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Abstract

We discuss a reduction technique allowing one to combine an analysis of the existence of solutions with an
efficient construction of approximate solutions for a state-dependent multi-impulsive boundary value problem
which consists of the nonlinear system of differential equations

du(t)

dt
= f (t, u(t)) for a.e. t ∈ [a, b] ,

subject to the state-dependent impulse condition

u(t+)− u(t−) = γt (u (t−)) for t ∈ (a, b) such that g (t, u (t−)) = 0,

and the nonlinear two-point boundary condition

V (u(a), u(b)) = 0.
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1 Problem setting

We consider the nonlinear system of differential equations

du(t)

dt
= f (t, u(t)) for a.e. t ∈ [a, b] , (1.1)

with −∞ < a < b < ∞ and a continuous vector-function f : [a, b] × Rn → Rn. Eq. (1.1) is subject to the
state-dependent impulse condition

u(t+)− u(t−) = γt (u (t−)) for t ∈ (a, b) such that g (t, u (t−)) = 0. (1.2)

Here the impulse vector-functions γt : Rn → Rn and the barrier function g : [a, b] × Rn → R are continuous,
and the impulse instants t in (1.2) are unknown since they depend on a solution u through the equation
g(t, u(t−)) = 0. The impulsive problem (1.1), (1.2) is investigated together with the nonlinear two-point
boundary condition

V (u(a), u(b)) = 0, (1.3)

where the vector-function V : Rn × Rn → Rn is continuous. The set

G = {(t, x) ∈ [a, b]× Rn : g(t, x) = 0} (1.4)

determined by the function g in (1.2) is called a barrier.
Studies of real life problems with state-dependent impulses can be found in [1]- [4], [13], [14]. But the majority

of existence results on impulsive boundary value problems concern fixed-time impulses. This is due to the fact
that state-dependent impulses significantly change properties of boundary value problems. This is explained
in detail in [6] or [7], where new existence results for boundary value problems with state-dependent impulses
as well as with fixed-time impulses are proven. The results about state-dependent impulses concern linear
boundary conditions and barriers in the form t = g(x) which are special cases of (1.3) and (1.4), respectively.
Only solutions having exactly one intersection point with a barrier are discussed in the citied papers. Moreover,
at present, according to the authors’ knowledge, no numerical results for boundary value problems with state-
dependent impulses are available in the literature, except of [5]. In particular, [5] contains the existence result
for state-dependent impulsive boundary value problems with linear boundary conditions where a solution can
have just one intersection point with a barrier.

Here we study solutions of the fully nonlinear problem (1.1)-(1.3) which are allowed to meet a barrier having
the general form (1.4) finitely many times. Consequently, we specify solutions of problem (1.1)-(1.3) by the
next definition.
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Definition 1 Let p ∈ N. A left continuous vector-function u : [a, b] → Rn is called a solution of problem
(1.1)-(1.3) with p jumps if (1.3) holds and there exist points a < τ1 < τ2 < ... < τp < b, such that the
restrictions

u
∣∣
[a,τ1] , u

∣∣
(τ1,τ2] , ..., u

∣∣
(τp,b]

have continuous derivatives and u satisfies (1.1) for t ∈ [a, b] \ {τ1, τ2, ..., τp}, and in addition the conditions

g(τi, u(τi)) = 0, i = 1, ..., p, g(t, u(t)) 6= 0, t ∈ [a, b] \ {τ1, . . . , τp}., (1.5)

u(τi+)− u(τi) = γi (u (τi)) , i = 1, ..., p, (1.6)

are fulfilled.

2 Notation and subsidiary statements

1. For a vector x = col(x1, ..., xn) ∈ Rn the notation |x| = col(|x1| , ..., |xn|) is used and the inequali-
ties between vectors are understood componentwise. The same convention is adopted implicitly for the
operations ”max” and ”min”.

2. 1n is the unit matrix of dimension n.

3. 0n is the zero matrix of dimension n.

4. r(K) is the maximal, in modulus, eigenvalue of a matrix K.

5. For D ∈ Rn and f : [a, b]×D → Rn the notation f ∈ Lip(K,D) means that there exists a square matrix
K with non-negative entries satisfying the componentwise Lipschitz condition

|f(t, u1)− f(t, u2)| ≤ K |u1 − u2| , t ∈ [a, b], u1, u2 ∈ D.

6. For a non-negative vector ρ ∈ Rn, a componentwise ρ−neighbourhood of a point z ∈ Rn is defined as

B(z, ρ) := {ν ∈ Rn : |ν − z| ≤ ρ} . (2.1)

7. For given two sets D1 ⊂ Rn and D2 ⊂ Rn we introduce the set

H(D1, D2) := (1− θ)z1 + θz2, z1 ∈ D1, z2 ∈ D2, θ ∈ [0, 1] . (2.2)

8. On the base of a continuous vector-function f : [a, b]×D → Rn, we introduce the vector

δ(D) :=
1

2

(
max

(t,x)∈[a,b]×D
f(t, x)− min

(t,x)∈[a,b]×D
f(t, x)

)
, (2.3)

where D ⊂ Rn is a compact set.

Lemma 1 ( [11], Lemma 3.13). Let −∞ < t0 < t1 <∞ and

α1(t; t0, t1) = 2 (t− t0)

(
1− t− t0

t1 − t0

)
, t ∈ [t0, t1]. (2.4)

Then

|α1(t; t0, t1)| ≤ t1 − t0
2

, t ∈ [t0, t1] , (2.5)

and for an arbitrary continuous vector-function z : [t0, t1]→ Rn, the estimate∣∣∣∣∣∣
t∫

t0

z(s) ds− t− t0
t1 − t0

t1∫
t0

z(s) ds

∣∣∣∣∣∣ ≤ α1(t; t0, t1)

max
s∈[t0,t1]

z(s)− min
s∈[t0,t1]

z(s)

2
, t ∈ [t0, t1] , (2.6)

is true.
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Lemma 2 ( [11], Lemma 3.16). Let for t ∈ [t0, t1] the sequence of continuous functions {αm(t; t0, t1)}∞m=1 be
defined by the recurrence relation

αm+1(t; t0, t1) =

(
1− t− t0

t1 − t0

) t∫
t0

αm(s; t0, t1) ds+
t− t0
t1 − t0

t1∫
t

αm(s; t0, t1) ds, (2.7)

where α1(t; t0, t1) is given in (2.4). Then for m ∈ N, the estimate

αm+1(t; t0, t1) ≤ 10

9

(
3(t1 − t0)

10

)m
α1(t; t0, t1), t ∈ [t0, t1] , (2.8)

holds.

3 Sets of parameters and reduction to model types

Let p ∈ N. The idea that we going to follow is to approximate a solution u of problem (1.1)-(1.3) with p jumps
(see Definition 1) by suitable sequences of functions separately on the interval [a, τ1] preceding to unknown
moments τ1, τ2, ..., τp of jumps and then on the intervals

[τ1, τ2] , [τ2, τ3] , ..., [τp−1, τp], [τp, τp+1] := [τp, b],

corresponding to the after-jump evolution. The jump moments are treated as parameters to be determined
later. The key role in our analysis will be played by the values τ1, τ2, ..., τp and λ[1], λ[2], ..., λ[k], representing,
respectively, the unknown jump moments of the solution and its pre-jump values, and ξ, λ[p+1] representing the
values of the solution at the points a and b.

Consider (p+ 2) compact sets
Ωa, Ω1, . . . , Ωp, Ωp+1 ⊂ Rn, (3.1)

and by shifting with the jump γk from (1.6) define the sets

Ω+
k := {x+ γk(x) : x ∈ Ωk}, k = 1, . . . , p.

