X5 and YQW7
respectively.

. Put m = 3, modify system (7.1) by substituting there the third frozen iterations Z3 and g?z[))k] from Step 7.
The resulting modified system of (p + 2)n + p scalar algebraic equations has the form

~

T1
\Ija,l} = A[l] 767‘[.]0(57553 S )dS:O,

Ty i= AR KTy (AIM]) — f Fls, i () ds =0, k=1,2,....p, (8.5)

g, N =0, k=1,..
V(g NPy =0,

11



Find a solution of (8.5) called the third frozen parameters and write this solution as in (7.3).

9. Continue in a similar manner and derive higher frozen parameters and higher frozen iterations. If, for
some m > 2, the m—th and (m — 1)-th frozen parameters are close enough, we put

X (1) = T (171, &, A1), 1 € [0, 7],
Yl (t) = G (6 7, T, AELXFHY € (7, Fogn], k=1,...,p— 1,
Vi (8) = ik (47, 0, A, A 0), € (7,0,
and according to (1.5) verify the condition
g(t, X (t)) #0, t € [a,T1),
gt Y ®) #0, t € [Fe,Ter), k=1,2,...p—1, (8.6)
g(t, Y (1)) # 0, t € [7,0].
If (8.6) is fulfilled, then the function
Xm(t), tela, 7],
At) = Yul(t), te(FTenl k=12..p-1, (8.7)
v, e @),
is regarded as the m-th approximation of a solution w of problem (1.1)-(1.3) with u(a) € Q, and p jumps.

If (8.6) is not satisfied, then we discuss the frozen parameter scheme with other numbers of jumps as in
Remark 2.

Remark 3 We see that all sets (8.1)-(8.3) are determined by the set €2, containing possible starting points of
solutions to problem (1.1)-(1.3) with p jumps and by the vectors pl®, plFl. k = 1,....p. A choise of Q, can
follow from a given practical problem which is modelled by (1.1)-(1.3). Alternatively, assumptions imposed on
the set €2, are just those in Theorems 1, 2 and 3 and we can try more possibilities for its choise. In the both
cases it i 1s useful to start our computation directly at m = 0, where no iterations are needed and one works with

zo and y, K] from (4.1) and (5.1) only. Being piecewise linear functions, these zero-th appr0x1mat10ns are very
rough but, nevertheless, they are usually helpful as a preliminary shot. In particular, the roots 5 s Tl ey Tps

Xm, e ,X[p“] of the zero-th approximate determining system which consists of (p + 2)n + p scalar algebraic
equations and has the form

\Ija,O = A[l] - g - }lf(s,xo(s)) ds = Oa

Wy 0 = AFFUL ARy (AR — f Fls, () ds=0, k=1,2,. (8.8)
g(Tk)))\[k]):Oa kzl)"'7p7
V(g APty = o,

can provide a hint helping one to choose the set 2, as a neighbourhood of fA in a suitable way and avoid
unnecessary computations on sets that might possibly be excessively large.

Another possible algorithm which could be adopted for practical computations of approximate solutions for
problem (1.1)-(1.3) is the scheme with a polynomial interpolation presented in [12] for a non-impulsive Dirichlet
problem.

9 Examples

Example 1 Two jumps. Put n = 2 and apply the numerical-analytic approach desribed above to the system
of two differential equations on the interval [0,0.5]

dU1 (t) 2

0 g -+, <20 Z

el (t) —ua(t) —t. (9.1)

12



Put p = 2, consider the barrier

G ={(t,x) €[0,0.5] x R? : 2y — 7.2333t> 4 2.3683¢ — 0.04 = 0} (9.2)
and the state-dependent impulse conditions at two unknown points 7y and 7
up(m1+) —ui(m) = 0.01, uz(m1+) — ug(m) = —0.01, } (9.3)
uy (T2+) — w1 (72) = 0.015, ug(12+) — ug(m2) = —0.015,
where, by (1.5), 71 and 72 have to satisfy
up(73,) — 7.2333 77 +2.3683 7, —0.04 =0, k=1,2, } 0.4
uy(t) — 7.2333¢% +2.3683¢t — 0.04 #£ 0, t € [0,0.5]\ {r1, 72}

