0362-546X(95)00060-7

TOPOLOGICAL DEGREE METHOD IN FUNCTIONAL BOUNDARY VALUE PROBLEMS AT RESONANCE \dagger

IRENA RACHU゚NKOVÁ and SVATOSLAV STANËK
Department of Mathematics, Palacký University, Tomkova 40, 77900 Olomouc, Czech Republic

(Received 1 December 1994; received for publication 21 March 1995)
Key words and phrases: Existence, functional boundary problem, topological degree, Carathéodory conditions, sign conditions, multiplicity, resonance.

1. INTRODUCTION, NOTATION

Let \mathbf{X} be the Banach space of C^{0}-functions on $J=[0,1]$ with the sup norm $\|\cdot\|$. Denote by D the set of all operators $K: \mathbf{X} \rightarrow \mathbf{X}$ which are continuous and bounded (i.e. $K(\Omega)$ is bounded for any bounded $\Omega \subset \mathbf{X}$).

In the paper we study boundary value problems at resonance for the second order functional differential equation

$$
\begin{equation*}
x^{\prime \prime}(t)=f\left(t, x(t),(F x)(t), x^{\prime}(t),\left(H x^{\prime}\right)(t)\right), \quad t \in J \tag{1}
\end{equation*}
$$

where $f: J \times \mathbb{R}^{4} \rightarrow \mathbb{R}$ and $F, H \in \mathfrak{D}$. We will consider both the classical and the Carathéodory case, i.e. f is supposed to be continuous on $J \times \mathbb{R}^{4}$ and a solution of (1) is found in $C^{2}(J)$ or f satisfies the local Carathéodory conditions on $J \times \mathbb{R}^{4}\left(f \in \operatorname{Car}\left(J \times \mathbb{R}^{4}\right)\right.$ for short) and a solution of (1) is a function $x \in A C^{1}(J)$ (having the absolutely continuous first derivative on J) satisfying (1) a.e. on J.

The special case of (1) is the differential equation

$$
\begin{equation*}
x^{\prime \prime}=h\left(t, x, x^{\prime}\right) \tag{2}
\end{equation*}
$$

where $h \in C^{0}\left(J \times \mathbb{R}^{2}\right)$ or $h \in \operatorname{Car}\left(J \times \mathbb{R}^{2}\right)$.
We show sufficient conditions for the existence of solutions of (1) satisfying one of the following boundary conditions

$$
\begin{equation*}
x^{\prime}(0)=0, \quad x^{\prime}(1)=0, \quad \text { (Neumann conditions) } \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
x(0)=x(1), \quad x^{\prime}(0)=x^{\prime}(1), \quad \text { (periodic conditions). } \tag{4}
\end{equation*}
$$

We prove the existence results provided f satisfies only sign conditions. Let us note that the existence results with strict sign conditions for the periodic problem were proved also in [1], but there h was continuous. Here, moreover, under an appropriate combination of sign conditions we get multiplicity results as well.

This paper is a continuation of the authors paper [2] and it has been motivated by the recent paper [3], in which, by the topologial transversality method (see, e.g. [4]) the author considered the differential equation $(q): x^{\prime \prime}=q\left(t, x, x^{\prime}\right), q \in C^{0}\left(J \times \mathbb{R}^{2}\right)$ together with the Neumann conditions. His existence result is formulated only by sign conditions in the following theorem.

[^0]Theorem [3, theorem 5.1]. Let there exist $M, L_{j} \in \mathbb{R}(j=1, \ldots, 4)$ such that $M \geq 0$, $L_{2}>L_{1} \geq M,-M \geq L_{4}>L_{3}$ and
(i) $x q(t, x, 0)>0$ for $|x|>M$,
(ii) $q(t, x, y)$ does not change its sign for $(t, x, y) \in J \times[-M, M] \times\left[L_{1}, L_{2}\right]$ and for $(t, x, y) \in J \times[-M, M] \times\left[L_{3}, L_{4}\right]$.
Then BVP (q), (3) has at least one solution in $C^{2}(J)$.