Let us focus on a solution u of problem (1.1)-(1.3) with p jumps by Definition 1 such that

u(a) ∈ Ωa, u(τp+1) ∈ Ωp+1,

u(τk) ∈ Ωk, u(τk+) ∈ Ω+
k , k = 1, ..., p.

To this end we choose vectors ρ[a], ρ[1], ρ[2], . . . , ρ[p] ∈ Rn, and according to (2.1), (2.2), we construct the sets

Ua := ∪
v∈H(Ωa,Ω1)

B(v, ρ[a]), (3.2)

Uk := ∪
v∈H(Ω+

k ,Ωk+1)
B(v, ρ[k]), k = 1, . . . , p. (3.3)

Now, in Section 4 we study one auxiliary parametrized two-point BVP

dx(t)

dt
= f (t, x(t)) , t ∈ [a, τ1] ,

x(a) = ξ, x(τ1) = λ[1],

 (3.4)

and then in Section 5 we discuss p auxiliary parametrized two-point BVPs

dy[k](t)

dt
= f

(
t, y[k](t)

)
, t ∈ [τk, τk+1] ,

y[k](τk+) = λ[k] + γk(λ[k]), y[k](τk+1) = λ[k+1], k = 1, 2, ..., p,

 (3.5)

where
a < τ1 < .... < τp < τp+1 = b, ξ = col(ξ1, ξ2, ..., ξn) ∈ Ωa,

λ[k] = col(λ
[k]
1 , λ

[k]
2 , ..., λ

[k]
n ) ∈ Ωk, k = 1, 2, ..., p+ 1,

}
(3.6)

are considered as unknown parameters. We assume that Ua and Uk defined in (3.2) and (3.3) are domains for
the values x(t) and y[k](t) of solutions to problems (3.4) and (3.5).
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4 Iterations for the first pre-jump evolution

To study problem (3.4) on [a, τ1]× Ua, we introduce the parameterized sequences of vector-functions

xm(t) := xm(t; τ1, ξ, λ
[1]), t ∈ [a, τ1] ,

with the parameters τ1, ξ, λ
[1] from (3.6) by the relations

x0(t) = ξ +
t− a
τ1 − a

(
λ[1] − ξ

)
=

(
1− t− a

τ1 − a

)
ξ +

t− a
τ1 − a

λ[1], (4.1)

xm(t) = x0(t) +

t∫
a

f(s, xm−1(s)) ds− t− a
τ1 − a

τ1∫
a

f(s, xm−1(s)) ds, m ∈ N. (4.2)

The following statement establishes the uniform convergence of sequence (4.2).

Theorem 1 (Uniform convergence) Assume that there exist a non-negative vector ρ[a] and a matrix Ka such
that

ρ[a] ≥ b− a
2

δ(Ua), r(Ka) <
10

3(b− a)
, (4.3)

where Ua and δ(Ua) are defined according to (3.2) and (2.3), and let f satisfy in addition

f ∈ Lip(Ka,Ua). (4.4)

Then, for any m ≥ 0 and the parameters from (3.6)

1. Vector-functions (4.2) are continuously differentiable on [a, τ1] and

xm(a) = ξ, xm(τ1) = λ[1], {xm(t) : t ∈ [a, τ1]} ⊂ Ua.

2. There exists a vector-function x∞ satisfying

x∞(t) = lim
m→∞

xm(t) uniformly on [a, τ1] . (4.5)

3. The limit x∞ is a unique continuously differentiable solution with values in Ua of the perturbed boundary
value problem on [a, τ1]

dx(t)

dt
= f(t, x(t)) +

1

τ1 − a
Ψa, (4.6)

x(a) = ξ, x(τ1) = λ[1],

where Ψa ∈ Rn depending on the parameters τ1, ξ, λ
[1] is given by the formula

Ψa := λ[1] − ξ −
τ1∫
a

f(s, x∞(s)) ds.

4. This error estimate holds on [a, τ1]:
|x∞(t)− xm (t)|

6
10

9
α1(t; a, τ1)Qma (1n −Qa) δ(Ua),

where

Qa =
3 (b− a)

10
Ka (4.7)

and α1(t; a, τ1) is from (2.4).

4



Proof. Note, that (4.6) is an ordinary differential equation and differs from the original equation (1.1) by
the additive constant forcing term Ψa/(τ1 − a). We will argue similarly as in [11] using Lemmas 1 and 2. Since
τ1 ∈ (a, b), ξ ∈ Ωa, λ[1] ∈ Ω1, we get by (2.2), (3.2) and (4.1),

{x0(t) : t ∈ [a, τ1]} ⊂ H(Ωa,Ω1) ⊂ Ua.

Consider m ∈ N and assume that
{xm(t) : t ∈ [a, τ1]} ⊂ Ua.

Then, by (2.3), (2.5), (2.6), (4.2) and (4.3),

|xm+1(t)− x0(t)| ≤ α1(t; a, τ1) δ(Ua) ≤ ρ[a], t ∈ [a, τ1]. (4.8)

Hence
{xm+1(t) : t ∈ [a, τ1]} ⊂ Ua.

Further, using (2.7), (4.2), (4.4) and (4.8), we get

|x2(t)− x1(t)| ≤ Ka

((
1− t− a

τ1 − a

)∫ t

a

|x1(s)− x0(s)|ds+
t− a
τ1 − a

∫ τ1

t

|x1(s)− x0(s)|ds
)

≤ Ka δ(Ua)α2(t; a, τ1), t ∈ [a, τ1],

and, by induction,

|xm+1(t)− xm(t)| ≤ Km
a δ(Ua)αm+1(t; a, τ1), t ∈ [a, τ1], m ∈ N.

Consequently, according to (2.8), (4.3) and (4.7), we obtain r(Qa) < 1 and

|xm+1(t)− xm(t)| ≤ Km
a δ(Ua)

10

9

(
3(b− a)

10

)m
α1(t; a, τ1) ≤ 10

9
Qma δ(Ua), t ∈ [a, τ1], m ∈ N. (4.9)

Consider m, j ∈ N. Then, (4.9) yields

|xm+j(t)− xm(t)| ≤ 10

9
α1(t; a, τ1)Qma

j−1∑
i=0

Qia δ(Ua) ≤ 10

9
α1(t; a, τ1)Qma

(
1n −Qa

)−1
δ(Ua), t ∈ [a, τ1],

and the remaining assertions of Theorem 1 follow. 2

5 Iterations for after-jumps evolutions

Let k ∈ {1, . . . , p}. To study problem (3.5) on [τk, τk+1] × Uk we introduce the parameterized sequence of
vector-functions

y[k]
m (t) := y[k]

m (t; τk, τk+1, λ
[k], λ[k+1]), t ∈ [τk, τk+1],

with the parameters τk, τk+1, λ
[k], λ[k+1] from (3.6) by the relations

y
[k]
0 (t) = (λ[k] + γk(λ[k])) +

t− τk
τk+1 − τk

(
λ[k+1] − λ[k] − γk(λ[k])

)
=

(
1− t− τk

τk+1 − τk

)
(λ[k] + γk(λ[k])) +

t− τk
τk+1 − τk

λ[k+1], (5.1)

y[k]
m (t) = y

[k]
0 (t) +

t∫
τk

f(s, y
[k]
m−1(s)) ds− t− τk

τk+1 − τk

τk+1∫
τk

f(s, y
[k]
m−1(s)) ds, m ∈ N. (5.2)
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Theorem 2 (Uniform convergence) Assume that for k ∈ {1, 2, ..., p} there exist a non-negative vector ρ[k] and
a matrix Kk such that

ρ[k] ≥ b− a
2

δ(Uk), r(Kk) <
10

3(b− a)
, (5.3)

where Uk and δ(Uk) are defined according to (3.3) and (2.3), and let f satisfy in addition

f ∈ Lip(Kk,Uk). (5.4)

Then, for any m ≥ 0, k ∈ {1, . . . , p} and the parameters from (3.6)

1. Vector-functions (5.2) are continuously differentiable on [τk, τk+1] and

y[k]
m (τk) = λ[k] + γk(λ[k]), y[k]

m (τk+1) = λ[k+1],
{
y[k]
m (t) : t ∈ [τk, τk+1]

}
⊂ Uk.

