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1. INTRODUCTION,NOTATION 

Let X be the Banach space of Co-functions on J = [O, 11 endowed with the sup norm Il.11. 
Denote by 9 the set of all operators K : X -+ X which are continuous and bounded (i.e. K(a) 
is bounded for any bounded s1 c X) and & the set of all functionals y : X --) R which are 
linear bounded and increasing (i.e. x, y E X, x(t) <y(t) on J * y(x) < y(y)). 

In the paper we consider the second order differential equation 

x”(t) =f(t, x(t), (Fx)(t), x’(t), (HXW)), tEJ, (1) 

where f : J X lR4 + Iw satisfies the local Caratheodory conditions on J X [w4 (f l Car(J X Iw4> 
for short) and F, H ~g. 

The special case of (1) is the differential equation 

where h E Car(J X rW2). 

X”=h(t,x,x’), (2) 

We find sufficient conditions for the existence of solutions of (1) satisfying one of the 
following boundary conditions (A, B E [w, (Y EM): 

a(x) =A, x’(l) =B, (3) 

a(x) =A, x’(O) = B, (4) 

x(O) =A, x(1) = B. (5) 

Example 1. Let 0 5 a <b I 1, a,(k = 1,2,. . ., n) be positive constants, 0 I t, < t, < . . . < t, 

I 1. Then the functionals cr., j?, where 

a(x) = i a,x(t,) and p(x) = bx(s) ds, 
k=l / II 

belong to the set &. 
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154 I. RACHfJNKOVA and S. ST&K 

If we put n = 1, t, = 0 or t, = 1 in the first formula, then (3) and (4) have the form of the 
mixed boundary conditions from [2]. 

Example 2. Let p : J + J be a continuous function and g E Co(R). The operators belonging 
to the set 5& can be given like this 

max(x(s>,O 5s 5 cp(t)), min{x(s),O Is 4 rp(t>], x(cp(t)), 

/ 

v(t) T(t) s 
g(x(s)) ds, 

// 
g(x(T)) dr ds. 

0 0 0 

Remark 1. Let (Y E& and a(x) = 0 for an x E X. Then there exists a 5 EJ such that x( 5) = 0 
(see e.g. [l]). 

This paper was motivated by the recent paper by Kelevedjiev [2], where using the topologi- 
cal transversality method (see e.g. [3]) the author considered the boundary value problems for 
the equation x” = q(t, x, x’), q E C”(J x W*) with the Neumann, Dirichlet or mixed boundary 
conditions. The sufficient conditions for the existence of solutions are formulated only in the 
terms of sign conditions. The typical result, e.g. for the Dirichlet boundary problem, is the 
following one. 

THEOREM ([2], theorem 4.1). Let q E C”(J x R*). Suppose there are constants Li, i = 1,. . . ,8, 
suchthat L,>L,rC, L,>L,zC, L,cL,sC, L,<L,sC where C=B-A and 

q(t,x,y) 20 for(t,x,y)EJX[WX([L,,L,lU[L,,L,l), 

q(t,x,y) 10 for(t,x,y)EJX[WX([L3,LqlU[L,,Lsl). 

Then BVP x” = q(t, x, x’), (5) has at least one solution in C’(J). 

In our paper, using the topological degree method (see e.g. [4] or [5]), we generalize the 
results of [2] for the Dirichlet and mixed boundary value problem in the following directions: 

(i) “intervals” in the sign conditions for the variable which corresponds to the derivative 
of a solution are replaced by “points”; 

(ii) they are considered the Caratheodory solutions; 
(iii) in the nonlinearity f there are moreover continuous bounded operators which are 

applicated to a solution and its derivative; 
(iv) the boundary conditions corresponding to the mixed problem have a functional form. 

Remark 2. The existence results for the Neumann problem will be proved in our following 
paper. 

For other existence results without growth conditions see, e.g. the papers [61, 171 or 181. 