Finally, consider the nonlinear boundary conditions
u?(0) +u2(0.5) +0.125 = 0,  u2(0.5) + u2(0) — 0.015625 = 0. (9.5)

We are interested in a solution of problem (9.1), (9.3), (9.5) as defined in Definition 1 with n = p = 2. Let
us describe in detail individual steps of our method. Here a = 0, b = 0.5 and f = col(f1, f2), where

filt,zy,x0) =23 — 22 +t,  folt,x1,22) = 25 — 235 — L. (9.6)
The impulse vector-functions v, and ~, in (1.6) are constant here
~1 = ¢c0l(0.01,-0.01), ~ = co0l(0.015,—0.015), (9.7)
the barrier function g has the form
g(t,x) = x1 — 7.23331% + 2.3683 ¢ — 0.04, (9.8)
and the boundary vector-function V' = col(V1, Va) can be written as

V1($1,1727yly y2> = .'IJ% + Y2 + 0125, ‘/2(17173327.91’92) = ZC% + Y1 — 0.015625. (99)

Introduce the zero-th iterations xg, y([)k], k = 1,2, solve system (8.8) of 10 algebraic equations and obtain
the roots 71, 7T, 51,52, [1],)\[21]/\[12},)\[22},)\[13],)\[23], presented in the first column of Table 1. Having

& = —0.1059217222, & = 0.01369007648, (9.10)

choose
Qo = [—0.14,0.04] x [—0.18,0.03] = O,

and then, by (8.1), (8.2), (9.7), get

QF =[-0.15,0.05] x [—0.19,0.04] = Qo,
QF = [-0.165,0.065] x [—0.205,0.055] = Q3.

Now, choose the vectors
Pl = col(0.1,0.1), pll = ¢01(0.15,0.15), piZ = col(0.1,0.15),

and using (8.3) construct the sets

[—0.24,0.14] x [—0.28,0.13),
[—0.30,0.20] x [—0.34,0.19),

= [~0.265,0.165] x [—0.355, 0.205).
(4.

3) and (4.4) are fulfilled with the matrix

O
1
2

Maple computations give that conditions

Therefore the frozen parameter scheme suggested in Section 8 can be applied using both symbolic and numerical
Maple computations.
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Figure 1: Third approximation 43 of a solution to problem (9.1), (9.3), (9.5)

0.66

Ugq

Figure 2: Barrier (9.2)
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1. Calculate the first iterations z1, ygl} and y?}.

2. Put m = 1 and solve system (7. 1) which consists of 10 scalar algebraic equations with the unknowns
7'1,72,51,52,)\[11]7)\[21])\[12},)\[22],)\[13 ,As . Under the restrictions 71 € (0.00001,0.25), 75 € (0.25,0.5) numer-
ical computations by Maple give the roots (first frozen parameters) written in the second column of Table
1.

3. Introduce vector-functions
X1 = col(X11, X12), Y=ol VD, v/ =col(vZ,v2)
as follows. Using the first frozen parameters put

X1 (t) ==z, (t; 7, & A, te[0,7],
Y@ = 17, 7, AU X, e [7, 7)),
V() = P (17,05, X2 XB)), ¢ € [7,0.5),

and get their componentwise form:

X11(t) = —0.1049467336 — 1.356666667 - 10~11¢3 4 0.5026541335 ¢2
—0.01092495168 t, t € [0,71],

X12(t) = 0.01362740290 + 1.356666667 - 1011 3 — 0.5026541335 ¢2
+0.01092495181¢, ¢ € [0,71],

t) = 0.00364760892 — 0.5158065535t% + 0.01171732445 ¢, t € [71, 2],

t

V() = —0.09496693961 + 0.5158065535 ¢2 — 0.01171732438 t, t € [11,7e,
11
L
( —0.07909248307 + 0.5362580815¢% — 0.02055510225 ¢, t € [72,0.5],
5

)
)
)
t) = —0.0122268475 — 0.5362580815 ¢2 + 0.02055510169 t, t € [73,0.5].

4. Define the second frozen iterations Zo, yg ], yg].

5. Put m = 2, solve system (8.4) of 10 scalar algebraic equations and get the second frozen parameters
written in the third column of Table 1.