2. There exists a vector-function y
[k]
∞ satisfying

y[k]
∞ (t) = lim

m→∞
y[k]
m (t) uniformly on [τk, τk+1]. (5.5)

3. The limit y
[k]
∞ is a unique continuously differentiable solution with values in Uk of the perturbed boundary

value problem on [τk, τk+1]
dy[k](t)

dt
= f

(
t, y[k](t)

)
+

1

τk+1 − τk
Ψk, (5.6)

y[k](τk) = λ[k] + γk(λ[k]), y[k](τk+1) = λ[k+1],

where Ψk ∈ Rn depending on the parameters τk, τk+1, λ
[k], λ[k+1] is given by the formula

Ψk := λ[k+1] − λ[k] − γk(λ[k])−
τk+1∫
τk

f(s, y[k]
∞ (s)) ds.

4. This error estimate holds on [τk, τk+1]: ∣∣∣y[k]
∞ (t)− y[k]

m (t)
∣∣∣

6
10

9
α1(t; τk, τk+1)Qmk (1n −Qk)

−1
δ(Uk),

where

Qk =
3 (b− a)

10
Kk

and α1(t; τk, τk+1) is from (2.4).

Proof. Note, that (5.6) is an ordinary differential equation and differs from the original equation (1.1) by
the additive constant forcing term Ψk/(τk+1 − τk). So, we can argue as in the proof of Theorem 1. 2

Under the conditions of the above theorems, we can construct for m ≥ 0 the vector-functions

um(t) :=

{
xm(t) if t ∈ [a, τ1] ,

y
[k]
m (t) if t ∈ (τk, τk+1] , k = 1, 2, ..., p,

and their limit

u∞(t) :=

{
x∞(t) if t ∈ [a, τ1] ,

y
[k]
∞ (t) if t ∈ (τk, τk+1] , k = 1, 2, ..., p,

(5.7)
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where
u∞ : [a, b]→ Ua ∪ U1 ∪ · · · ∪ Up ⊂ Rn

depends on the parameters τ1, . . . , τp ∈ (a, b), ξ ∈ Ωa, λ[k] ∈ Ωk, k = 1, . . . , p+1. The vector-function (5.7) with
suitable values of these parameters is a solution of the original impulsive boundary value problem (1.1)-(1.3)
with p jumps. The appropriate values of the parameters are specified in the next section.

If some problem under investigation is such that conditions (4.3), (4.4) or (5.3), (5.4) are not fulfilled we
suggest to modify an interval halving procedure to this problem. The interval halving procedure is described
in [8], [9] or [10] for problems without impulses.

6 Determining equations

We note again, that equations (4.6) and (5.6) are ordinary differential equations that differ from the original
equation (1.1) by constant forcing terms. This simple observation allows us to argue as in [11] and get that

the limits x∞ and y
[k]
∞ , k = 1, 2, ..., p, in Theorems 1 and 2 are related to the original impulsive boundary value

(1.1)-(1.3) with p jumps in the following way.

Theorem 3 Let the conditions of Theorems 1 and 2 be fulfilled and let x∞ and y
[k]
∞ , k = 1, . . . , p, be from (4.5)

and (5.5). Then the following assertions hold.
1. Assume that the system of algebraic determining equations for unknown parameters τ1, . . . , τp, ξ, λ[k],

k = 1, . . . , p+ 1,

Ψa := λ[1] − ξ −
τ1∫
a

f(s, x∞(s)) ds = 0,

Ψk := λ[k+1] − λ[k] − γk(λ[k])−
τk+1∫
τk

f(s, y
[k]
∞ (s)) ds = 0, k = 1, 2, ..., p,

g(τk, λ
[k]) = 0, k = 1, . . . , p,

V (ξ, λ[p+1]) = 0,


(6.1)

has a solution
τ∗1 , τ

∗
2 , ..., τ

∗
p , ξ

∗, λ[k]∗, k = 1, . . . , p+ 1, (6.2)

where a < τ∗1 < τ∗1 < · · · < τ∗p < b, ξ∗ ∈ Ωa, λ[k]∗ ∈ Ωk, k = 1, . . . , p+ 1.

Finally, consider the limits x∗∞ and y
[k]∗
∞ determined in (4.5) and (5.5) by means of values (6.2) and assume

that
g(t, x∗∞(t)) 6= 0, t ∈ [a, τ∗1 ),

g(t, y
[k]∗
∞ (t)) 6= 0, t ∈ [τ∗k , τ

∗
k+1), k = 1, 2, ..., p− 1,

g(t, y
[p]∗
∞ (t) 6= 0, t ∈ [τ∗p , b].

 (6.3)

Then the vector-function

u∗∞(t) :=


x∗∞(t) if t ∈ [a, τ∗1 ] ,

y
[k]∗
∞ (t) if t ∈ (τ∗k , τ

∗
k+1], k = 1, 2, ..., p− 1,

y
[p]∗
∞ (t) if t ∈ (τ∗p , b]

(6.4)

is a solution of the impulsive boundary value (1.1)-(1.3) with p jumps at the moments τ∗1 , τ
∗
2 , ..., τ

∗
p .

2. If u is a solution of problem (1.1)-(1.3) with p jumps at the moments τ∗1 , τ
∗
2 , ..., τ

∗
p such that

{u(t) : t ∈ [a, τ∗1 ]} ⊂ Ua, {u(t) : t ∈ (τ∗p , b]} ⊂ Up,

{u(t) : t ∈ (τ∗k , τ
∗
k+1]} ⊂ Uk, k = 1, 2, ..., p− 1,

u(a) ∈ Ωa, u(b) ∈ Ωp+1, u(τ∗k ) ∈ Ωk, k = 1, . . . , p,

 (6.5)
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then the values
ξ∗ = u(a), τ∗k , λ[k]∗ = u(τ∗k ), k = 1, . . . , p, λ[p+1]∗ = u(b)

necessarily satisfy the system of determining equations (6.1).

Remark 1 The system of algebraic determinig equations (6.1) consists of (p + 2)n + p scalar equations for
(p + 2)n + p scalar unknown parameters (3.6). So, the number of equations coincides with the number of
unknown parameters involved. Under the conditions of Theorem 3, system (6.1) with condition (6.3) allows
one to determine all possible solutions u of problem (1.1)-(1.3) with values satisfying (6.5) and having p jumps.
Consequently the argument based on Theorem 3 allows one to deal with multiple solutions of the problem.

Remark 2 In general, problem (1.1)-(1.3) can have a solution u with p jumps and another solution v with
q jumps, where p 6= q. Therefore, if we want to find solutions of problem (1.1)-(1.3) having various number of
jumps at intersection points with barrier (1.4), we follow these steps:

Step 1. Choose p = 1 and use our scheme with only one possible jump at the point τ1. Then system (6.1)
of 3n+ 1 scalar algebraic equations has the form

Ψa = 0, Ψ1 = 0, g(τ1, λ
[1]) = 0, V (ξ, b) = 0. (6.6)

1. If (6.6) has not a solution, then a solution u of problem (1.1)-(1.3) satisfying u(a) ∈ Ωa and having one
jump does not exist.