Notation. For each constants L, I 0 5 L,, F, H l 5@ and bounded set fi c X we set 

p(F,R) = sup~llF~ll Ix E .n), 

[L,, L,l, = {XIX EX, Ml 5 max{ -L,, L,)}, 

(L,, L,), = {XIX EX, L, <x(t) 5 L, for tEJ], 
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[Lt,L2; F,HIR={(X,U,W)l(x,U,W) E IW3,1XIImax{-L,,L,}, 

lul~p(F,[L,,L,l,),lwl +.Gf,(L,,L,).)}, 

(L,,L,; F,H), = ~(x,u,w)l(x,u,w) E R3, L, IX<L,, 

I4 s a-, CL,, &),A IWI I pw,uq, L2)x)J, 

and for each A, B, L, ME R, L I M, (Y E.Q? and F, H EB we set 

[A,B,L,M,a; F,~l~=~(x,u,u)l(x,u,~>~[W~,lxl~max{lL-BI,IM-BI) +IAl/a(l>+lBI. 

blIdF,[O,m=dlL -Bl,lM-Bll +lAl/cy(l) +lBllx),lwl~p(H,(L, MIX)}, 

(A,B,L,M; F,H)R={(x,u,w)I(x,u,w)E[W~, L +min{2A-B,A} <xsM+max(2A- 

MIP(F,(L +mid2A-B, AJ,M+~~~{~A-B,A})~),(~JI~(H,(L,M)~)}. 

2. HOMOGENEOUS CASE A = B = 0 

(a) Problem (I), (3) 

In this part we assume that f fulfills the following condition. 
(A,) There exist real numbers L, I 0 5 L, such that 

f(t,X,U,L1,w)lOlf(t,x,u,L:!,W) 

for a.e. t E J and for each (x, U, w) E [L,, L,; F, HIR. 
For using topological degree arguments to prove existence results to BVP (11, (3) with 

A = B = 0, we need a priori estimates for auxiliary problems defined below. 
Let us put 

g(t,x,u,v,w)=f(t,~,u,~,~‘) 

for (t, x, U, U, w> EJ x R4 where (see Notation) 

X h 
x = Lsign x 1 

for IxlsL 

for lxl>L, L=maxI-L,,L,}, 

u 
ii = 

i 

for Iul I p(F,[L,, L,l,) 

PW, [L,, L,l,)sign u for Id> p(F, [L,, &I,>, 

i 

L2 for v > L, 

ij= v forL,IvIL, 

L, for v CL, 

and 

z= W for Iwlsp(H,(L,,L,),) 
p(H, CL,, L,),)sign w  for b-4 > p(H,(L,, L21x). 
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Consider BVP 

x”(f) = Af*(t, x(t), (Fx)(t), x’(t>,mx’)(t), A), A E LO, 11, 
a(x) = 0, x’(l) = 0, 

where 

f*(t,x,u,u,w,h)=Ag(t,x,u,L,,w)+(l-h)(u-L,). 

(6,) 

(7) 

(8) 

LEMMA 1. (A priori estimates). Let f satisfy (A,). Assume u is a solution of BVP (6,), (7) for 
a A E (0,l). Then the estimates 

Ml 2 m=I -L,, &I, L, Id(f) IL, (9) 

are fulfilled for each t E J. 

Prao~ Fixed n E N. Suppose max{u’(t)lt EJ} = u’(t,) > L, + l/n. Then t, # 1 and there 
exists S > 0 such that 

L, <u'(t) Iu'(t,) 

for t~[t~,t~+8]cJ.Hence 

/ 

to+6 
u”(s) ds = ~‘0, + 6) - ~‘0,) _< 0. 

‘0 
On the other hand, by (A,) and the definition of f*, 

/ 

to+6 

/ 

t,+a 
u”(s) ds = A [g(s, u(s), @‘u)(s), u’(s), Wu’)(s)) + (1 - Mu’(s) - L,)l ds > 0, 

*a *a 
a contradiction. 

Similarly min{u’(t)lt EJ} <L, - l/n leads to a contradiction. Therefore 

L, -l/n<u'(t)ILz+ l/n for t EJ. (10) 

Since (Y(U) = 0, there exists a c EJ such that u(c) = 0 (see remark 1). So integrating the 
inequality (10) on [0, c] and [c, 11, we get 

lu(t)l 5 max{ -L,, L,) + l/n for t EJ. (11) 

Since IZ is an arbitrary positive integer, (lo), (11) imply (9). n 

Now, let us suppose that Y, Z be Banach spaces, 0 CY an open bounded set 

D:domDcY+Z a linear operator, 

N:YX [O,l] -z a continuous operator 

and 

DPIN:ilX [O,l] -+Y a compact operator. 

