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Abstract

Asymptotic properties of solutions of the singular differential equation
(p(t)u′(t))′ = p(t)f(u(t)) are described. Here f is Lipschitz continuous on
R and has at least two zeros 0 and L > 0. The function p is continuous
on [0,∞), has a positive continuous derivative on (0,∞) and p(0) = 0.
Further conditions for f and p under which the equation has oscillatory
solutions converging to 0 are given.

Mathematics Subject Classification 2010: 34D05, 34A12, 34B40

Key words: Singular ordinary differential equation of the second order, time
singularities, asymptotic properties, oscillatory solutions.

1 Introduction

For k ∈ N, k > 1, and L ∈ (0,∞), consider the equation

u′′ +
k − 1
t

u′ = f(u), t ∈ (0,∞), (1)

where
f ∈ Liploc(R), f(0) = f(L) = 0, f(x) < 0, x ∈ (0, L), (2)

∃B̄ ∈ (−∞, 0) : f(x) > 0, x ∈ [B̄, 0). (3)

Let us put

F (x) = −
∫ x

0

f(z) dz for x ∈ R. (4)
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Moreover we assume that f fulfils

F (B̄) = F (L) (5)

and denote
L0 = inf{x < B̄ : f(x) > 0} ≥ −∞.

Due to (2)-(4), we see that F ∈ C1(R) is decreasing and positive on (L0, 0),
increasing and positive on (0, L].

Equation (1) arises in many areas. For example: In the study of phase tran-
sitions of Van der Waals fluids [4], [11], [27], in population genetics, where it
serves as a model for the spatial distribution of the genetic composition of a
population [9], [10], in the homogenenous nucleation theory [1], in relativistic
cosmology for description of particles which can be treated as domains in the
universe [20], in the nonlinear field theory, in particular, when describing bub-
bles generated by scalar fields of the Higgs type in the Minkowski spaces [8].
Numerical simulations of solutions of (1), where f is a polynomial with three
zeros, have been presented in [7], [15], [19]. Close problems about the existence
of positive solutions can be found in [3], [5], [6].

In this paper we investigate a generalization of equation (1) of the form

(p(t)u′)′ = p(t)f(u), t ∈ (0,∞), (6)

where f satisfies (2)-(5) and p fulfils

p ∈ C[0,∞) ∩ C1(0,∞), p(0) = 0, (7)

p′(t) > 0, t ∈ (0,∞), lim
t→∞

p′(t)
p(t)

= 0. (8)

Equation (6) is singular in the sense that p(0) = 0. If p(t) = tk−1, with k > 1,
then p satisfies (7), (8) and equation (6) is equal to (1).

Definition 1 A function u ∈ C1[0,∞) ∩ C2(0,∞) which satisfies equation (6)
for all t ∈ (0,∞) is called a solution of (6).

Consider a solution u of equation (6). Since u ∈ C1[0,∞), we have u(0), u′(0) ∈
R and the assumption p(0) = 0 yields p(0)u′(0) = 0. We can find M > 0 and
δ > 0 such that |f(u(t))| ≤M for t ∈ (0, δ). Integrating equation (6) we get

|u′(t)| =
∣∣∣∣ 1
p(t)

∫ t

0

p(s)f(u(s)) ds
∣∣∣∣ ≤ M

p(t)

∫ t

0

p(s) ds ≤Mt, t ∈ (0, δ).

Consequently the condition
u′(0) = 0 (9)

is necessary for each solution of equation (6). Denote

usup = sup{u(t) : t ∈ [0,∞)}.
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Definition 2 Let u be a solution of equation (6). If usup < L, then u is called
a damped solution.

If a solution u of equation (6) satisfies usup = L or usup > L, then we call
u a bounding homoclinic solution or an escape solution. These three types of
solutions have been investigated in [23]-[26]. Here we continue the investigation
of the existence and asymptotic properties of damped solutions. Due to (9) and
Definition 2, it is reasonable to study solutions of equation (6) satisfying the
initial conditions

u(0) = u0 ∈ (L0, L], u′(0) = 0. (10)

Note that if u0 > L, then a solution u of problem (6), (10) satisfies usup > L
and consequently u is not a damped solution. Assume that L0 > −∞. Then
f(L0) = 0 and if we put u0 = L0, a solution u of (6), (10) is a constant function
equal to L0 on [0,∞). Since we impose no sign assumption on f(x) for x < L0,
we do not consider the case u0 < L0. In fact, the choice of u0 between two zeros
L0 and 0 of f has been motivated by some hydrodynamical model in [19].