2. Assume that system (6.6) has a solution

τ∗1 ∈ (a, b), ξ∗ ∈ Ωa, λ[k]∗ ∈ Ωk, k = 1, 2, (6.7)

and let
g(t, x∗∞(t)) 6= 0, t ∈ [a, τ∗1 ),

g(t, y
[1]∗
∞ (t) 6= 0, t ∈ [τ∗1 , b],

}
(6.8)

where x∗∞ and y
[1]∗
∞ are the limits determined in (4.5) and (5.5) by means of values (6.7). Then, according

to (6.4), we can conclude that the vector-function

u∗∞(t) :=

{
x∗∞(t) if t ∈ [a, τ∗1 ] ,

y
[1]∗
∞ (t) if t ∈ (τ∗1 , b].

is a solution of the impulsive boundary value problem (1.1)-(1.3) with one jump at the moment τ∗1 .

3. If (6.8) is not fulfilled, that is g(·, x∗∞(·)) has one or more roots in (a, τ∗1 ) or g(·, y[1]∗
∞ (·)) has one or more

roots in (τ∗1 , b), then according to Definition 1 a solution u of problem (1.1)-(1.3) satisfying u(a) ∈ Ωa and
having one jump does not exist.

Step 2. If we failed in searching a solution with one jump, there is a possibility that there exists a solution
of problem (1.1)-(1.3) with more intersection points with barrier (1.4) and with corresponding jumps at these
points. Note, that a solution with more jumps can exist even in cases where we found a one-jump solution in
Step 1. See Example 1. Therefore we repeat our scheme for higher p.

1. For p = 2 system (6.1) of 4n+ 2 scalar algebraic equations has the form

Ψa = 0, Ψk = 0, g(τk, λ
[k]) = 0, k = 1, 2, V (ξ, b) = 0. (6.9)

2. If (6.9) has not a solution, then a solution u of problem (1.1)-(1.3) satisfying u(a) ∈ Ωa and having two
jumps does not exist.

3. Assume that system (6.9) has a solution

τ∗1 , τ
∗
2 ∈ (a, b), ξ∗ ∈ Ωa, λ[k]∗ ∈ Ωk, k = 1, 2, 3, (6.10)
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and let
g(t, x∗∞(t)) 6= 0, t ∈ [a, τ∗1 ),

g(t, y
[1]∗
∞ (t) 6= 0, t ∈ [τ∗1 , τ

∗
2 ),

g(t, y
[2]∗
∞ (t) 6= 0, t ∈ [τ∗2 , b],

 (6.11)

where x∗∞ and y
[k]∗
∞ , k = 1, 2, are determined in (4.5) and (5.5) by means of values (6.10). Then, due to

(6.4), we can conclude that the vector-function

u∗∞(t) :=


x∗∞(t) if t ∈ [a, τ∗1 ] ,

y
[1]∗
∞ (t) if t ∈ (τ∗1 , τ

∗
2 ],

y
[2]∗
∞ (t) if t ∈ (τ∗2 , b],

is a solution of the impulsive boundary value problem (1.1)-(1.3) with two jumps at the moments τ∗1 , τ
∗
2 .

4. If (6.11) is not fulfilled, then a solution u of problem (1.1)-(1.3) satisfying u(a) ∈ Ωa and having two
jumps does not exist.

5. We continue our calculations for p ≥ 3.

Practical realization of this computation is discussed in Sections 7 and 8 and illustrated in Section 9.

7 Approximation of solutions

Let us fix m ∈ N. The solvability of the determining algebraic system (6.1) can be established by studying its
approximate version

Ψa,m := λ[1] − ξ −
τ1∫
a

f(s, xm(s)) ds = 0,

Ψk,m := λ[k+1] − λ[k] − γk(λ[k])−
τk+1∫
τk

f(s, y
[k]
m (s)) ds = 0, k = 1, 2, ..., p,

g(τk, λ
[k]) = 0, k = 1, . . . , p,

V (ξ, λ[p+1]) = 0,


(7.1)

with the additional conditions

g(t, xm(t)) 6= 0, t ∈ [a, τ1),

g(t, y
[k]
m (t)) 6= 0, t ∈ [τk, τk+1), k = 1, 2, ..., p− 1,

g(t, y
[p]
m (t)) 6= 0, t ∈ [τp, b],

 (7.2)

where
a < τ1 < τ2 < · · · < τp−1 < τp < τp+1 = b.

Clearly, the approximate determining system (7.1) is obtained from the exact system (6.1) by replacing the

limits x∞ and y
[k]
∞ from (4.5) and (5.5) by the iterations xm and y

[k]
m from (4.2) and (5.2), respectively. It is

important, that all the terms involved in (7.1) and (7.2) can be constructed explicitly.

Assume that the values

τ̂1, τ̂2, ..., τ̂p ∈ (a, b) , ξ̂ ∈ Ωa, λ̂[k] ∈ Ωk, k = 1, . . . , p+ 1, (7.3)

are a solution of system (7.1). Consider the vector-functions x̂m and ŷ
[k]
m determined in (4.2) and (5.2) by means

of values (7.3). If x̂m and ŷ
[k]
m satisfy (7.2) with τk = τ̂k, k = 1, . . . , p, then the vector-function

û(t) :=


x̂m(t), t ∈ [a, τ̂1] ,

ŷ
[k]
m (t), t ∈ (τ̂k, τ̂k+1], k = 1, 2, ..., p− 1,

ŷ
[p]
m (t), t ∈ (τ̂p, b].

(7.4)
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undergoes the jump of the value γk(λ̂[k]) at the moment τ̂k, k = 1, . . . , p. Recalling Theorems 1 and 2, we have

the estimates for the limits x̂∞ and ŷ
[k]
∞

|x̂∞ − x̂m (t)| 6 10

9
α1(t; a, τ̂1 − a)Qma (1n −Qa) δ(Ua), (7.5)

∣∣∣ŷ[k]
∞ (t)− ŷ[k]

m (t)
∣∣∣ 6 10

9
α1(t; τ̂k, τ̂k+1 − τ̂k)Qmk (1n −Qk)

−1
δ(Uk), k = 1, . . . , p. (7.6)

Estimates (7.5), (7.6) allow one to regard (7.4) as the m−th approximation to a solution of problem (1.1)-(1.3)
with p jumps. The solvability analysis based on the properties of the approximate determining system (7.1) can
be carried out using the topological degree methods as it is done in [11] or [12] for problems without impulses.
This topic is not treated here.

8 Frozen parameter scheme

The simplest way how to choose the parameter sets (3.1) is to take a compact convex set

Ωa ⊂ Rn

and put
Ωa = Ω1, Ω+

1 = Ω2, . . . , Ω+
p−1 = Ωp, Ω+

p = Ωp+1, (8.1)

where
Ω+
k = {x+ γk(x) : x ∈ Ωk}, k = 1, . . . , p. (8.2)

Then the sets, which are included in (3.2) have the form

Ua = ∪
v∈Ωa

B(v, ρ[a]), Uk = ∪
v∈Ω+

k

B(v, ρ[k]), k = 1, . . . , p. (8.3)

If the assumptions of Theorems 1 and 2 are fulfilled on the sets (8.1)-(8.3) we suggest the following algorithm
for an approximate solution of problem (1.1)-(1.3) with p jumps using frozen parameters.

1. Due to (4.1) introduce a vector-function x0 depending on the parameters τ1, ξ, λ
[1] from (3.6). Then

calculate the first iteration x1 by means of (4.2). Similarly, for k = 1, . . . , p, use formula (5.1) and

introduce a vector-function y
[k]
0 which depends on the parameters τk, τk+1, λ

[k], λ[k+1] from (3.6). Then

calculate the first iteration y
[k]
1 by means of (5.2).

2. Put m = 1 in the approximate determining system (7.1), find its solution called first frozen parameters
and write this solution as in (7.3).