LEMMA 2. Let Ker D = (01, 0 E R and 

Dx - AN(x, A) Z 0 
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for each (x, A) E (dam D n afi> X (0, 1). Then equation 

Dx = N(x, 1) 

has at least one solution in dom D n fi. 

Proof Lemma 2 follows from the corollary by Gaines and Mawhin in ([4], corollary IV.1, p. 
29). 

LEMMA 3. Let f satisfy (A,). Then BVP (6,), (7) has a solution u satisfying (9). 

Proof Fix n E RJ. Let Y = C’(J) and Z = L,(J) be the Banach spaces with the norms as 
usual. Let 

dom D = {XIX E AC’(J), a(x) = 0, x’(1) = O], D:dom D -)z, x-x”, 

N:Y x to, 11 + z, (x, A) -f-*c-, XC’), (Fx)(*), X’(‘>, (Hx’)(-1, A). 

Then BVP (6,), (7) can be written in the operator form Dx = AN(x, A). We see (cf. remark 1) 
that Ker D = {O}, Im D = Z and D-lN :Y X [0, 11 --f Y is a completely continuous (i.e. compact 
on each bounded set in Y X 10, 11). Set 

fi = {XIX E Y, IJxlI < max{ -L,, L,} + l/n, L, - l/n <x’(t) <L, + l/n for t EJ]. 

Lemma 1 implies that for each A E (0, 1) no solution x of Dx = hN(x, A) can belong to do, 
i.e. Dx - AN(x, A) f 0 for each (x, A) E (dom D n an) x (O,l>. By lemma 2, BVP (6,), (7) has 
a solution u E a. Since IZ is arbitrary, u satisfies (9). n 

THEOREM 1 (existence theorem). Let f satisfy (A,). Then BVP (0, (7) has a solution u 
satisfying (9). 

Proof By lemma 3, there exists a solution u of BVP (6,), (7) satisfying (9). From the 
definition of f* it follows that u is also a solution of (1). n 

The next existence result for BVP (2), (7) immediately follows from theorem 1. 

COROLLARY 1. Let there exist real numbers L, I 0 IL, such that 

h(t, x, L,) IO I h(t, x, L,) 

for a.e. t EJ and each 1x1 I max{ -L,, LJ. Then BVP (21, (7) has a solution u satisfying (9). 

(b) Problem Cl), (4) 

Consider BVP (11, (4) for A = B = 0, i.e. BVP (l), (12) where 

a(x) =o, x’(0) = 0. 

Using the substitution 

t=1-ss, x(t) = u(s), 

(12) 

(13) 
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we can write BVP (l), (12) in the form 

u”(S) =f(l - S, U(S), (F*u)(s), - U’(S), (H* (-u’))(s)), (14) 

a*(u) = 0, U’(1) = 0, (15) 
with (;Y* :X-R, F*, H* :X + X defined by a*(x) = LY(x*), (F*xXt) = (Fx*Xl - t), 
(H*xXt) = (I&*X1 -t> where x*(t) =x(1 -t> for t EJ. Obviously, (Y* EM, I;*, H* E.&S and 
[L,, L,; F, HIR = [L,, L,; F*, H*lp 

If we apply theorem 1 to BVP (14), (15) and use again substitution (13), we get for BVP (l), 
(12) the following result. 

THEOREM 2. Assume that f satisfies the assumption: 
(A,) There exist real numbers L, I 0 IL, such that 

f(t,X,U,Lz,w)lOIf(t,x,u,L,,w) 

for a.e. t EJ and for each (x,u,w) E [L,, L,; F, HIR. 
Then BVP (l), (12) has solution u satisfying (9). 

COROLLARY 2. Assume that there are real numbers L, I 0 IL, such that 

h(t, x, L,) IO I h(t, x, L,) 

for a.e. t E J and each 1x1~ max{ -L,, L2}. Then BVP (2) (12) has a solution u satisfying (9). 