A lot of papers is devoted to oscillatory solutions of nonlinear differential
equations. J.S.W. Wong [28] published an account on a nonlinear oscillation
problem originated from earlier works of F. V. Atkinson and Z. Nehari. Wong’s
paper is concerned with the study of oscillatory behaviour of second–order
Emden–Fowler equations

y′′(x) + a(x)|y(x)|γ−1y(x) = 0, γ > 0, (11)

where a is nonnegative and absolutely continuous on (0,∞). Both superlinear
case (γ > 1) and sublinear case (γ ∈ (0, 1)) are discussed and conditions for the
function a giving oscillatory or non–oscillatory solutions of (11) are presented,
see also [21]. Further extensions of these results have been proved for more
general differential equations. For example P.J.Y. Wong and R.P. Agarwal [29]
or W.T. Li [18] worked with an equation

(a(t)(y′(t))σ)′ + q(t)f(y(t)) = 0, (12)

where σ > 0 is a positive quotient of odd integers, a ∈ C1(R) is positive,
q ∈ C(R), f ∈ C1(R), xf(x) > 0, f ′(x) ≥ 0 for all x 6= 0. M.R.S. Kulenović
and Ć. Ljubović [17] investigated an equation

(r(t)g(y′(t)))′ + p(t)f(y(t)) = 0, (13)

where g(u)/u ≤ m, f(u)/u ≥ k > 0 or f ′(u) ≥ k for all u 6= 0. The investigation
of oscillatory and nonoscillatory solutions has been also realized in the class of
quasilinear equations. We refer to the paper [12] by L.F. Ho, dealing with an
equation

(tn−1Φp(u′))′ + tn−1
N∑
i=1

αit
βiΦqi(u) = 0, (14)

3



where 1 < p < n, αi > 0, βi ≥ −p, qi > p− 1, i = 1, . . . , N , Φp(y) = |y|p−2y.
Oscillation results for the equation

(a(t)Φp(x′))′ + b(t)Φq(x) = 0, (15)

where a, b ∈ C([0,∞)) are positive, can be found in [2]. We can see that the
nonlinearity f(y) = |y|γ−1y in equation (11) is an increasing function on R
having a unique zero at y = 0.

Nonlinearities in all other equations (12)–(15) have similar globally monotonous
behaviour. We want to emphasize that, in contrast to the above papers, the
nonlinearity f in our equation (6) need not be globally monotonous. Moreover,
we deal with solutions of equation (6) starting at a singular point t = 0 and
we provide an interval for starting values u0 giving oscillatory solutions (see
Theorems 5, 12, 18). We specify a behaviour of oscillatory solutions in more
details (decreasing amplitudes – see Theorems 12, 18) and we show conditions
which guarantee that oscillatory solutions converge to 0 (Theorem 20).

The paper is organized in this manner: Section 2 contains results about
existence, uniqueness and other basic properties of solutions of problem (6),
(10). These results which mainly concern damped solutions are taken from [26]
and extended or modified a little. We also provide here new conditions for
the existence of oscillatory solutions in Theorem 18. Section 3 is devoted to
asymptotic properties of oscillatory solutions and the main result is contained
in Theorem 20.

2 Solutions of the initial problem (6), (10)

Let us give an account of this section in more details. The main objective
of this paper is to characterize asymptotic properties of oscillatory solutions of
problem (6), (10). In order to present more complete results about the solutions,
we start this section with the unique solvability of problem (6), (10) on [0,∞)
(Theorem 3). Having such global solutions, we have proved (see papers [23]–
[26]) that oscillatory solutions of problem (6), (10) can be found just in the class
of damped solutions of this problem. Therefore we give here one result about
the existence of damped solutions (Theorem 5). Example 7 shows that there
are damped solutions which are not oscillatory. Consequently, we bring results
about the existence of oscillatory solutions in the class of damped solutions.
This can be found in Theorem 12, which is an extension of Theorem 3.4 of [26]
and in Theorem 18, which is new. Theorems 12 and Theorem 18 cover different
classes of equations which is illustrated by examples.

Theorem 3 (Existence and uniqueness) Assume that (2)-(5), (7), (8) hold and
that there exists CL ∈ (0,∞) such that

0 ≤ f(x) ≤ CL for x ≥ L. (16)
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Then the initial problem (6), (10) has a unique solution u. The solution u
satisfies

u(t) ≥ u0 if u0 < 0
u(t) > B̄ if u0 ≥ 0 for t ∈ [0,∞). (17)

Proof. Let u0 < 0. Then the assertion is contained in Theorem 2.1 of [26].
Now, assume that u0 ∈ [0, L]. Then the proof of Theorem 2.1 in [26] can be
slightly modified. �

For close existence results see also Chapters 13 and 14 of [22], where this
kind of equations is studied.

Remark 4 Clearly, for u0 = 0 and u0 = L, problem (6), (10) has a unique
solution u ≡ 0 and u ≡ L, respectively. Since f ∈ Liploc(R), no solution of
problem (6), (10) with u0 < 0 or u0 ∈ (0, L) can touch the constant solutions
u ≡ 0 and u ≡ L.

In particular, assume that C ∈ {0, L}, a > 0, u is a solution of problem (6),
(10) with u0 < L, u0 6= 0 and (2), (7), (8) hold. If u(a) = C, then u′(a) 6= 0
and if u′(a) = 0, then u(a) 6= C.

The next theorem provides an extension of Theorem 2.4 in [26].

Theorem 5 (Existence of damped solutions) Assume that (2)-(5), (7), (8) hold.
Then for each u0 ∈ [B̄, L) problem (6), (10) has a unique solution. This solution
is damped.