6. Using the second frozen parameters put

X2(t) (t 7'1, )\[]) te [07?1],

Vi) = g 7, 7, MU, A e 7,7,

Y2 (1) = 92 (87, 0.5, 32, ), ¢ € [7,0.5),
1] 2]

7. Define the third frozen iterations s, ys3 ", U5 -

8. Put m = 3, solve system (8.5) of 10 scalar algebraic equations and get the third frozen parameters written
in the last column of Table 1.

9. Using the third frozen parameters put
X3(t) = 23(t:71, & A, t € [0,7],
vil(t) = g7, 7, A3, te (7,7
V(1) 1= 52 (17, 0.5, 32 RB1), ¢ € [7,0.5],

15



and show that condition (8.6) with p = 2 holds for m = 3. More precisely, for 77 = 0.07955623539 and
7o = 0.2787337381

X1 (t) — 7.23334% +2.3683t — 0.04 £ 0, t € [0,7),
V(1) — 7.233342 + 2.3683t — 0.04 £ 0, t € [71,72),
V(1) — 7.233342 + 2.3683t — 0.04 £ 0, t € [,0.5).

Consequently, the vector-function

X5(t)  if tel0,7],
as(t) =< Y@ it te[r,R, (9.11)
YRy i te[m,05],

is the third approximation to a solution of problem (9.1), (9.3), (9.5).

The graph and its orthogonal projection of the third approximation 43 of a solution to problem (9.1), (9.3),
(9.5) are on Fig.1 while Fig. 2 shows the graph of barrier (9.2) and the points where it is intersected by the
graph of u3 .

Table 1. Frozen parameters to problem (9.1), (9.3), (9.5)

Variable m=0 m=1 m =2 m=3
T 0.08032359386 0.07955621663 0.07955621664 0.07955623539
T 0.278089169 0.2787337541 0.2787337541 0.2787337381
El —0.1059217222  —0.1049467336  —0.1049467336  —0.1049467573
52 0.01369007648 0.01362740290 0.01362740290 0.01362740444
3\\[11] —0.1035644481  —0.1026344871  —0.1026344871  —0.1026345099
X[Ql] 0.01133280237 0.01131515641 0.01131515641 0.01131515702
X[lz] —0.05922824314 —0.05815864985 —0.05815864985 —0.05815867642
X[;] —0.03300340255 —0.03316068084 —0.03316068084 —0.03316067649
X[lg] 0.04398776554 0.04469448620 0.04469448620 0.04469446897
X[Qg] —0.1362194112  —0.1360138169  —0.1360138169  —0.1360138219

Substituting approximation (9.11) into system (9.1), we obtain a residual estimated as follows:

tér[laZ(] | X5, (1) — X5 (1) + X5, (t) —t|] = 6x10717,
a,T1
nax | X5 (1) = X351 (1) + X5 (6) +¢] = 3x 107",
sT1
avjil) e 2 _8
2L v Y @) -t = 1x10
tE[F 7] dt 32 ( )+ 31 ( ) X )
dYp'(t) e [12 8
Yol () 4+ Yar (1) 4+t = 1x10
te[?h?z] dt 31 ( ) + 32 ( ) + X )
AV (8) (2] _8
k1SR LA, 7 Y. —tl = 1x1
tE[rab] dt 32 (t) + Yg3 (t) t x 1077,
av(t) e [2]? _8
2 yET )+ )+t = 1x1078.
B dr 51 (6) + Yy () + X
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One jump. Now, consider system (9.1) on the interval [0, 0.5] with the boundary conditions (9.5) and barrier
(9.2) and search for a solution with just one jump. So, we have now p = 1 and and the state-dependent impulse
condition at one unknown point ¢

Ul(T1+) 7U1(7’1) :OO]., UQ(7'1+) 77.L2(T1) = 70.01, (912)
where, by (1.5), 7 satisfies
uy(11) — 7.2333 7 + 2.3683 1, — 0.04 = 0,
uy (t) — 7.233312 4+ 2.3683t — 0.04 £ 0, ¢ €[0,0.5]\ {r}.