(c) Problem (I), (5) 

BVP (1) (5) will be first solved also in the case of A = B = 0, i.e. for the boundary 
conditions 

x(0) = 0, x(1) = 0. (16) 
Let L, I 0 IL,, L, I 0 s L,, L, CL,, L, > L, and n, E N be a positive integer such that 

L, + 2/n, <L,, L, - 2/n, > L,. To obtain a priori estimates for BVP (l), (16) we define the 
function h, E Car(J x R4) for each n 2 n, in the following way 

/ 
f(t,G,L,,q 

f(t,R,fi,u,ia 

f(t, f, ii, L, + 2/n,q 

+gU,,2/n,u) 

f(t,w,L,,w) 

h,(t,x,u,v,w)= ~f(t,.f,c,v,w> 

f(t,f,~,L,,q 

f(t,i,fi, L, - 2/n,w) 

-g(L, - 2/n, u) 

fO,i,fi,u,V) 

,f(t,f,W,Jq 

for L, < v, 

forL,+2/nsvsL,, 

forL,+l/n<v<L,+2/n, 

for L, < v 5 L, + l/n, 

forL,IvIL,, (17) 

forL,-l/nIv<L,, 

for L, - 2/n <v <L, - l/n, 

forL,<v5L,-2/n, 

for v CL,, 
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where 

g(Li7k>u)=(f( f,R,ii,Li,iv) -f( t,8,17,Li+k,w))(Li+k-u)n, i = 1,2 

and (see notation) 

P= x 

i 

L4 forx>L, 

for L, SxlL,, 

L3 for x<L,, 

U for lul I p(F,(L,,L,),), 

‘= p(F,(L,,L,),)signu for lul>p(F,(L,,L,),), i 

W 

CC = 
i 

for Iwl I p(H, CL,, L41x), 

p(H, CL,, L,),hignw for lwl > p(H,(L,, L4jx). 

We will again consider auxiliary BVP (NJ,,, (161, where 

x”(f) = hf,*(t, x(t),(Fx)(t>, x’(t), (HXW), A), h E [O, 11, II 2 n, 08,), 

and 

fn*(t,X,U,U,W,h)=hh,(t,x,u,u,W)+(l--h)p(~), 

p : R + Iw is continuous function with the property 

p(u) 2 1 for vE[L3-1/110,L31UtL2,L2+l/n,l, 

p(u) I -1 for~E[L~-l/n~,L~lU[L,,L,+l/n,l. 

Here, the main condition for f has the following form. 

(19) 

(A,) There exist constants L, I 0 I L,, L, 2 0 IL, such that 

f(t,X,U,L1,w)lOIf(t,x,u,LZ,W), 

f(t,X,U,L4,W)IOIf(t,X,U,L3,W) 

for a.e. t E J and each (x, U, w> E CL, M; F, H&, where L = min{L,, Ls], M = max{L,, L41. 

LEMMA 4. (A priori estimates). Let f satisfy (A,) with L, <L,, L, > L, and BVP (18,),, (16) 
has a solution u for some A E (O,l> and n 2 no. Then the estimates 

L, - l/n I u(t) IL, + l/n, L, - l/n I u’(t) IL, + l/n 

are fulfilled for each t E J. 

Prooj By (161, we can find an a E (0,l) such that u’(a) = 0. Assume max{u’(t>l t E [0, a)} = 
u’(t,> > L, + l/n. Then there exists an interval [y, 61 c (t,, a) such that L, 2 u’(t) IL, + l/n 
on [y, 61 and u’(y) = L, + l/n, u’(6) = L,; hence 

/ 

6 
u”(S)ds=u’(6)-u’(y)= -l/n<O. 