Proof. First assume that there exists CL > 0 such that f satisfies (16). Then,
by Theorem 3, problem (6), (10) has a unique solution u satisfying (17). Assume
that u is not damped, that is

sup{u(t) : t ∈ [0,∞)} ≥ L. (18)

By (3)-(5), the inequality F (u0) ≤ F (L) holds. Since u fulfils equation (6), we
have

u′′(t) +
p′(t)
p(t)

u′(t) = f(u(t)) for t ∈ (0,∞). (19)

Multiplying (19) by u′ and integrating between 0 and t > 0 we get

0 <
u′2(t)

2
+
∫ t

0

p′(s)
p(s)

u′2(s) ds = F (u0)− F (u(t)), t ∈ (0,∞), (20)

and consequently

0 <
∫ t

0

p′(s)
p(s)

u′2(s) ds ≤ F (u0)− F (u(t)), t ∈ (0,∞).

By (18) we can find b ∈ (0,∞] such that u(b) ≥ L, ( u(∞) = lim supt→∞ u(t) ),
and hence, according to (5),

0 <
∫ b

0

p′(s)
p(s)

u′2(s) ds ≤ F (u0)− F (u(b)) ≤ F (B)− F (L) ≤ 0,
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a contradiction. We have proved that sup{u(t) : t ∈ [0,∞)} < L, that is u is
damped. Consequently assumption (16) can be omitted. �

Example 6 Consider the equation

u′′ +
2
t
u′ = u(u− 1)(u+ 2), (21)

which is relevant to applications in [7],[15] and [19]. Here p(t) = t2, f(x) =
x(x − 1)(x + 2), L0 = −2, L = 1. Hence f(x) < 0 for x ∈ (0, 1), f(x) > 0 for
x ∈ (−2, 0), and

F (x) = −
∫ x

0

f(z) dz = −x
4

4
− x3

3
+ x2.

Consequently, F is decreasing and positive on [−2, 0) and increasing and positive
on (0, 1]. Since F (1) = 5/12 and F (−1) = 13/12, there exists a unique B̄ ∈
(−1, 0) such that F (B̄) = 5/12 = F (1). We can see that all assumptions of
Theorem 5 are fulfilled an so, for each u0 ∈ [B̄, 1), problem (21), (10) has a
unique solution which is damped. We will show later (see Example 13), that
each damped solution of problem (21), (10) is oscillatory.

In the next example we will show that damped solutions can be nonzero and
monotonous on [0,∞) with a limit equal to zero at ∞. Clearly, such solutions
are not oscillatory.

Example 7 Consider the equation

u′′ +
3
t
u′ = f(u), (22)

where

f(x) =

 −x3 for x ≤ 1
x− 2 for x ∈ (1, 3)

1 for x ≥ 3.

We see that p(t) = t3 in (22) and the functions f and p satisfy conditions (2)-(5),
(7), (8) with L = 2. Clearly L0 = −∞. Further,

F (x) = −
∫ x

0

f(z) dz =

 x4/4 for x ≤ 1
−x2/2 + 2x− 5/4 for x ∈ (1, 3)
−x+ 13/4 for x ≥ 3.

Since F (L) = F (2) = 3/4, assumption (5) yields F (B̄) = B̄4/4 = 3/4 and
B̄ = −31/4. By Theorem 5, for each u0 ∈ [−31/4, 2) problem (22), (10) has
a unique solution u which is damped. On the other hand, we can check by a
direct computation that for each u0 ≤ 1 the function

u(t) =
8u0

8 + u2
0t

2
, t ∈ [0,∞),
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is a solution of equation (22) and satifies conditions (10). If u0 < 0, then u < 0,
u′ > 0 on (0,∞), if u0 ∈ (0, 1], then u > 0, u′ < 0 on (0,∞). In both cases
limt→∞ u(t) = 0.

In Example 7 we also demonstrate that there are equations fulfilling The-
orem 5 for which all solutions with u0 < L, not only those with u0 ∈ [B̄, L),
are damped. Some additional conditions giving moreover bounding homoclinic
solutions and escape solutions are presented in [23]-[25].

In our further investigation of asymptotic properties of damped solutions
the following lemmas are useful.

Lemma 8 Assume (2), (7) and (8). Let u be a damped solution of problem
(6), (10) with u0 ∈ (L0, L) which is eventually positive or eventually negative.
Then

lim
t→∞

u(t) = 0, lim
t→∞

u′(t) = 0. (23)

Proof. Let u be eventually positive, that is there exists t0 ≥ 0 such that

u(t) > 0 for t ∈ [t0,∞). (24)

Denote θ = inf{t0 ≥ 0 : u(t) > 0, t ∈ [t0,∞)}.
Let θ > 0. Then u(θ) = 0 and, by Remark 4, u′(θ) > 0. Assume that u′ > 0

on (θ,∞). Then u is increasing on (θ,∞) and there exists limt→∞ u(t) = ` ∈
(0, L). Multiplying (19) by u′, integrating between θ and t and using notation
(4), we obtain

u′2(t)
2

+
∫ t

θ

p′(s)
p(s)

u′2(s) ds = F (u0)− F (u(t)), t ∈ (θ,∞). (25)

Letting t→∞, we get

lim
t→∞

u′2(t)
2

= − lim
t→∞

∫ t

θ

p′(s)
p(s)

u′2(s) ds+ F (u0)− F (`).