Let us find if there exists also a solution of problem (9.1), (9.12), (9.5). Calculation of approximate roots of the
corresponding determining system (7.1) with p = 1 yields for m = 3 the third frozen parameters to problem
(9.1), (9.12), (9.5)

71 = 0.3084130198,

& = —0.04961902764, &> = 0.008218427251,
A = —0.002400361867, MY = —0.03900023852,
M2 = 0.08606144752, M2 = —0.1274620479.
Using the third frozen parameters put
X3(t) := F3(t; 71, &, A0, t € [a, 7],
Y @) = g5 (47,05, X0 A=) ¢ € [7,0.5],
and show that condition (8.6) with p = 1 holds for m = 3. Consequently, the vector-function
N X5(t) i tel0,7],
us(t) = [1] . ~
Y;i(@) i te[m,0.5],
is the third approximation to a solution of problem (9.1), (9.12), (9.5).

Example 2 Three jumps. We apply our technique to the same system (9.1) on the interval [0,0.5] with the
same boundary conditions (9.5) but with a different barrier and three jumps. So, put p = 3, consider the barrier

G= { (t,z) € [0,0.5] x R? : 29 + 474.9999931 t* — 476.6666597 1> + 147.2499979 ¢2

—14.43333319 t + 0.2 = 0} (9-13)
and the state-dependent impulse conditions at three unknown points 71, 75 and 73
u1(7'1—|—) — u1(7'1) = 0.01, U2(7'1+) — UQ(Tl) = —0.01,
uy(T2+) — uy(72) = 0.015, ua(ma+) — u2(72) = —0.015, (9.14)
’U,l(T3+) — U (7’3) = —0.0012, ’U,2(7'3+> — UQ(Tg) = 0.0012,
where, by (1.5), 71, 72 and 73 have to satisfy
ua (k) + 4749999931 78 — 476.6666597 T + 147.2499979 72
—14.433333197, +0.2=0, k=1,2,3,
(9.15)

U (t) + 474.9999931 ¢4 — 476.6666597 3 + 147.2499979 ¢
~14.43333319 t + 0.2 £0, ¢ €[0,0.5]\ {1, 72, 73}.

We are interested in a solution of problem (9.1), (9.14), (9.5) as defined in Definition 1 with n = 2, p = 3.
The impulse vector-functions 1, 2 and 2 in (1.6) are constant here

71 = col(0.01, —0.01), 2 = col(0.015, —0.015), 3 = col(—0.0012,0.0012), (9.16)
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the barrier function g has the form

g(t,x) = wo + 474.9999931 t* — 476.6666597 3 + 147.2499979 t>
—14.43333319 ¢t + 0.2.
Introduce the zero-th iterations xg, y([)k]
obtain the roots

(9.17)

, k=1,2,3, solve system (8.8) of 13 scalar algebraic equations and

?1 ’ ?27 ?37 Ela 22) /):[11] ) /):[21] )‘[12]7 /):[22]7 /):[13]a /):[23] ) /):[14} ) /):[24] ’

presented in the first column of Table 2. Having

& = —0.1032363917, & = 0.01351486331, (9.18)

choose
Qo = [—0.14,0.04] x [-0.18,0.03] = €y,
and then, by (8.1), (8.2), (9.16), get
Qf = [~0.15,0.05] x [0.19,0.04] = Oy,

QF = [-0.165,0.065] x [—0.205,0.055] = Q3,
QF = [-0.265,0.165] x [~0.305,0.155] = Q.

Now, choose the vectors
pl% = c01(0.1,0.1), pM = col(0.15,0.15),

p? = c01(0.1,0.15), ptl = col(0.1,0.1),

and using (8.3) construct the sets

Uy = [~0.24,0.14] x [—0.28,0.13],
Uy = [—0.30,0.20] x [—0.34,0.19],
Uy = [~0.265,0.165] x [—0.355,0.205],
Us = [~0.365,0.265] x [—0.405,0.255].

Maple computations give that the conditions of Theorems 1 and 2 are fulfilled and hence the frozen parameter
scheme in Section 8 can be applied. Approximate roots of (7.1) are given in Table 2.