We shall generalize this result in the following directions:
(a) sign condition (i) is replaced by a weaker sign condition (24);
(b) "intervals" in sign condition (ii) for the variable y are replaced by "points" (see (25));
(c) there are considered the Carathéodory solutions;
(d) nonlinearity f depends also on the continuous bounded operators which are applicated to a solution and its derivative.

Moreover, our existence results include also the case of sign condition (i) with the inverse sign of inequality (see theorems 2, 4 and corollaries 2, 4).

The proofs of our results are based on the Mawhin continuation theorem. (See, e.g. [5] or [6].)

Let \mathbf{Y}, \mathbf{Z} be real Banach spaces, $L: \operatorname{dom} L \subset \mathbf{Y} \rightarrow \mathbf{Z}$ a Fredholm map of index zero and $P: \mathbf{Y} \rightarrow \mathbf{Y}, Q: \mathbf{Z} \rightarrow \mathbf{Z}$ continuous projectors such that $\operatorname{Im} P=\operatorname{Ker} L, \operatorname{Ker} Q=\operatorname{Im} L$ and $\mathbf{Y}=\operatorname{Ker} L \oplus \operatorname{Ker} P, \mathbf{Z}=\operatorname{Im} L \oplus \operatorname{Im} Q$. Denote by $L_{P}: \operatorname{Im} L \rightarrow \operatorname{Ker} P \cap \operatorname{dom} L$ the generalized inverse (to L) and $\mathfrak{g}: \operatorname{Im} Q \rightarrow \operatorname{Ker} L$ an isomorphism of $\operatorname{Im} Q$ onto $\operatorname{Ker} L$.

Theorem (continuation theorem [5, p. 40]). Let $\Omega \subset \mathbf{Y}$ be an open bounded set and $N: \mathbf{Y} \rightarrow \mathbf{Z}$ be a continuous operator which is L-compact on $\bar{\Omega}$ (i.e. $Q N: \bar{\Omega} \rightarrow \mathbf{Z}$ and $K_{P}(I-Q) N: \bar{\Omega} \rightarrow \mathbf{Y}$ are compact). Assume
(I) for each $\lambda \in(0,1)$, every solution x of $L x=\lambda N x$ is such that $x \notin \partial \Omega$,
(II) $Q N x \neq 0$ for each $x \in \operatorname{Ker} L \cap \partial \Omega$,
(III) the Brouwer degree $d[\mathfrak{J} Q N, \Omega \cap \operatorname{Ker} L, 0] \neq 0$.

Then the operator equation $L x=N x$ has at least one solution in $\operatorname{dom} L \cap \bar{\Omega}$.

Notation. For each constants $r_{1}, r_{2} \in \mathbb{R}, r_{1} \leq r_{2}$, operator $F \in \mathscr{D}$, nonnegative Lebesgue integrable (on J) function φ and bounded set $\Omega \subset \mathbf{X}$ we set

$$
\begin{aligned}
\rho(F, \Omega) & =\sup (\|F x\| \mid x \in \Omega\} \\
\left(r_{1}, r_{2}\right)_{X} & =\left\{x \mid x \in X, r_{1} \leq x(t) \leq r_{2} \text { for } t \in J\right\} \\
\left(r_{1}, r_{2} ; F\right)_{2} & =\left\{(u, w)\left|(u, w) \in \mathbb{R}^{2},|u| \leq \rho\left(F,\left(r_{1}, r_{2}\right)_{X}\right)\right\}\right. \\
\left(r_{1}, r_{2} ; F\right)_{4} & =\left\{(x , u , v , w) \left|(x, u, v, w) \in \mathbb{R}^{4}, r_{1} \leq x \leq r_{2},|u| \leq \rho\left(F,\left(r_{1}, r_{2}\right)_{X}\right\}\right.\right.
\end{aligned}
$$