Since the function
∫ t
θ
(p′(s)/p(s))u′2(s) ds is positive and increasing, it follows

that it has a limit at ∞ and hence there exists also limt→∞ u′(t) ≥ 0. If
limt→∞ u′(t) > 0, then L > ` = limt→∞ u(t) = ∞, a contradiction. Conse-
quently

lim
t→∞

u′(t) = 0. (26)

Letting t→∞ in (19) and using (2), (8) and ` ∈ (0, L), we get limt→∞ u′′(t) =
f(`) < 0, and so limt→∞ u′(t) = −∞, contrary to (26). This contradiction
implies that the inequality u′ > 0 on (θ,∞) cannot be satisfied and that there
exists a > θ such that u′(a) = 0. Since u > 0 on (a,∞), we get by (2), (6),
and (10) that (pu′)′ < 0 on (a,∞). Due to p(a)u′(a) = 0, we see that u′ < 0
on (a,∞). Therefore u is decreasing on (a,∞) and limt→∞ u(t) = `0 ∈ [0, L).
Using (25) with a in place of θ we deduce as above that (26) holds and that
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limt→∞ u′′(t) = f(`0) = 0. Consequently `0 = 0. We have proved that (23)
holds provided θ > 0.

If θ = 0, then we take a = 0 and use the above arguments. If u is eventually
negative we argue similarly. �

Lemma 9 Assume (2)-(5), (7), (8) and

p ∈ C2(0,∞), lim sup
t→∞

∣∣∣∣p′′(t)p′(t)

∣∣∣∣ <∞, (27)

lim
x→0+

f(x)
x

< 0. (28)

Let u be a solution of problem (6), (10) with u0 ∈ (0, L). Then there exists
δ1 > 0 such that

u(δ1) = 0, u′(t) < 0 for t ∈ (0, δ1]. (29)

Proof. Assume that such δ1 does not exist. Then u is positive on [0,∞) and,
by Lemma 8, u satisfies (23). We define a function

v(t) =
√
p(t)u(t), t ∈ [0,∞). (30)

By (27), we have v ∈ C2(0,∞) and

v′(t) =
p′(t)u(t)
2
√
p(t)

+
√
p(t)u′(t),

v′′(t) = v(t)
[

1
2
p′′(t)
p(t)

− 1
4

(
p′(t)
p(t)

)2

+
f(u(t))
u(t)

]
, t ∈ (0,∞). (31)

By (8) and (27) we get

lim
t→∞

[
1
2
p′′(t)
p(t)

− 1
4

(
p′(t)
p(t)

)2
]

=
1
2

lim
t→∞

p′′(t)
p′(t)

· p
′(t)
p(t)

= 0.

Since u is positive on (0,∞), conditins (23) and (28) yield

lim
t→∞

f(u(t))
u(t)

= lim
x→0+

f(x)
x

< 0.

Consequently there exist ω > 0 and R > 0 such that

1
2
p′′(t)
p(t)

− 1
4

(
p′(t)
p(t)

)2

+
f(u(t))
u(t)

< −ω for t ≥ R. (32)

By (30), v is positive on (0,∞) and, due to (31) and (32), we get

v′′(t) < −ωv(t) < 0 for t ≥ R. (33)
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Thus, v′ is decreasing on [R,∞) and limt→∞ v′(t) = V . If V < 0, then
limt→∞ v(t) = −∞ contrary to the positivity of v. If V ≥ 0, then v′ > 0
on [R,∞) and v(t) ≥ v(R) > 0 for t ∈ [R,∞). Then (33) yields 0 > −ωv(R) ≥
−ωv(t) > v′′(t) for t ∈ [R,∞). We get limt→∞ v′(t) = −∞ which contradicts
V ≥ 0. The obtained contradictions imply that u has at least one zero in (0,∞).
Let δ1 > 0 be the first zero of u. Then u > 0 on [0, δ1) and, by (2) and (6),
u′ < 0 on (0, δ1). Due to Lemma 4, we have also u′(δ1) < 0. �

For negative starting value we can prove a dual lemma by similar arguments.

Lemma 10 Assume (2)-(5), (7), (8), (27) and

lim
x→0−

f(x)
x

< 0. (34)

Let u be a solution of problem (6), (10) with u0 ∈ (L0, 0). Then there exists
θ1 > 0 such that

u(θ1) = 0, u′(t) > 0 for t ∈ (0, θ1]. (35)

The arguments of the proof of Lemma 10 can be also found in the proof of
Lemma 3.1 in [26], where both (28) and (34) were assumed. If we argue as in
the proofs of Lemma 9 and Lemma 10 working with a1, A1 and b1, B1 in place
of 0, u0, we get the next corollary.

Corollary 11 Assume (2)-(5), (7), (8), (27), (28) and (34). Let u be a solution
of problem (6), (10) with u0 ∈ (L0, 0) ∪ (0, L).