Y 
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On the other hand we get by (A& (17) and (19), 

/ 

6 
u”(s) ds = A 

/ 
‘[ Ah,(s, U(S), @U)(S), u’(s), (Hu’)(s)) + (1 - h)p(u’(sl)l ds 

Y Y 

/ 

s 
2 A(1 - A) p(u’(s)) ds 2 A(1 - A)(6 - y) > 0, 

Y 

a contradiction. 
Similarly for min{u’(t)( t E [O, a)] <L, - l/n. 
Now, let max{u’(t)]t E (a, l]} = u’(t,> > L, + l/n. Then there exists an interval [E, VI c 

(a, t,> such that L, 5 u’(t) 2 L, + l/n for t E [E, VI and U’(E) = L,, u’(v) = L, + l/n. Then 

/ 
“&)ds = u’(v) - U’(E) = l/n > 0 

E 
and by (A,), (17) and (19) we can prove j”u”(s>ds < 0 by the same arguments like above, a 
contradiction. Similarly for min{u’(t)(t E (a, l]] <L, - l/n. Therefore, using the inequalities 
L, <L,, L, > L,, we obtain 

L,-l/nIu’(t)lL,+l/n for t EJ. 

Integrating the last inequality from 0 to t, we obtain the estimates for U. n 

COROLLARY 3. Let f satisfy (A,) with L, #L,, L, #L, and IL, - L,I > 2/n,, IL, - L,I > 
2/n, for a positive integer no. Let BVP (18,),,, (16) has a solution u for some A E (O,l> and 
n 2 n,. Then the estimates 

L-l/nIu(t)<M+l/n, L-l/nIu’(t)lM+l/n (20) 

are fulfilled on 1. 

Proof If L, <L,, L, > L,, the assertion follows from lemma 4. Let L, > L,, L, > L,. If we 
replace L, and L, in (17) and in the formulae for f, il, W, then by the same arguments as in 
the proof of lemma 4 we prove 

L, - l/n I u(t) 5 L, + l/n, L, - l/n 5 u’(t) IL, + l/n 

for t E J. Similarly for L, < L,. n 

LEMMA 5. Let f satisfy (A,). Then for each sufficiently large 12 E F+J BVP (l&j,,, (16) has a 
solution u satisfying (20). 

Proof For L, #L,, L, f L, the proof is similar to that of lemma 3, only we put domD = 
{XIX E AC’(J), x(O) = 0, x(l) = 0) and 

~={xlxEY,L-2/n<x(t)<M+2/n,L-2/nIx’(t)IM+2/nfortEJ} 

and use corollary 3. If L, = L, or L, = L,, BVP (18,),, (16) has the trivial solution. n 

THEOREM 3. Let f satisfy (A,). Then BVP (11, (16) has a solution u satisfying. 

LIz&)SM, L I u’(t) 5M for t EJ. cm 
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Proo$ By lemma 5, there exists a solution u, of BVP (X3,),, (16) satisfying (20) (with 
u = u,) for each sufficiently large n E N. Since f~ Car(J x R4), we can find 4 E L,(J) such 
that 

If(t, x, u, u, w>l I N> for a.e. t E J and each L 5x <M, 

Iul I p(F,(L, Ml,), L I u 5 M and lwl I ,dH, CL, M),). 

Then (cf. (19)) 

lul,(tJ - u’,(t,>l= 
II 

Yf:( s, u,(s), (Fu,Ks), u’Js>, Wu:,)(s), 1k-h 
11 

12 
= h,(s, u,(s), (Fu,Js),u’Js), (Hu:,)(s))ds 

for t,, t2 E J. Thus (cf. (20) with u = UJ {u,(t)), {u’,(t)} are equibounded and equicontinuous 
on J and, by the Arzela-Ascoli theorem, we can choose a subsequence {u,“(t)) converging in 
the Banach space C’(J) to U. One can see that u fulfils (16) and (21) and so, by (17) and (19), 
it is a solution of (1). n 

COROLLARY 4. Let there exist constants L, I 0 <L,, L, I 0 IL, such that 

h(t, x, L,) so I h(t, x, L,), h(t, x, L4) IO I h(t, x, L3) 

for a.e. t E J and each x E [L, M], where L = minIL,, LJ, M = max{L,, L4}. Then BVP (2) 
(16) has a solution u satisfying (21). 

3. NONHOMOGENEOUS CASE 

Here, we show theorems for nonhomogeneous BVP (1) (i) with i = 3, 4 and 5. 