and for each $a, b, L_{1}, L_{2} \in \mathbb{R}, a \leq b, L_{1} \leq 0 \leq L_{2}$, and $F, H \in \mathscr{D}$ we set

$$
\begin{aligned}
\left(a, b, L_{1}, L_{2} ; F, H\right)_{2}= & \left\{(u, w)\left|(u, w) \in \mathbb{R}^{2},|u| \leq \rho\left(F,(a, b)_{X}\right),|w| \leq \rho\left(H,\left(L_{1}, L_{2}\right)_{X}\right)\right\}\right. \\
\left(a, b, L_{1}, L_{2} ; F, H\right)_{3}= & \left\{(x , u , w) \left|(x, u, w) \in \mathbb{R}^{3}, a \leq x \leq b,|u| \leq \rho\left(F,(a, b)_{X}\right)\right.\right. \\
& \left.|w| \leq \rho\left(H,\left(L_{1}, L_{2}\right)_{X}\right)\right\}
\end{aligned}
$$

2. EXISTENCE RESULTS FOR BOUNDED NONLINEARITY f

First we shall prove the existence of solutions for BVP (1), (3) or BVP (1), (4) (in what follows only (1), (i), $i \in\{3,4\}$, for short) with $f \in \operatorname{Car}\left(J \times \mathbb{R}^{4}\right)$ bounded by a Lebesgue integrable function φ. We shall assume that f fulfils:
($\left.\mathrm{A}_{1}\right) f \in \operatorname{Car}\left(J \times \mathbb{R}^{4}\right)$ and there exist $r_{1}, r_{2} \in \mathbb{R}$ and $\varphi \in L_{1}(J)$ such that $r_{1} \leq r_{2}$ and

$$
f\left(t, r_{1}, u, 0, w\right) \leq 0 \leq f\left(t, r_{2}, u, 0, w\right)
$$

for a.e. $t \in J$ and for each $(u, w) \in\left(r_{1}, r_{2} ; F\right)_{2}$,

$$
|f(t, x, u, v, w)| \leq \varphi(t)
$$

for a.e. $t \in J$ and for each $(x, u, v, w) \in\left(r_{1}, r_{2} ; F\right)_{4}$.
To obtain a priori estimates for BVP (1), (i), $i \in\{3,4\}$, we define the functions $f_{n} \in \operatorname{Car}\left(J \times \mathbb{R}^{4}\right)$ for each $n \in \mathbb{N}$ in the following way

$$
f_{n}(t, x, u, v, w)= \begin{cases}f\left(t, r_{2}, \bar{u}, 0, w\right)+\frac{x-r_{2}-1 / n}{x-r_{2}+1} & \text { for } x>r_{2}+1 / n \tag{5}\\ f\left(t, r_{2}, \bar{u}, v, w\right)+p_{n}\left(r_{2}, x, u, v, w\right) & \text { for } r_{2}<x \leq r_{2}+1 / n \\ f(t, x, \bar{u}, v, w) & \text { for } r_{1} \leq x \leq r_{2} \\ f\left(t, r_{1}, \bar{u}, v, w\right)-p_{n}\left(r_{1}, x, u, v, w\right) & \text { for } r_{1}-1 / n \leq x<r_{1} \\ f\left(t, r_{1}, \bar{u}, 0, w\right)+\frac{x-r_{1}+1 / n}{r_{1}-x+1} & \text { for } x<r_{1}-1 / n\end{cases}
$$

where

$$
p_{n}\left(r_{j}, x, u, v, w\right)=\left(f\left(t, r_{j}, \bar{u}, 0, w\right)-f\left(t, r_{j}, \bar{u}, v, w\right)\right)\left(x-r_{j}\right) n, \quad j=1,2
$$

and

$$
\bar{u}= \begin{cases}u & \text { for }|u| \leq \rho\left(F,\left(r_{1}, r_{2}\right)_{X}\right) \\ \rho\left(F,\left(r_{1}, r_{2}\right)_{X}\right) \operatorname{sign} u & \text { for }|u|>\rho\left(F,\left(r_{1}, r_{2}\right)_{X}\right)\end{cases}
$$