I. Assume that there exist b1 > 0 and B1 ∈ (L0, 0) such that

u(b1) = B1, u′(b1) = 0. (36)

Then there exists θ > b1 such that

u(θ) = 0, u′(t) > 0 for t ∈ (b1, θ]. (37)

II. Assume that there exist a1 > 0 and A1 ∈ (0, L) such that

u(a1) = A1, u′(a1) = 0. (38)

Then there exists δ > a1 such that

u(δ) = 0, u′(t) < 0 for t ∈ (a1, δ]. (39)

Note that if all conditions of Lemma 9 and Lemma 10 are satisfied, then each
solution of problem (6), (10) with u0 ∈ (L0, 0) ∪ (0, L) has at least one simple
zero in (0,∞). Corollary 11 makes possible to construct an unbounded sequence
of all zeros of any damped solution u. In addition, these zeros are simple (see
the proof of Theorem 12). In such a case, u has either a positive maximum or a
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negative minimum between each two neighbouring zeros. If we denote sequences
of these maxima and minima by {An}∞n=1 and {Bn}∞n=1, respectively, then we
call the numbers |An −Bn|, n ∈ N amplitudes of u.

In [26] we give conditions implying that each damped solution of problem
(6), (10) with u0 < 0 has an unbounded set of zeros and decreasing sequence of
amplitudes. Here, there is an extension of this result for u0 ∈ (0, L).

Theorem 12 (Existence of oscillatory solutions I) Assume that (2)-(5), (7),
(8), (27), (28) and (34) hold. Then each damped solution of problem (6), (10)
with u0 ∈ (L0, 0) ∪ (0, L) is oscillatory and its amplitudes are decreasing.

Proof. For u0 < 0 the assertion is contained in Theorem 3.4 of [26]. Let u be
a damped solution of problem (6), (10) with u0 ∈ (0, L). By (17) and Definition
2, we can find L1 ∈ (0, L) such that

B̄ < u(t) ≤ L1 for t ∈ [0,∞). (40)

Step 1. Lemma 9 yields δ1 > 0 satisfying (29). Hence there exists a maximal
interval (δ1, b1) such that u′ < 0 on (δ1, b1). If b1 = ∞, then u is eventually
negative and decreasing. On the other hand, by Lemma 8, u satisfies (23). But
this is not possible. Therefore b1 < ∞ and there exists B1 ∈ (B̄, 0) such that
(36) holds. Corollary 11 yields θ1 > b1 satisfying (37) with θ = θ1. Therefore
u has just one negative local minimm B1 = u(b1) between its first zero δ1 and
second zero θ1.
Step 2. By (37) there exists a maximal interval (θ1, a1), where u′ > 0. If
a1 = ∞, then u is eventually positive and increasing. On the other hand, by
Lemma 8, u satisfies (23). We get a contradiction. Therefore a1 <∞ and there
exists A1 ∈ (0, L) such that (38) holds. Corollary 11 yields δ2 > a1 satisfying
(39) with δ = δ2. Therefore u has just one positive maximum A1 = u(a1)
between its second zero θ1 and third zero δ2.
Step 3. We can continue as in Step 1 and Step 2 and get the sequences
{An}∞n=1 ⊂ (0, L) and {Bn}∞n=1 ⊂ [u0, 0) of positive local maxima and negative
local minima of u, respectively. Therefore u is oscillatory. Using arguments of
the proof of Theorem 3.4 of [26], we get that the sequence {An}∞n=1 is decreasing
and the sequence {Bn}∞n=1 is increasing. In particular, we use (20) and define
a Lyapunov function Vu by

Vu(t) =
u′2(t)

2
+ F (u(t)) = F (u0)−

∫ t

0

p′(s)
p(s)

u′2(s) ds, t ∈ (0,∞). (41)

Then

Vu(t) > 0, V ′u(t) = −p
′(t)
p(t)

u′2(t) ≤ 0 for t ∈ (0,∞), (42)

and
V ′u(t) < 0 for t ∈ (0,∞), t 6= an, bn, n ∈ N.

Consequently
cu := lim

t→∞
Vu(t) ≥ 0. (43)
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So, sequences {Vu(an)}∞n=1 = {F (An)}∞n=1 and {Vu(bn)}∞n=1 = {F (Bn)}∞n=1 are
decreasing and

lim
n→∞

F (An) = lim
n→∞

F (Bn) = cu. (44)

Finally, due to (4), the sequence {An}∞n=1 is decreasing and the sequence {Bn}∞n=1

is increasing. Hence, the sequence of amplitudes {An −Bn}∞n=1 is decreasing,
as well. �

Example 13 Consider problem (6), (10), where p(t) = t2 and f(x) = x(x −
1)(x + 2). In Example 6, we have shown that (2)–(5), (7), (8) with L0 = −2,
L = 1 are valid. Since

lim
t→∞

p′′(t)
p′(t)

= lim
t→∞

1
t

= 0

and

lim
x→0

f(x)
x

= lim
x→0

(x− 1)(x+ 2) = −2 < 0,

we see that (27), (28) and (34) are satisfied. Therefore, by Theorem 12, each
damped solution of (21), (10) with u0 ∈ (−2, 0) ∪ (0, 1) is oscillatory and its
amplitudes are decreasing.