Remark 3. One can easily verify that the function q(t) = (l/cr(l)HA - Ba(f)) + Bt, t E J 
satisfies boundary conditions both (3) and (4). 

Remark 4. Since 0 <f< 1 for ~EJ and LYE&‘, 0 I a(f) I a(l). Hence It - (Y(~)/(Y(I)J 5 1 for 
t EJ. 

THEOREM 4. Suppose f satisfies the following assumption. 
(H,) There exist A, B, L,, L, E R such that L, I B IL, and 

f(t,x,u,L,,w)lOrf(t,x,u,L,,w) 

for a.e. t EJ and each (x, u,w) E [A, B, L,, L,, (Y; F, HlR. 
Then BVP (1) (3) has a solution u satisfying 

Ml s max{B -L,, L, - Bl + IAl/a(l) -t- IBI, L, I u’(t) IL, for tEJ. (22) 
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pro@ Let q(t) = (l/a(l)) (A - Ba(f)) + Bt. By remark 3, cp satisfies boundary conditions 
(3) and (cf. remark 4) 

II $4 5 $g + IBI, q’(t) =B for t EJ. (23) 

Using the substitution 

x(t) =z(t) f p(t) (24) 

we can write BVP (l), (3) in the form 

z”(t) =g(t, Z(t),(F*Z)(t), z’(t), (H*t’)(t)), (u(z) = 0, z’(1) = 0, (25) 

where g(t,x,u, u,w) =f(t, x + p(t), u, u + B,w) for a.e. t EJ and each (x, u, u,w) E R4 and 
F* (u) = ~(u + cp), H*(u) = H(u + B) for u E X. By theorem 1 there is a solution z of BVP 
(25) such that JJzlI I max{B -L,, L, -B), L, - B s z’(t) IL, - B for t EJ, hence x(t) =-z(t) 
+ q(t) is a solution of BVP (l), (3) satisfying (22). n 

COROLLARY 5. Let A, B, L,, L, E IF8 be such that L, I B IL, and 

ho, x, L,) < 0 I h(t,x, L,) 

for a.e. t EJ and each 1x1 I max{B -L,, L, - B) + IAl/&) + IBI. Then BVP (2), (3) has a 
solution z4 satisfying (22). 

THEOREM 5. Suppose f satisfies the following assumption. 
(H,) There exist A, B, L,, L, E R such that L, I B I L, and 

f(t,X,U,L*,W)IOIf(t,X,U,Ll,w) 

for a.e. t EJ and each (x,u,w) E [A, B, L,, L,, a; F, HIR. 
Then BVP (l), (4) has a solution u satisfying (22). 

Proof We proceed as in the proof of theorem 4, only we apply theorem 2 instead of 
theorem 1. n 

COROLLARY 6. Let A, B, L,, L, E R be such that L, I B 5 L, and 

h(t, x, L2) 5 0 I h(t, x, L,) 

for a.e. t EJ and each 1x1 I max{B -L,, L, -B} + (IAl/a(l)) + IBI. Then BVP (2) (4) has a 
solution z4 satisfying (22). 

For BVP (l), (5) respectively (2), (5) we get the following results. 

THEOREM 6. Suppose f satisfies the assumption: 
(HJ There exist A, B, L,, L,, L,, L, E R such that L, I B -A IL,, L, I B -A IL,, 

and 
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for a.e. t EJ and each (x,u,w)~(A,B, L,M; F,H),, where L =min{L,, L,}, M= 
maxIL,, L41. 

Then BVP (l), (5) has a solution u satisfying 

L+min{2A-B,A}Iu(t)IM+max{2A-B,A}, L <u’(t) IM for t E J. (26) 

Proof: Let q(t) =A(1 - t) + Bt for t EJ. Using substitution (24) we can see that x is a 
solution of BVP (l), (5) if and only if z is a solution of BVP 

z”(t) = 40, z(t), W*z)(t), z’(t), W*z’)(t)), z(0) = 0, z(1) = 0 (27) 

where 

q(t,x,u,u,W)=f(t,X+(O(t),U,U+B-A,W) for a.e. t EJ and each (x,u,u,w) E R4 

and F*(u) = F(u + cp), H*(u) = H(u + B -A) for u E X. By theorem 3, there is a solution z 
of BVP (27) such that L-B+A<z(t)sM-BSA, L-B+A<z’(t)<M-B+A for 
t E J. Then x(t) = z(t) + p(t) is a solution of BVP (0, (5) satisfying (26). n 