3. By means of x1 and y
[k]
1 , k = 1, . . . , p, constructed in Step 1 and by the first frozen parameters found in

Step 2, introduce the vector-functions

X1(t) := x1(t; τ̂1, ξ̂, λ̂
[1]), t ∈ [a, τ1] ,

Y
[k]
1 (t) := y

[k]
1 (t; τ̂k, τ̂k+1, λ̂

[k], λ̂[k+1]), t ∈ [τk, τk+1] , k = 1, . . . , p− 1,

Y
[p]
1 (t) := y

[p]
1 (t; τ̂p, b, λ̂

[p], λ̂[p+1]), t ∈ [τp, b].

4. Define the second frozen iterations

x̂2(t) := x̂2(t; τ1, ξ, λ
[1]), t ∈ [a, τ1],

ŷ
[k]
2 (t) := ŷ

[k]
2

(
t; τk, τk+1, λ

[k], λ[k+1]
)
, t ∈ [τk, τk+1], k = 1, . . . , p,
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according to (4.1), (4.2) and (5.1), (5.2) as follows:

x̂2(t) = x0(t) +
t∫
a

f(s,X1(s)) ds− t−a
τ1−a

τ1∫
a

f(s,X1(s)) ds, t ∈ [a, τ1] ,

ŷ
[k]
2 (t) = y

[k]
0 (t) +

t∫
τk

f(s, Y
[k]
1 (s)) ds− t− τk

τk+1 − τk

τk+1∫
τk

f(s, Y
[k]
1 (s) ds,

t ∈ [τk, τk+1] , k = 1, . . . , p.

So, the first iterations x1 and y
[k]
1 in (4.2) and (5.2) are replaced by X1 and Y

[k]
1 introduced in Step 3,

respectively.

5. Put m = 2, modify the approximate system of determining equations (7.1) by substituting there the

second frozen iterations x̂2 and ŷ
[k]
2 from Step 4. The resulting modified system of (p + 2)n + p scalar

algebraic equations has the form

Ψ̂a,2 := λ[1] − ξ −
τ1∫
a

f(s, x̂2(s)) ds = 0,

Ψ̂k,2 := λ[k+1] − λ[k] − γk(λ[k])−
τk+1∫
τk

f(s, ŷ
[k]
2 (s)) ds = 0, k = 1, 2, ..., p,

g(τk, λ
[k]) = 0, k = 1, . . . , p,

V (ξ, λ[p+1]) = 0.


(8.4)

Find a solution of (8.4) called the second frozen parameters and write this solution as in (7.3).

6. By means of x̂2 and ŷ
[k]
2 , k = 1, . . . , p, constructed in Step 4 and by the second frozen parameters found

in Step 5, introduce the vector-functions

X2(t) := x̂2(t; τ̂1, ξ̂, λ̂
[1]), t ∈ [a, τ1] ,

Y
[k]
2 (t) := ŷ

[k]
2 (t; τ̂k, τ̂k+1, λ̂

[k], λ̂[k+1]), t ∈ [τk, τk+1] , k = 1, . . . , p− 1,

Y
[p]
2 (t) := ŷ

[p]
2 (t; τ̂p, b, λ̂

[p], λ̂[p+1]), t ∈ [τp, b].

7. Define the third frozen iterations

x̂3(t) := x̂3(t; τ1, ξ, λ
[1]), t ∈ [a, τ1],

ŷ
[k]
3 (t) := ŷ

[k]
3

(
t; τk, τk+1, λ

[k], λ[k+1]
)
, t ∈ [τk, τk+1], k = 1, . . . , p,

by

x̂3(t) = x0(t) +
t∫
a

f(s,X2(s)) ds− t−a
τ1−a

τ1∫
a

f(s,X2(s)) ds, t ∈ [a, τ1] ,

ŷ
[k]
3 (t) = y

[k]
0 (t) +

t∫
τk

f(s, Y
[k]
2 (s)) ds− t−τk

τk+1−τk

tk+1∫
τk

f(s, Y
[k]
2 (s) ds,

t ∈ [τk+, τk+1] , k = 1, . . . , p.

Hence, by analogy, the second iterations x2 and y
[k]
2 in (4.2) and (5.2) are replaced by X2 and Y

[k]
2 ,

respectively.

8. Put m = 3, modify system (7.1) by substituting there the third frozen iterations x̂3 and ŷ
[k]
3 from Step 7.

The resulting modified system of (p+ 2)n+ p scalar algebraic equations has the form

Ψ̂a,3 := λ[1] − ξ −
τ1∫
a

f(s, x̂3(s)) ds = 0,

Ψ̂k,3 := λ[k+1] − λ[k] − γk(λ[k])−
τk+1∫
τk

f(s, ŷ
[k]
3 (s)) ds = 0, k = 1, 2, ..., p,

g(τk, λ
[k]) = 0, k = 1, . . . , p,

V (ξ, λ[p+1]) = 0.


(8.5)
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Find a solution of (8.5) called the third frozen parameters and write this solution as in (7.3).

9. Continue in a similar manner and derive higher frozen parameters and higher frozen iterations. If, for
some m > 2, the m−th and (m− 1)-th frozen parameters are close enough, we put

Xm(t) := x̂m(t; τ̂1, ξ̂, λ̂
[1]), t ∈ [a, τ̂1] ,

Y
[k]
m (t) := ŷ

[k]
m (t; τ̂k, τ̂k+1, λ̂

[k], λ̂[k+1]), t ∈ [τ̂k, τ̂k+1] , k = 1, . . . , p− 1,

Y
[p]
m (t) := ŷ

[p]
m (t; τ̂p, b, λ̂

[p], λ̂[p+1]), t ∈ [τ̂p, b],

and according to (1.5) verify the condition

g(t,Xm(t)) 6= 0, t ∈ [a, τ̂1),

g(t, Y
[k]
m (t)) 6= 0, t ∈ [τ̂k, τ̂k+1), k = 1, 2, ..., p− 1,

g(t, Y
[p]
m (t)) 6= 0, t ∈ [τ̂p, b].

 (8.6)

If (8.6) is fulfilled, then the function

û(t) :=


Xm(t), t ∈ [a, τ̂1] ,

Y
[k]
m (t), t ∈ (τ̂k, τ̂k+1], k = 1, 2, ..., p− 1,

Y
[p]
m (t), t ∈ (τ̂p, b],

(8.7)

is regarded as the m-th approximation of a solution u of problem (1.1)-(1.3) with u(a) ∈ Ωa and p jumps.

If (8.6) is not satisfied, then we discuss the frozen parameter scheme with other numbers of jumps as in
Remark 2.

Remark 3 We see that all sets (8.1)-(8.3) are determined by the set Ωa containing possible starting points of
solutions to problem (1.1)-(1.3) with p jumps and by the vectors ρ[a], ρ[k], k = 1, . . . , p. A choise of Ωa can
follow from a given practical problem which is modelled by (1.1)-(1.3). Alternatively, assumptions imposed on
the set Ωa are just those in Theorems 1, 2 and 3 and we can try more possibilities for its choise. In the both
cases it is useful to start our computation directly at m = 0, where no iterations are needed and one works with

x0 and y
[k]
0 from (4.1) and (5.1) only. Being piecewise linear functions, these zero-th approximations are very

rough but, nevertheless, they are usually helpful as a preliminary shot. In particular, the roots ξ̂, τ̂1, . . . , τ̂p,

λ̂[1], . . . , λ̂[p+1] of the zero-th approximate determining system which consists of (p + 2)n + p scalar algebraic
equations and has the form

Ψa,0 := λ[1] − ξ −
τ1∫
a

f(s, x0(s)) ds = 0,

Ψk,0 := λ[k+1] − λ[k] − γk(λ[k])−
τk+1∫
τk

f(s, y
[k]
0 (s)) ds = 0, k = 1, 2, ..., p,

g(τk, λ
[k]) = 0, k = 1, . . . , p,

V (ξ, λ[p+1]) = 0,


(8.8)

can provide a hint helping one to choose the set Ωa as a neighbourhood of ξ̂ in a suitable way and avoid
unnecessary computations on sets that might possibly be excessively large.