Example 14 Consider problem (6), (10), where

p(t) =
tk

1 + t`
, k > ` ≥ 0,

f(x) =

{
x(x− 1)(x+ 3) for x ≤ 0,
x(x− 1)(x+ 4) for x > 0.

Then L0 = −3, L = 1,

lim
t→∞

p′′(t)
p′(t)

= 0, lim
x→0−

f(x)
x

= −3, lim
x→0+

f(x)
x

= −4.

We can check that also all remaining assumptions of Theorem 12 are satisfied
and this theorem is applicable here.

Assume that f does not fulfil (28) and (34). It occurs for example if f(x) =
−|x|αsignx with α > 1 for x in some neighbourhood of 0. Then Theorem
12 cannot be applied. Now, we will give another sufficient conditions for the
existence of oscillatory solutions. For this purpose we introduce the following
lemmas.

Lemma 15 Assume (2)-(5), (7), (8) and∫ ∞
1

1
p(s)

ds =∞ (45)
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and
∃ε > 0 : f ∈ C1(0, ε) and f ′ ≤ 0 on (0, ε). (46)

Let u be a solution of problem (6), (10) with u0 ∈ (0, L). Then there exists
δ1 > 0 such that

u(δ1) = 0, u′(t) < 0 for t ∈ (0, δ1].

Proof. Assume that such δ1 does not exist. Then u is positive on [0,∞) and,
by Lemma 8, u satisfies (23). In view of (6) and (2) we have u′ < 0 on (0,∞).
From (46) it follows that there exists t0 > 0 such that

0 < u(t) < ε, for t ∈ [t0,∞).

Motivated by arguments of [13] we divide equation (6) by f(u) and integrate it
over interval [t0, t]. We get∫ t

t0

(p(s)u′(s))′

f(u(s))
ds =

∫ t

t0

p(s) ds for t ∈ [t0,∞).

Using the per partes integration we obtain

p(t)u′(t)
f(u(t))

+
∫ t

t0

p(s)f ′(u(s))u′2(s)
f2(u(s))

ds

=
p(t0)u′(t0)
f(u(t0))

+
∫ t

t0

p(s) ds, t ∈ [t0,∞).

From (7) and (8) it follows that there exists t1 ∈ (t0,∞) such that

p(t0)u′(t0)
f(u(t0))

+
∫ t

t0

p(s) ds ≥ 1, t ∈ [t1,∞),

and therefore

p(t)u′(t)
f(u(t))

+
∫ t

t0

p(s)f ′(u(s))u′2(s)
f2(u(s))

ds ≥ 1, t ∈ [t1,∞).

From the fact that f ′(u(s)) ≤ 0 for s > t0 (see (46)) we have

p(t)u′(t)
f(u(t))

+
∫ t

t1

p(s)f ′(u(s))u′2(s)
f2(u(s))

ds ≥ 1, t ∈ [t1,∞).

Then
p(t)u′(t)
f(u(t))

≥ 1−
∫ t

t1

p(s)f ′(u(s))u′2(s)
f2(u(s))

ds > 0, t ∈ [t1,∞) (47)

and

p(t)u′(t)

f(u(t))
(
1−

∫ t
t1
p(s)f ′(u(s))u′2(s)f−2(u(s)) ds

) ≥ 1, t ∈ [t1,∞).

12



Multiplying this inequality by −f ′(u(t))u′(t)/f(u(t)) ≥ 0 we get(
ln(1−

∫ t

t1

p(s)f ′(u(s))u′2(s)
f2(u(s))

ds)
)′
≥ −

(
ln |f(u(t))|

)′
, t ∈ [t1,∞)

and integrating it over [t1, t] we obtain

ln
(

1−
∫ t

t1

p(s)f ′(u(s))u′2(s)
f2(u(s))

ds
)
≥ ln

(
f(u(t1))
f(u(t))

)
,

and therefore

1−
∫ t

t1

p(s)f ′(u(s))u′2(s)
f2(u(s))

ds ≥ f(u(t1))
f(u(t))

, t ∈ [t1,∞).

According to (47) we have

p(t)u′(t)
f(u(t))

≥ f(u(t1))
f(u(t))

, t ∈ [t1,∞),

and consequently

u′(t) ≤ f(u(t1))
1
p(t)

, t ∈ [t1,∞).

Integrating it over [t1, t] we get

u(t) ≤ u(t1) + f(u(t1))
∫ t

t1

1
p(s)

ds, t ∈ [t1,∞).

From (45) it follows that
lim
t→∞

u(t) = −∞,

which is a contradiction. �

By similar arguments we can prove a dual lemma.

Lemma 16 Assume (2)-(5), (7), (8), (45) and

∃ε > 0 : f ∈ C1(−ε, 0) and f ′ ≤ 0 on (−ε, 0). (48)

Let u be a solution of problem (6), (10) with u0 ∈ (L0, 0). Then there exists
θ1 > 0 such that

u(θ1) = 0, u′(t) > 0 for t ∈ (0, θ1].

Following ideas before Corollary 11 we get the next corollary.