COROLLARY 7. Let A, B, L,, L,, L,, L, E lR be such that L, I B -A sL,, L, I B -A 5 L,, 
and 

h(t, x, L,) IO I ho, x, L,), h(t, x, L4) 5 0 I ho, x, Lj) 

for a.e. t E J and each L + min(2A - B, AI IX I M + maxk4 - B, A] where L = min{Li, LJ, 
M = max{L,, L4}. Then BVP (2), (5) has a solution u satisfying (26). 

Example 3. Consider the differential equation 

x” = PJX’), m E N - (1) (28) 

with the mixed boundary conditions 

x’(0) =A, x(l) = B (29) 

or the Dirichlet conditions (5) where P,,, is a polynomial of the degree m. 
In [2] the author shows that provided the polynomial P,,, has a simple zero bigger and a 

simple zero smaller than A (in the case of BVP (28) (29)), or than B -A (in the case of BVP 
(28), (5)) the considered problem is solvable. Here, using corollary 6 for BVP (28), (29) or 
corollary 7 for BVP (28), (5), we obtain the solvability of these problems even in the case of 
arbitrary multiplicity of zeros of P, as well. 

Example 4. Consider the functional differential equation 

x”(t) = t + d(t) + max{x’(s)lO Is I PI 

/ 

I 
x’(s) ds + 10rr3(e’ +x’Yt))sinx’(t), tEJ, (30) 

0 

where d(t) is the Dirichlet function and n E N. Equation (30) has the form (1) with 
f(t, x, u,u,w) = t + d(t) + uw + 10n3(e’ +x2n)sinu, (FxXt) = j,‘x2(s)ds, WxXt) = max{x’(s)lO 
I s I t’}. One can verify that: 

(a) theorem 4 can be applied to BVP (30), (3) with A E [- 27r(~(l), 27ra(l)], B E 
[ - rr/2, rr/2] setting L, = - rr/2 and L, = r/2; 
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(b) theorem 5 can be applied to BVP (30), (4) with A E [ - &1)/2, ~(l)/2], B E [~/2,7~] 
setting L, = m/2 and L, = 3~/2; 

(c) theorem 6 can be applied to BVP (30), (5) with A E [ - z-/2, r/2] and B E [A - n-/2, A 
+ m/2] setting L, = - 1r/2, L, = ?r/2, L, = -3~/2 and L, = 3~/2. 

4. APPLICATIONS 

In this section we give some applications of the above results to BVPs for third and fourth 
order differential equations. 

First, denote by 8 the set of all continuous increasing (not necessarily linear) functionals 
y :X + R with y(O) = 0. If y E 8 we can easily verify that y(x) = 0 for an x E X implies 
x({)=Owith a (EJ. 

LEMMA 6. Let (Y, p E 8, v E X. Then BVP 

x” = v(t), a(x) = 0, P(x’) = 0 

and 

x” = v(t), P(x) = 0, x’(0) = 0 

have a unique solution x1 and x2, respectively. Moreover, 

llxill I Ilvll/2, Ilx:ll I Ilull, for i = 1,2. 

(31) 

(32) 

(33) 

Prooj Since x(t) = c1 + c,t + /d/iv(T)dr ds is the general solution of the equation x” = v(t) 
and (Y(X) = 0, p(x’) = 0 imply x(t) = 0, X’(E) = 0 for some 5, E EJ, we see that x(t) = 
l/j,‘v(r)dr ds is the unique solution of BVP (31) and JIxIJ I Ilvll/2, llx’ll I [lull. Similarly for 
BVP (32). n 

Consider BVP 

xc41 =p(t, x, x’, x”, x”‘)) 

a(x) = 0, P(x’) = 0, x”(0) = 0, 

where p E Car(J X R4) and CY, p E 8. 