Another possible algorithm which could be adopted for practical computations of approximate solutions for
problem (1.1)-(1.3) is the scheme with a polynomial interpolation presented in [12] for a non-impulsive Dirichlet
problem.

9 Examples

Example 1 Two jumps. Put n = 2 and apply the numerical-analytic approach desribed above to the system
of two differential equations on the interval [0, 0.5]

du1(t)

dt
= u2

2(t)− u2
1(t) + t,

du2(t)

dt
= u2

1(t)− u2
2(t)− t. (9.1)
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Put p = 2, consider the barrier

G = {(t, x) ∈ [0, 0.5]× R2 : x1 − 7.2333̄ t2 + 2.3683̄ t− 0.04 = 0} (9.2)

and the state-dependent impulse conditions at two unknown points τ1 and τ2

u1(τ1+)− u1(τ1) = 0.01, u2(τ1+)− u2(τ1) = −0.01,

u1(τ2+)− u1(τ2) = 0.015, u2(τ2+)− u2(τ2) = −0.015,

}
(9.3)

where, by (1.5), τ1 and τ2 have to satisfy

u1(τk)− 7.2333̄ τ2
k + 2.3683̄ τk − 0.04 = 0, k = 1, 2,

u1(t)− 7.2333̄ t2 + 2.3683̄ t− 0.04 6= 0, t ∈ [0, 0.5] \ {τ1, τ2}.

}
(9.4)

Finally, consider the nonlinear boundary conditions

u2
1(0) + u2(0.5) + 0.125 = 0, u2

1(0.5) + u2(0)− 0.015625 = 0. (9.5)

We are interested in a solution of problem (9.1), (9.3), (9.5) as defined in Definition 1 with n = p = 2. Let
us describe in detail individual steps of our method. Here a = 0, b = 0.5 and f = col(f1, f2), where

f1(t, x1, x2) = x2
2 − x2

1 + t, f2(t, x1, x2) = x2
1 − x2

2 − t. (9.6)

The impulse vector-functions γ1 and γ2 in (1.6) are constant here

γ1 = col(0.01,−0.01), γ2 = col(0.015,−0.015), (9.7)

the barrier function g has the form

g(t, x) = x1 − 7.2333̄ t2 + 2.3683̄ t− 0.04, (9.8)

and the boundary vector-function V = col(V1, V2) can be written as

V1(x1, x2, y1, y2) = x2
1 + y2 + 0.125, V2(x1, x2, y1, y2) = x2

2 + y1 − 0.015625. (9.9)

Introduce the zero-th iterations x0, y
[k]
0 , k = 1, 2, solve system (8.8) of 10 algebraic equations and obtain

the roots τ̂1, τ̂2, ξ̂1, ξ̂2, λ̂
[1]
1 , λ̂

[1]
2 λ

[2]
1 , λ̂

[2]
2 , λ̂

[3]
1 , λ̂

[3]
2 , presented in the first column of Table 1. Having

ξ̂1 = −0.1059217222, ξ̂2 = 0.01369007648, (9.10)

choose
Ω0 = [−0.14, 0.04]× [−0.18, 0.03] = Ω1,

and then, by (8.1), (8.2), (9.7), get

Ω+
1 = [−0.15, 0.05]× [−0.19, 0.04] = Ω2,

Ω+
2 = [−0.165, 0.065]× [−0.205, 0.055] = Ω3.

Now, choose the vectors

ρ[0] = col(0.1, 0.1), ρ[1] = col(0.15, 0.15), ρ[2] = col(0.1, 0.15),

and using (8.3) construct the sets

U0 = [−0.24, 0.14]× [−0.28, 0.13],
U1 = [−0.30, 0.20]× [−0.34, 0.19],
U2 = [−0.265, 0.165]× [−0.355, 0.205].

Maple computations give that conditions (4.3) and (4.4) are fulfilled with the matrix

K0 =

and conditions (5.3) and (5.4), k = 1, 2, are fulfilled with the matrices

K1 = K2 =

Therefore the frozen parameter scheme suggested in Section 8 can be applied using both symbolic and numerical
Maple computations.

13



0 0.08
0.28

0.5
-0.11

-0.09

-0.06
-0.04

0.05
-0.1

-0.05

 0

u32

x3
y3

[1]

y3
[2]

t

u31

u32

Figure 1: Third approximation û3 of a solution to problem (9.1), (9.3), (9.5)
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1. Calculate the first iterations x1, y
[1]
1 and y

[2]
1 .

2. Put m = 1 and solve system (7.1) which consists of 10 scalar algebraic equations with the unknowns

τ1, τ2, ξ1, ξ2, λ
[1]
1 , λ

[1]
2 λ

[2]
1 , λ

[2]
2 , λ

[3]
1 , λ

[3]
2 . Under the restrictions τ1 ∈ (0.00001, 0.25) , τ2 ∈ (0.25, 0.5) numer-

ical computations by Maple give the roots (first frozen parameters) written in the second column of Table
1.

3. Introduce vector-functions

X1 = col(X11, X12), Y
[1]
1 = col(Y

[1]
11 , Y

[1]
12 ), Y

[2]
1 = col(Y

[2]
11 , Y

[2]
12 )

as follows. Using the first frozen parameters put

X1(t) := x1(t; τ̂1, ξ̂, λ̂
[1]), t ∈ [0, τ̂1] ,

Y
[1]
1 (t) := y

[1]
1 (t; τ̂1, τ̂2, λ̂

[1], λ̂[2]), t ∈ [τ̂1, τ̂2] ,

Y
[2]
1 (t) := y

[2]
1 (t; τ̂2, 0.5, λ̂

[2], λ̂[3]), t ∈ [τ̂2, 0.5],

and get their componentwise form:

X11(t) = −0.1049467336− 1.356666667 · 10−11t3 + 0.5026541335 t2

−0.01092495168 t, t ∈ [0, τ̂1] ,

X12(t) = 0.01362740290 + 1.356666667 · 10−11 t3 − 0.5026541335 t2

+0.01092495181t, t ∈ [0, τ̂1] ,

Y
[1]
11 (t) = −0.09496693961 + 0.5158065535 t2 − 0.01171732438 t, t ∈ [τ̂1, τ̂2] ,

Y
[1]
12 (t) = 0.00364760892− 0.5158065535t2 + 0.01171732445 t, t ∈ [τ̂1, τ̂2] ,

Y
[2]
11 (t) = −0.07909248307 + 0.5362580815t2 − 0.02055510225 t, t ∈ [τ̂2, 0.5] ,

Y
[2]
12 (t) = −0.0122268475− 0.5362580815 t2 + 0.02055510169 t, t ∈ [τ̂2, 0.5] .

4. Define the second frozen iterations x̂2, ŷ
[1]
2 , ŷ

[2]
2 .

5. Put m = 2, solve system (8.4) of 10 scalar algebraic equations and get the second frozen parameters
written in the third column of Table 1.

6. Using the second frozen parameters put

X2(t) := x̂2(t; τ̂1, ξ̂, λ̂
[1]), t ∈ [0, τ̂1] ,

Y
[1]
2 (t) := ŷ

[1]
2 (t; τ̂1, τ̂2, λ̂

[1], λ̂[2]), t ∈ [τ̂1, τ̂2] ,

Y
[2]
2 (t) := ŷ

[2]
2 (t; τ̂2, 0.5, λ̂

[2], λ̂[3]), t ∈ [τ̂2, 0.5],

7. Define the third frozen iterations x̂3, ŷ
[1]
3 , ŷ

[2]
3 .

8. Put m = 3, solve system (8.5) of 10 scalar algebraic equations and get the third frozen parameters written
in the last column of Table 1.