Corollary 17 Assume (2)-(5), (7), (8), (45), (46) and (48). Let u be a solution
of problem (6), (10) with u0 ∈ (L0, 0) ∪ (0, L). Then the assertions I and II of
Corollary 11 are valid.
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Now we are able to formulate another existence result for oscillatory solu-
tions. Its proof is almost the same as the proof of Theorem 12 for u0 ∈ (L0, 0)
and the proof of Theorem 3.4 in [26] for u0 ∈ (0, L). The only difference is that
we use Lemma 15, Lemma 16 and Corollary 17, in place of Lemma 9, Lemma
10 and Corollary 11, respectively.

Theorem 18 (Existence of oscillatory solutions II) Assume that (2)-(5), (7),
(8), (45), (46) and (48) hold. Then each damped solution of problem (6), (10)
with u0 ∈ (L0, 0) ∪ (0, L) is oscillatory and its amplitudes are decreasing.

Example 19 Let us consider equation (6) with

p(t) = tα, t ∈ [0,∞),

f(x) =


−|x|λ sgnx, x ≤ 1,
x− 2, x ∈ (1, 3),
1, x ≥ 3,

where λ and α are real parameters.
Case 1. Let λ ∈ (1,∞) and α ∈ (0, 1]. Then all assumptions of Theorem 18
are satisfied. Note that f satifies neither (28) nor (34) and hence Theorem 12
cannot be applied.
Case 2. Let λ = 1 and α ∈ (0,∞). Then all assumptions of Theorem 12 are
satisfied. If α ∈ (0, 1], then also all assumptions of Theorem 18 are fulfilled
but for α ∈ (1,∞), the function p does not satisfy (45) and hence Theorem 18
cannot be applied.

3 Asymptotic properties of oscillatory solutions

In Lemma 8 we show that if u is a damped solution of problem (6), (10) which
is not oscillatory then u converges to 0 for t → ∞. In this section we give
conditions under which also oscillatory solutions converge to 0.

Theorem 20 Assume that (2)-(5), (7), (8) hold and that there exists k0 > 0
such that

lim inf
t→∞

p(t)
tk0

> 0. (49)

Then each damped oscillatory solution u of problem (6), (10) with u0 ∈ (L0, 0)∪
(0, L) satisfies

lim
t→∞

u(t) = 0, lim
t→∞

u′(t) = 0. (50)

Proof. Consider an oscillatory solution u of problem (6), (10) with u0 ∈ (0, L).
Step 1. Using the notation and some arguments of the proof of Theorem 12,
we have the unbounded sequences {an}∞n=1, {bn}∞n=1, {θn}∞n=1, {δn}∞n=1, such
that

0 < δ1 < b1 < θ1 < a1 < δ2 < · · · < δn < bn < θn < an < δn+1 < . . .

14



where u(θn) = u(δn) = 0, u(an) = An > 0 is a unique local maximum of u in
(θn, δn+1), u(bn) = Bn < 0 is a unique local minimum of u in (δn, θn), n ∈ N.
Let Vu be given by (41). Then (43) and (44) hold and, by (2)-(4), we see that

lim
t→∞

u(t) = 0 ⇐⇒ cu = 0. (51)

Assume that (50) does not hold. Then cu > 0. Motivated by arguments of [14]
we derive a contradiction in the following steps.
Step 2. Estimates of u. By (41) and (43), we have

lim
n→∞

u′2(δn)
2

= lim
n→∞

u′2(θn)
2

= cu > 0, (52)

and the sequences {u′2(δn)}∞n=1 and {u′2(θn)}∞n=1 are decreasing. Consider n ∈
N. Then u′2(δn)/2 > cu and there are αn, βn satisfying an < αn < δn < βn < bn
and such that

u′2(αn) = u′2(βn) = cu, u′2(t) > cu, t ∈ (αn, βn). (53)

Since Vu(t) > cu for t > 0 (see (43)), we get by (41) and (53) the inequalities
cu/2 + F (u(αn)) > cu and cu/2 + F (u(βn)) > cu and consequently F (u(αn)) >
cu/2 and F (u(βn)) > cu/2. Therefore, due to (4), there exists c̃ > 0 such that

u(αn) > c̃, u(βn) < −c̃, n ∈ N. (54)

Similarly we deduce that there are α̃n, β̃n satisfying bn < α̃n < θn < β̃n < an+1

and such that
u(α̃n) < −c̃, u(β̃n) > c̃, n ∈ N. (55)

The behaviour of u and inequalities (54) and (55) yield

|u(t)| > c̃, t ∈ [βn, α̃n] ∪ [β̃n, αn+1], n ∈ N. (56)

Step 3. Estimates of βn − αn. We prove that there exist c0, c1 ∈ (0,∞) such
that

c0 < βn − αn < c1, n ∈ N. (57)

Assume on the contrary that there exists a subsequence satisfying lim`→∞(β`−
α`) = 0. By the mean value theorem and (54) there is ξ` ∈ (α`, β`) such that
0 < 2c̃ < u(α`)− u(β`) = |u′(ξ`)|(β` − α`). Since F (u(t)) ≥ 0 for t ∈ [0,∞), we
get by (25) the inequality

|u′(t)| <
√

2F (u0), t ∈ [0,∞), (58)

and consequently

0 < 2c̃ ≤
√

2F (u0) lim
`→∞

(β` − α`) = 0,
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a contradiction. So, c0 satisfying (57) exists. Using the mean value theorem
again we can find τn ∈ (αn, δn) such that u(δn)− u(αn) = u′(τn)(δn −αn) and,
by (53),

δn − αn =
−u(αn)
u′(τn)

=
u(αn)
|u′(τn)|

<
A1√
cu
.