Table 2. Frozen parameters to problem (9.1), (9.14), (9.5)

Variable m=0 m=1 m =2 m=3

71 0.01786682459 0.01786194368 0.01786194368 0.01786194376
T 0.1570192449 0.1570251944 0.1570251944 0.1570251942
T3 0.3110673961 0.3110731609 0.3110731609 0.3110731609
21 —0.1032363917 —0.1025716094 —0.1025716097 —0.1025716097
22 0.01351486331 0.01347022529 0.01347022531 0.01347022531
X[ll] —0.1032639810 —0.1025968930 —0.1025968934 —0.1025968934
3\\[21] 0.01354245262 0.01349550897 0.01349550899 0.01349550899
XEQ] —0.08216614009  —0.08152274765 —0.08152274798  —0.08152274798
X[Qz] —0.007555388281 —0.007578636417 —0.007578636385 —0.007578636385
X[f’] —0.03123212422  —0.03063507088  —0.03063507121  —0.03063507121
X[;’] —0.05848940415  —0.05846631319  —0.05846631315  —0.05846631315
X[fl] 0.04593622419 0.04641955097 0.04641955065 0.04641955065
3\\[24] —0.1356577526 —0.1355209350 —0.1355209350 —0.1355209350

X3(t) if te[0,n],

~ vl i telm, R

BO=Y VG i te ), (9:19)
vE@®) it telr, 05



is the third approximation of a solution to problem (9.1), (9.14), (9.5).

The graph and its orthogonal projection of the third approximation w3 of a solution to problem (9.1), (9.14),
(9.5) is on Fig. 3 while Fig. 4 shows the graph of barrier (9.13) and the points where it is intersected by the
graph of us.

Substituting approximation (9.19) into system (9.1), we obtain a residual estimated as follows:

max [ Xt (1) = Xip(t) + X5 () 1] = 2x107°,
té?oa)%] | Xho (1) — X5, (t) + Xip(t) +t] = 2x1077,
avi(t
max L()—Ys[%]Q(t) +v[ @) —t| = 8x1077,
te[Tl,Tz] dt
dY3[21] (t) [1]2 [1]2 .
—=——-Y:; ({)+ Yy 1)+t = 8x10
ter[g?,};z} dt 31 ( )Jr 32 ( )Jr X s
(2]
max | O VB ) 4 yB e 1 = 9x107
te[?z,?g] dt
Ay (1) (2] [2] .
=Y57 () +Ys (¢)+t] = 9x10
sy | dt a1 (1) + (t) + X ,
dYB[f] (t) [3]% 1312 - 6
te[?a,b] 77}/32 (t) + }/31 (t) -t == 15 X 10 R
dYPE] (t) [3]2 312 _6
a1 Y (t)+Ysy (H)+t = 15x107°

Example 3 Two jumps. We apply our technique to the same system (9.1) on the interval [0, 0.5] with the same
boundary conditions (9.5) but with a different barrier and two jumps.
So, put p = 2, consider the barrier

G={(t,z) €[0,0.5] x R? : 27 + 23 — 0.125¢ = 0}, (9.20)
and the state-dependent impulse conditions at two unknown points 7y and 7
U1(7'1+) — ul(ﬁ) = —0.015625, U/2(7—1+) - UQ(Tl) = 0.015625, (9 21)
U (7'2—|—) — Uy (TQ) = 0.140625, UQ(T2+) — UQ(TQ) = —0.140625, '
where, by (1.5), 71 and 72 have to satisfy
w2 () +u3(my) — 01257, =0, k=1,2,
1(7k) + ua(7) (0.22)
ul(t) +u3(t) — 0.125¢t #£0, te[0,0.5]\ {r, =}

Calculation of approximate roots of the corresponding determining system (7.1) yields for m = 3 the frozen
parameters to problem (9.1), (9.21), (9.5)

71 = 0.4300565098 72 = 0.4516205829

& = —0.2868788395 & = 0.01090944068
Y = —0.2265214409 MY = —0.04944795790
A = —0.2338309782 M = —0.04213842058
A = —0.06866993025 AT = —0.2072094685.
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The graph and its orthogonal projection of the third approximation s of a solution to problem (9.1), (9.21),

(9.5) is shown on Fig. 5 while Fig. 6 shows the graph of barrier (9.20) and the points where it is intersected by

the

graph of us.
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