(34) 

x”(1) = 0, (35) 

THEOREM 7. Let L, I 0 <L,, L, 5 0 IL, be constants such that 

p(t, x, u,u, L,) IO <p(t, x, u, v, L2), 

p(t,x,u,v, L3) IO Ip(t,x,u,u, L4) 

are satisfied for a.e. t EJ and each (x, U, U) E [-L/2, L/2] X [-L, L] X I-L, Ll, L = 
m&-L,, -L,, L,, LJ. Then BVP (34), (35) h as at least one solution x satisfying 

llxll I L/2, IIX’II IL, Ilx”lI 5 L, min{L,, LJ <x”‘(t) I max{L,, L4j, tEJ. 

(36) 

Proof Define the operators F, H: X - X by 

Fv =x1, Hv =x2, 
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where xi and xz are the unique solutions of BVP (31) and (32), respectively (see lemma 6). 
Inequalities (33) imply that F and H are bounded and p(F; [0, L],) I L/2, p(H; [O, Ll,) I 
L/2. We shall prove that F is continuous. Let {u,} c X be a convergent sequence, v, -+ v as 
IZ + 00. Then there are bounded sequences {a,}, {b,J c R and a, b E R such that 

f s I s 
x,(t) = a, + b,t + 

// 
V,(T) dr ds, x(t) = a + bt + 

0 0 // 
V(T) dr ds, tEJ,nEN. 

0 0 

If lim n ,,b, # b, then there is a convergent subsequence {b,“} of {b,,}, lim, ,mbk, = b*, b* f b. 
Taking the limit as k, -+ CT; in the equalities 

( P(4) =)P b, ( “+ ~X.(s)ds) =O, 

we obtain /3(b* + l,‘u(s)ds) = 0. Since /3(x’) = P(b + /gfv(S)ds) = 0 and p is increasing, 
b = b*, and consequently lim, _ m b, = b. Assume, on the contrary, lim, ,,a, # a. Then 
lim,,,qn = u* # a for a subsequence {al”} of (a,} and taking the limit as I, + m in the 
equalities 

(a(q) =)a ( uln + b,: + /’ /‘v&)dr ds) = 0, 
0 0 

we get cy(u* + bt + /Ofji~(r)dr ds) = 0. Since cr(u + bt + /,j/;v(r>dr ds) = 0 and (Y is increas- 
ing, a =a*, and consequently lim, --tm a, = a. Hence lim, em x, =x which proves that F is 
continuous and therefore F ~g. Similarly, H ~53. 

Using the substitution u =x0 we see that BVP (34), (35) can be written in the form 

u”(t) =p(t,(Fu)(t), (Hu’Nt), u(t), u’(t)>, u(O) = 0, u(l) = 0. (37) 

Set f(t, x, u, v,w) =p(t, u,w, x, u,> for (t, x, u, v, w) EJ x R4. Then f satisfies the assumptions 
of theorem 3, and consequently there exists a solution u of BVP (37) such that Ilull IL, 
min{ L,, L3} I u’(t) I max{ L,, L4} for t E J. Obviously there exists a unique x E AC3(J) satis- 
fying cz(x> = 0, p(x’> = 0 (which implies x( 51 = 0, X’(E) = 0 for some 5, E EJ) and x”(t) = u(t) 
for t E J. This function x is a solution of BVP (34), (35) for which (36) holds. n 

Analogously we can prove for BVP 

X”’ =q(t,x,x’,x”), 

a(x) = 0, x’(0) = 0, x’(l) = 0, 

where 4 E Car(J x R3> and (Y E 8, the following theorem. 

(38) 

(39) 

THEOREM 8. Let L, I 0 IL,, L, I 0 IL, be constants such that 

q(t,x,u,L,)~OIq(t,X,U,L2), q(t,x,u,L,)IOIq(t,x,u,L,) 

are satisfied for a.e. t EJ and each (x,u> E [-L, L] X [-L, L], L = maxI--L,, -L,, L,, L4}. 
Then BVP (38), (39) has at least one solution x satisfying 

II-4 IL, llx’ll IL, min{L,, L3} Ix”(t) 2 max{L,, L4}, tEJ. 
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