Consider the differential equation

$$
\begin{equation*}
x^{\prime \prime}(t)=\lambda f_{n}\left(t, x(t),(F x)(t), x^{\prime}(t),\left(H x^{\prime}\right)(t)\right), \quad \lambda \in[0,1] \tag{n}
\end{equation*}
$$

Lemma 1 (a priori estimates). Let f satisfy (A_{1}) and let $\mathrm{BVP}\left(\sigma_{\lambda}\right)_{n}$, (i) have a solution u for some $\lambda \in(0,1], i \in\{3,4\}$ and $n \in \mathbb{N}$. Then the estimates

$$
\begin{equation*}
r_{1}-1 / n \leq u(t) \leq r_{2}+1 / n, \quad\left|u^{\prime}(t)\right| \leq \int_{0}^{1} \varphi(s) \mathrm{d} s \tag{7}
\end{equation*}
$$

are fulfilled for each $t \in J$.

Proof. Assume $r_{2}+1 / n<\max \{u(t) \mid t \in J\}=u\left(t_{0}\right)$ for a $t_{0} \in J$. Then $u^{\prime}\left(t_{0}\right)=0$ which is clear for $t_{0} \in(0,1)$ and follows from boundary conditions (3) or (4) for $t_{0} \in\{0,1\}$. With a little
work one can show that there is an interval $(\alpha, \beta) \subset J$ such that $u(t)>r_{2}+1 / n$ for $t \in(\alpha, \beta)$ and

$$
\begin{equation*}
\int_{\alpha}^{\beta} u^{\prime \prime}(s) \mathrm{d} s \leq 0 \tag{8}
\end{equation*}
$$

On the other hand, by $\left(\mathrm{A}_{1}\right)$ and (5), we get

$$
\begin{aligned}
\int_{\alpha}^{\beta} u^{\prime \prime}(s) \mathrm{d} s & =\lambda \int_{\alpha}^{\beta} f_{n}\left(s, u(s),(F u)(s), u^{\prime}(s),\left(H u^{\prime}\right)(s)\right) \mathrm{d} s \\
& =\lambda \int_{\alpha}^{\beta}\left[f\left(s, r_{2}, \overline{(F u)(s)}, 0,\left(H u^{\prime}\right)(s)\right)+\frac{u(s)-r_{2}-1 / n}{u(s)-r_{2}+1}\right] \mathrm{d} s>0
\end{aligned}
$$

which contradicts (8). Similarly, for $\min \{u(t) \mid t \in J\}<r_{1}-1 / n$. Thus, we have proved the first estimate in (7).

By (\mathbf{A}_{1}), (5) and the first estimate in (7), we can verify $\left|f_{n}\left(t, u(t),(F u)(t), u^{\prime}(t),\left(H u^{\prime}\right)(t)\right)\right| \leq$ $\varphi(t)$ for a.e. $t \in J$. Since $u^{\prime}\left(t_{1}\right)=0$ for a $t_{1} \in J$, integrating $\left(6_{\lambda}\right)_{n}$ (with $x=u$) from t_{1} to t, we obtain the second estimate in (7).

For using the Continuation Theorem (CT for short), we denote by $\mathbf{Y}=C^{1}(J), \mathbf{Z}=L_{1}(J)$ the Banach spaces with the usual norms and set for $n \in \mathbb{N}, i \in\{3,4\}$

$$
\begin{gathered}
L_{i}: \operatorname{dom} L_{i} \rightarrow \mathbf{Z}, \quad x \mapsto x^{\prime \prime}, \\
N: \mathbf{Y} \rightarrow \mathbf{Z}, \quad x \mapsto f_{n}\left(\cdot, x(\cdot),(F x)(\cdot), x^{\prime}(\cdot),\left(H x^{\prime}\right)(\cdot)\right),
\end{gathered}
$$

where $\operatorname{dom} L_{i}=\left\{x \mid x \in A C^{1}(J), x\right.$ satisfies boundary conditions (i) $\} \subset \mathbf{Y}$. Then $\operatorname{BVP}\left(6_{\lambda}\right)_{n}$, (i) can be written in the operator form

$$
L_{i}(x)=\lambda N(x), \quad \lambda \in[0,1] .
$$

Lemma 2. L_{i} is a Fredholm map of index 0 and N is L_{i}-compact on $\bar{\Omega}$ for any open bounded set $\Omega \subset Y$ and each $i \in\{3,4\}$.