Similarly we can find ηn ∈ (δn, βn) such that

βn − δn =
u(βn)
u′(ηn)

=
|u(βn)|
|u′(ηn)|

<
|B1|√
cu
.

If we put c1 = (A1 + |B1|)/
√
cu, then (57) is fulfilled. Similarly we can prove

c0 < β̃n − α̃n < c1, n ∈ N. (59)

Step 4. Estimates of αn+1 − αn. We prove that there exist c2 ∈ (0,∞) such
that

αn+1 − αn < c2, n ∈ N. (60)

Put m1 = min{f(x) : B1 ≤ x ≤ −c̃} > 0. By (56), B1 ≤ u(t) < −c̃ for
t ∈ [βn, α̃n], n ∈ N. Therefore

f(u(t)) ≥ m1, t ∈ [βn, α̃n], n ∈ N. (61)

Due to (8) we can find t1 > 0 such that

p′(t)
p(t)

√
2F (u0) <

m1

2
, t ∈ [t1,∞). (62)

Let n1 ∈ N fulfil αn1 ≥ t1. Then, according to (19), (58), (61) and (62), we
have

u′′(t) > −m1

2
+m1 =

m1

2
, t ∈ [βn, α̃n], n ≥ n1. (63)

Integrating (63) from bn to βn and using (53) we get 2
√
cu > m1(bn − βn) for

n ≥ n1. Similarly we get 2
√
cu > m1(α̃n − bn) for n ≥ n1. Therefore

4
m1

√
cu > α̃n − βn, n ≥ n1. (64)

By analogy we put m2 = min{−f(x) : c̃ ≤ x ≤ A1} > 0 and prove that there
exists n2 ∈ N such that

4
m2

√
cu > αn+1 − β̃n, n ≥ n2. (65)

Inequalities (57), (59), (64) and (65) imply the existence of c2 fulfilling (60).
Step 5. Construction of a contradiction. Choose t0 > c1 and integrate the
equality in (42) from t0 to t > t0. We have

Vu(t) = Vu(t0)−
∫ t

t0

p′(τ)
p(τ)

u′2(τ) dτ, t ≥ t0. (66)
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Choose n0 ∈ N such that αn0 > t0. Further choose n ∈ N, n > n0 and assume
that t > βn. Then, by (53),∫ t

t0

p′(τ)
p(τ)

u′2(τ) dτ >
n∑

j=n0

∫ βj

αj

p′(τ)
p(τ)

u′2(τ) dτ

> cu

n∑
j=n0

∫ βj

αj

p′(τ)
p(τ)

dτ = cu

n∑
j=n0

[
ln p(τ)

]βj

αj

.

By virtue of (49) there exists c3 > 0 such that p(t)/tk0 > c3 for t ∈ [t0,∞).
Thus ln p(t) > ln c3 + k0 ln t and∫ t

t0

p′(τ)
p(τ)

u′2(τ) dτ > cu

n∑
j=n0

[
ln c3 + k0 ln t)

]βj

αj

= cuk0

n∑
j=n0

ln
βj
αj
. (67)

Due to (57) and c1 < αn0 we have

1 <
βj
αj

< 1 +
c1
αj

< 2, j = n0, . . . , n,

and the mean value theorem yields ξj ∈ (1, 2) such that

ln
βj
αj

=
(
βj
αj
− 1
)

1
ξj
>
βj − αj

2αj
, j = n0, . . . , n. (68)

By (57) and (60), we deduce

βj − αj
αj

>
c0
αj
, αj < jc2 + α1, j = n0, . . . , n.

Thus
βj − αj
αj

>
c0

jc2 + α1
, j = n0, . . . , n. (69)

Using (67)-(69) and letting t to ∞ we obtain∫ ∞
t0

p′(τ)
p(τ)

u′2(τ) dτ ≥ cuk0

∞∑
n=n0

ln
βn
αn
≥ 1

2
cuk0

∞∑
n=n0

βn − αn
αn

≥ 1
2
cuk0

∞∑
n=n0

c0
nc2 + α1

=∞.

Using it in (66) we get limt→∞ Vu(t) = −∞, a contradiction. So, we have proved
that cu = 0.
Using (19) and (51) we have

lim
t→∞

(
u′2(t)

2
+
∫ t

0

p′(s)
p(s)

u′2(s) ds
)

= F (u0)− F (0) = F (u0).
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Since the function
∫ t
0
(p′(s)/p(s))u′2(s) ds is increasing, there exists

lim
t→∞

∫ t

0

p′(s)
p(s)

u′2(s) ds ≤ F (u0).

Therefore there exists
lim
t→∞

u′2(t) = `2.

If ` > 0, then limt→∞ |u′(t)| = `, which contradicts (51). Therefore ` = 0 and
(50) is proved.
If u0 ∈ (L0, 0), we argue analogously. �
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