9. Using the third frozen parameters put

X3(t) := x̂3(t; τ̂1, ξ̂, λ̂
[1]), t ∈ [0, τ̂1] ,

Y
[1]
3 (t) := ŷ

[1]
3 (t; τ̂1, τ̂2, λ̂

[1], λ̂[2]), t ∈ [τ̂1, τ̂2] ,

Y
[2]
3 (t) := ŷ

[2]
3 (t; τ̂2, 0.5, λ̂

[2], λ̂[3]), t ∈ [τ̂2, 0.5],
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and show that condition (8.6) with p = 2 holds for m = 3. More precisely, for τ̂1 = 0.07955623539 and
τ̂2 = 0.2787337381

X31(t)− 7.2333̄ t2 + 2.3683̄ t− 0.04 6= 0, t ∈ [0, τ̂1),

Y
[1]
31 (t)− 7.2333̄ t2 + 2.3683̄ t− 0.04 6= 0, t ∈ [τ̂1, τ̂2),

Y
[2]
31 (t)− 7.2333̄ t2 + 2.3683̄ t− 0.04 6= 0, t ∈ [τ̂2, 0.5].

Consequently, the vector-function

û3(t) =


X3(t) if t ∈ [0, τ̂1] ,

Y
[1]
3 (t) if t ∈ [τ̂1, τ̂2] ,

Y
[2]
3 (t) if t ∈ [τ̂2, 0.5] ,

(9.11)

is the third approximation to a solution of problem (9.1), (9.3), (9.5).

The graph and its orthogonal projection of the third approximation û3 of a solution to problem (9.1), (9.3),
(9.5) are on Fig.1 while Fig. 2 shows the graph of barrier (9.2) and the points where it is intersected by the
graph of û3 .

Table 1. Frozen parameters to problem (9.1), (9.3), (9.5)
Variable m = 0 m = 1 m = 2 m = 3

τ̂1 0.08032359386 0.07955621663 0.07955621664 0.07955623539
τ̂2 0.278089169 0.2787337541 0.2787337541 0.2787337381

ξ̂1 −0.1059217222 −0.1049467336 −0.1049467336 −0.1049467573

ξ̂2 0.01369007648 0.01362740290 0.01362740290 0.01362740444

λ̂
[1]
1 −0.1035644481 −0.1026344871 −0.1026344871 −0.1026345099

λ̂
[1]
2 0.01133280237 0.01131515641 0.01131515641 0.01131515702

λ̂
[2]
1 −0.05922824314 −0.05815864985 −0.05815864985 −0.05815867642

λ̂
[2]
2 −0.03300340255 −0.03316068084 −0.03316068084 −0.03316067649

λ̂
[3]
1 0.04398776554 0.04469448620 0.04469448620 0.04469446897

λ̂
[3]
2 −0.1362194112 −0.1360138169 −0.1360138169 −0.1360138219

Substituting approximation (9.11) into system (9.1), we obtain a residual estimated as follows:

max
t∈[a,τ̂1]

∣∣X ′31 (t)−X2
32(t) +X2

31(t)− t
∣∣ = 6× 10−10,

max
t∈[0,τ̂1]

∣∣X ′32 (t)−X2
31(t) +X2

32(t) + t
∣∣ = 3× 10−10,

max
t∈[τ̂1,τ̂2]

∣∣∣∣∣dY [1]
31 (t)

dt
−Y [1]2

32 (t) + Y
[1]2

31 (t)− t

∣∣∣∣∣ = 1× 10−8,

max
t∈[τ̂1,τ̂2]

∣∣∣∣∣dY [1]
32 (t)

dt
−Y [1]2

31 (t) + Y
[1]2

32 (t) + t

∣∣∣∣∣ = 1× 10−8,

max
t∈[τ̂2,b]

∣∣∣∣∣dY [2]
31 (t)

dt
−Y [2]2

32 (t) + Y
[2]2

31 (t)− t

∣∣∣∣∣ = 1× 10−8,

max
t∈[τ̂2,b]

∣∣∣∣∣dY [2]
32 (t)

dt
−Y [2]2

31 (t) + Y
[2]2

32 (t) + t

∣∣∣∣∣ = 1× 10−8.
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One jump. Now, consider system (9.1) on the interval [0, 0.5] with the boundary conditions (9.5) and barrier
(9.2) and search for a solution with just one jump. So, we have now p = 1 and and the state-dependent impulse
condition at one unknown point τ1

u1(τ1+)− u1(τ1) = 0.01, u2(τ1+)− u2(τ1) = −0.01, (9.12)

where, by (1.5), τ1 satisfies

u1(τ1)− 7.2333̄ τ1 + 2.3683̄ τ1 − 0.04 = 0,

u1(t)− 7.2333̄ t2 + 2.3683̄ t− 0.04 6= 0, t ∈ [0, 0.5] \ {τ1}.

Let us find if there exists also a solution of problem (9.1), (9.12), (9.5). Calculation of approximate roots of the
corresponding determining system (7.1) with p = 1 yields for m = 3 the third frozen parameters to problem
(9.1), (9.12), (9.5)

τ̂1 = 0.3084130198,

ξ̂1 = −0.04961902764, ξ̂2 = 0.008218427251,

λ̂
[1]
1 = −0.002400361867, λ̂

[1]
2 = −0.03900023852,

λ̂
[2]
1 = 0.08606144752, λ̂

[2]
2 = −0.1274620479.

Using the third frozen parameters put

X3(t) := x̂3(t; τ̂1, ξ̂, λ̂
[1]), t ∈ [a, τ̂1] ,

Y
[1]
3 (t) := ŷ

[1]
3

(
t; τ̂1, 0.5, λ̂

[1], λ[2]
)
, t ∈ [τ̂1, 0.5],

and show that condition (8.6) with p = 1 holds for m = 3. Consequently, the vector-function

û3(t) =

{
X3(t) if t ∈ [0, τ̂1] ,

Y
[1]
3 (t) if t ∈ [τ̂1, 0.5] ,

is the third approximation to a solution of problem (9.1), (9.12), (9.5).

Example 2 Three jumps. We apply our technique to the same system (9.1) on the interval [0, 0.5] with the
same boundary conditions (9.5) but with a different barrier and three jumps. So, put p = 3, consider the barrier

G =
{

(t, x) ∈ [0, 0.5]× R2 : x2 + 474.9999931 t4 − 476.6666597 t3 + 147.2499979 t2

−14.43333319 t+ 0.2 = 0
} (9.13)

and the state-dependent impulse conditions at three unknown points τ1, τ2 and τ3

u1(τ1+)− u1(τ1) = 0.01, u2(τ1+)− u2(τ1) = −0.01,

u1(τ2+)− u1(τ2) = 0.015, u2(τ2+)− u2(τ2) = −0.015,

u1(τ3+)− u1(τ3) = −0.0012, u2(τ3+)− u2(τ3) = 0.0012,

 (9.14)

where, by (1.5), τ1, τ2 and τ3 have to satisfy

u2(τk) + 474.9999931 τ4
k − 476.6666597 τ3

k + 147.2499979 τ2
k

−14.43333319 τk + 0.2 = 0, k = 1, 2, 3,

u2(t) + 474.9999931 t4 − 476.6666597 t3 + 147.2499979 t2

−14.43333319 t+ 0.2 6= 0, t ∈ [0, 0.5] \ {τ1, τ2, τ3}.