Proof. Fix $i \in\{3,4\}$. Evidently, $\operatorname{Ker} L_{i}=\{x \mid x \in \mathbf{Y}, x=k, k \in \mathbb{R}\}, \operatorname{Im} L_{i}=\{y \mid y \in \mathbf{Z}$, $\left.\int_{0}^{1} y(s) \mathrm{d} s=0\right\}$ is closed in \mathbf{Z} and $\operatorname{dim} \operatorname{Ker} L_{i}=\operatorname{codim} \operatorname{Im} L_{i}=1$. Hence, L_{i} is a Fredholm map of index 0 . Consider the continuous projectors

$$
\begin{gathered}
P: \mathbf{Y} \rightarrow \mathbf{Y}, \quad x \mapsto x(0) \\
Q: \mathbf{Z} \rightarrow \mathbf{Z}, \quad y \mapsto \int_{0}^{1} y(s) \mathrm{d} s .
\end{gathered}
$$

Then the generalized inverse (to L_{i}) $K_{i P}: \operatorname{Im} L_{i} \mapsto \operatorname{Ker} P \cap \operatorname{dom} L_{i}$ has the form

$$
\begin{aligned}
& K_{3 P}(y)=\int_{0}^{t} \int_{0}^{s} y(\tau) \mathrm{d} \tau \mathrm{~d} s \\
& K_{4 P}(y)=-t \int_{0}^{1} \int_{0}^{s} y(\tau) \mathrm{d} \tau \mathrm{~d} s+\int_{0}^{t} \int_{0}^{s} y(\tau) \mathrm{d} \tau \mathrm{~d} s
\end{aligned}
$$

Thus

$$
\begin{align*}
Q N: \mathbf{Y} \rightarrow \mathbf{Z}, \quad x & \mapsto \int_{0}^{1} f_{n}\left(s, x(s),(F x)(s), x^{\prime}(s),\left(H x^{\prime}\right)(s)\right) \mathrm{d} s, \tag{9}\\
K_{3 P}(I-Q) N: \mathbf{Y} \rightarrow \mathbf{Y}, \quad x & \mapsto \int_{0}^{t} \int_{0}^{s} f_{n}\left(\tau, x(\tau),(F x)(\tau), x^{\prime}(\tau),\left(H x^{\prime}\right)(\tau)\right) \mathrm{d} \tau \mathrm{~d} s \\
& -\frac{t^{2}}{2} \int_{0}^{1} f_{n}\left(s, x(s),(F x)(s), x^{\prime}(s),\left(H x^{\prime}\right)(s)\right) \mathrm{d} s,
\end{align*}
$$

and

$$
\begin{aligned}
K_{4 P}(I-Q) N: \mathbf{Y} \rightarrow \mathbf{Y}, \quad x & -\frac{t(1-t)}{2} \int_{0}^{1} f_{n}\left(s, x(s),(F x)(s), x^{\prime}(s),\left(H x^{\prime}\right)(s)\right) \mathrm{d} s \\
& -t \int_{0}^{1} \int_{0}^{s} f_{n}\left(\tau, x(\tau),(F x)(\tau), x^{\prime}(\tau),\left(H x^{\prime}\right)(\tau)\right) \mathrm{d} \tau \mathrm{~d} s \\
& +\int_{0}^{t} \int_{0}^{s} f_{n}\left(\tau, x(\tau),(F x)(\tau), x^{\prime}(\tau),\left(H x^{\prime}\right)(\tau)\right) \mathrm{d} \tau \mathrm{~d} s
\end{aligned}
$$