 (9.15)

We are interested in a solution of problem (9.1), (9.14), (9.5) as defined in Definition 1 with n = 2, p = 3.
The impulse vector-functions γ1, γ2 and γ2 in (1.6) are constant here

γ1 = col(0.01,−0.01), γ2 = col(0.015,−0.015), γ3 = col(−0.0012, 0.0012), (9.16)
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Figure 3: Third approximation û3 of a solution to problem (9.1), (9.14), (9.5)
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the barrier function g has the form

g(t, x) = x2 + 474.9999931 t4 − 476.6666597 t3 + 147.2499979 t2

−14.43333319 t+ 0.2.
(9.17)

Introduce the zero-th iterations x0, y
[k]
0 , k = 1, 2, 3, solve system (8.8) of 13 scalar algebraic equations and

obtain the roots
τ̂1, τ̂2, τ̂3, ξ̂1, ξ̂2, λ̂

[1]
1 , λ̂

[1]
2 λ

[2]
1 , λ̂

[2]
2 , λ̂

[3]
1 , λ̂

[3]
2 , λ̂

[4]
1 , λ̂

[4]
2 ,

presented in the first column of Table 2. Having

ξ̂1 = −0.1032363917, ξ̂2 = 0.01351486331, (9.18)

choose
Ω0 = [−0.14, 0.04]× [−0.18, 0.03] = Ω1,

and then, by (8.1), (8.2), (9.16), get

Ω+
1 = [−0.15, 0.05]× [−0.19, 0.04] = Ω2,

Ω+
2 = [−0.165, 0.065]× [−0.205, 0.055] = Ω3,

Ω+
3 = [−0.265, 0.165]× [−0.305, 0.155] = Ω4.

Now, choose the vectors

ρ[0] = col(0.1, 0.1), ρ[1] = col(0.15, 0.15), ρ[2] = col(0.1, 0.15), ρ[3] = col(0.1, 0.1),

and using (8.3) construct the sets

U0 = [−0.24, 0.14]× [−0.28, 0.13],
U1 = [−0.30, 0.20]× [−0.34, 0.19],
U2 = [−0.265, 0.165]× [−0.355, 0.205],
U3 = [−0.365, 0.265]× [−0.405, 0.255].

Maple computations give that the conditions of Theorems 1 and 2 are fulfilled and hence the frozen parameter
scheme in Section 8 can be applied. Approximate roots of (7.1) are given in Table 2.

Table 2. Frozen parameters to problem (9.1), (9.14), (9.5)

Variable m = 0 m = 1 m = 2 m = 3
τ̂1 0.01786682459 0.01786194368 0.01786194368 0.01786194376
τ̂2 0.1570192449 0.1570251944 0.1570251944 0.1570251942
τ̂3 0.3110673961 0.3110731609 0.3110731609 0.3110731609

ξ̂1 −0.1032363917 −0.1025716094 −0.1025716097 −0.1025716097

ξ̂2 0.01351486331 0.01347022529 0.01347022531 0.01347022531

λ̂
[1]
1 −0.1032639810 −0.1025968930 −0.1025968934 −0.1025968934

λ̂
[1]
2 0.01354245262 0.01349550897 0.01349550899 0.01349550899

λ̂
[2]
1 −0.08216614009 −0.08152274765 −0.08152274798 −0.08152274798

λ̂
[2]
2 −0.007555388281 −0.007578636417 −0.007578636385 −0.007578636385

λ̂
[3]
1 −0.03123212422 −0.03063507088 −0.03063507121 −0.03063507121

λ̂
[3]
2 −0.05848940415 −0.05846631319 −0.05846631315 −0.05846631315

λ̂
[4]
1 0.04593622419 0.04641955097 0.04641955065 0.04641955065

λ̂
[4]
2 −0.1356577526 −0.1355209350 −0.1355209350 −0.1355209350

In addition, computations show that condition (8.6) with p = 3 holds for m = 3. Consequently, the function

û3(t) =


X3(t) if t ∈ [0, τ̂1] ,

Y
[1]
3 (t) if t ∈ [τ̂1, τ̂2] ,

Y
[2]
3 (t) if t ∈ [τ̂2, τ̂3] ,

Y
[3]
3 (t) if t ∈ [τ̂3, 0.5] ,

(9.19)
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is the third approximation of a solution to problem (9.1), (9.14), (9.5).

The graph and its orthogonal projection of the third approximation û3 of a solution to problem (9.1), (9.14),
(9.5) is on Fig. 3 while Fig. 4 shows the graph of barrier (9.13) and the points where it is intersected by the
graph of û3.

Substituting approximation (9.19) into system (9.1), we obtain a residual estimated as follows:

max
t∈[a,τ̂1]

∣∣X ′31 (t)−X2
32(t) +X2

31(t)− t
∣∣ = 2×10−9,

max
t∈[0,τ̂1]

∣∣X ′32 (t)−X2
31(t) +X2

32(t) + t
∣∣ = 2× 10−9,

max
t∈[τ̂1,τ̂2]

∣∣∣∣∣dY [1]
31 (t)

dt
−Y [1]2

32 (t) + Y
[1]2

31 (t)− t

∣∣∣∣∣ = 8×10−7,

max
t∈[τ̂1,τ̂2]

∣∣∣∣∣dY [1]
32 (t)

dt
−Y [1]2

31 (t) + Y
[1]2

32 (t) + t

∣∣∣∣∣ = 8× 10−7,

max
t∈[τ̂2,τ̂3]

∣∣∣∣∣dY [2]
31 (t)

dt
−Y [2]2

32 (t) + Y
[2]2

31 (t)− t

∣∣∣∣∣ = 9×10−7,

max
t∈[τ̂2,τ̂3]

∣∣∣∣∣dY [2]
32 (t)

dt
−Y [2]2

31 (t) + Y
[2]2

32 (t) + t

∣∣∣∣∣ = 9× 10−7,

max
t∈[τ̂3,b]

∣∣∣∣∣dY [3]
31 (t)

dt
−Y [3]2

32 (t) + Y
[3]2

31 (t)− t

∣∣∣∣∣ = 1.5× 10−6,

max
t∈[τ̂3,b]

∣∣∣∣∣dY [3]
32 (t)

dt
−Y [3]2

31 (t) + Y
[3]2

32 (t) + t

∣∣∣∣∣ = 1.5× 10−6.

Example 3 Two jumps. We apply our technique to the same system (9.1) on the interval [0, 0.5] with the same
boundary conditions (9.5) but with a different barrier and two jumps.

So, put p = 2, consider the barrier

G =
{

(t, x) ∈ [0, 0.5]× R2 : x2
1 + x2

2 − 0.125 t = 0
}
, (9.20)

and the state-dependent impulse conditions at two unknown points τ1 and τ2

u1(τ1+)− u1(τ1) = −0.015625, u2(τ1+)− u2(τ1) = 0.015625,

u1(τ2+)− u1(τ2) = 0.140625, u2(τ2+)− u2(τ2) = −0.140625,

}
(9.21)

where, by (1.5), τ1 and τ2 have to satisfy

u2
1(τk) + u2

2(τk)− 0.125 τk = 0, k = 1, 2,

u2
1(t) + u2

2(t)− 0.125 t 6= 0, t ∈ [0, 0.5] \ {τ1, τ2}.

}
(9.22)

Calculation of approximate roots of the corresponding determining system (7.1) yields for m = 3 the frozen
parameters to problem (9.1), (9.21), (9.5)

τ̂1 = 0.4300565098 τ̂2 = 0.4516205829

ξ̂1 = −0.2868788395 ξ̂2 = 0.01090944068

λ̂
[1]
1 = −0.2265214409 λ̂

[1]
2 = −0.04944795790

λ̂
[2]
1 = −0.2338309782 λ̂

[2]
2 = −0.04213842058

λ̂
[3]
1 = −0.06866993025 λ̂

[3]
2 = −0.2072994685.
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The graph and its orthogonal projection of the third approximation û3 of a solution to problem (9.1), (9.21),
(9.5) is shown on Fig. 5 while Fig. 6 shows the graph of barrier (9.20) and the points where it is intersected by
the graph of û3.
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