Since $F, H \in \mathfrak{D}$ and (cf. (5), ($\left.\left.\mathrm{A}_{1}\right)\right)\left|f_{n}(t, x, u, v, w)\right| \leq \varphi(t)+1$ for a.e. $t \in J$ and each $(x, u, v, w) \in \mathbb{R}^{4}, Q N$ and $K_{i P}(I-Q) N(i \in\{3,4\})$ are continuous by the Lebesgue theorem and, moreover, $Q N(\bar{\Omega}), K_{i P}(I-Q) N(\bar{\Omega})(i \in\{3,4\})$ are relatively compact for any open bounded set $\Omega \subset \mathbf{Y}$. Hence, N is L_{i}-compact on $\bar{\Omega}$ for any open bounded set $\Omega \subset \mathbf{Y}$ and each $i \in\{3,4\}$.

Lemma 3. Let f satisfy $\left(\mathrm{A}_{1}\right)$. Then for each $n \in \mathbb{N}$ and $i \in\{3,4\}$, BVP $\left(6_{1}\right)_{n}$, (i) has a solution u satisfying (7).

Proof. Fix $i \in\{3,4\}$ and $n \in \mathbb{N}$. Let P, Q and $K_{i P}$ be as in the proof of lemma 2 and set

$$
\Omega=\left\{x\left|x \in \mathbf{Y}, r_{1}-\frac{2}{n}<x(t)<r_{2}+\frac{2}{n},\left|x^{\prime}(t)\right|<\int_{0}^{1} \varphi(s) \mathrm{d} s+1 \text { for } t \in J\right\} .\right.
$$

By lemma $2, N$ is L_{i}-compact on $\bar{\Omega}$ and then lemma 1 implies that assumption (I) of CT is fulfilled. Suppose that $x \in \operatorname{Ker} L_{i} \cap \partial \Omega$. Then $x=r_{1}-2 / n$ or $x=r_{2}+2 / n$ and, by (A_{1}), (5) and (9),

$$
\begin{align*}
Q N\left(r_{1}-\frac{2}{n}\right) & =\int_{0}^{1} f_{n}\left(s, r_{1}-\frac{2}{n},\left(F\left(r_{1}-\frac{2}{n}\right)\right)(s), 0,(H(0))(s)\right) \mathrm{d} s \\
& =\int_{0}^{1}\left[f \left(s, r_{1}, \overline{\left.\left.\left(F\left(r_{1}-\frac{2}{n}\right)\right)(s), 0,(H(0))(s)\right)-\frac{1}{n+2}\right] \mathrm{d} s<0}\right.\right. \tag{10}\\
Q N\left(r_{2}+\frac{2}{n}\right) & =\int_{0}^{1} f_{n}\left(s, r_{2}+\frac{2}{n},\left(F\left(r_{2}+\frac{2}{n}\right)\right)(s), 0,(H(0))(s)\right) \mathrm{d} s \\
& =\int_{0}^{1}\left[f \left(s, r_{2}, \overline{\left.\left.\left(F\left(r_{2}+\frac{2}{n}\right)\right)(s), 0,(H(0))(s)\right)+\frac{1}{n+2}\right] \mathrm{d} s>0 .}\right.\right. \tag{11}
\end{align*}
$$

Hence, condition (II) of CT is realized. Let \mathfrak{J} be an isomorphism from $\operatorname{Im} Q=\{y \mid y \in \mathbf{Z}$, $y=k, k \in \mathbb{R}\}$ onto $\operatorname{Ker} L_{i}=\{x \mid x \in \mathbf{Y}, x=k, k \in \mathbb{R}\}$. Inequalities (10) and (11) imply $d\left[\mathcal{I Q N}, \Omega \cap \mathrm{Ker} L_{i}, 0\right] \neq 0$ and the last condition (III) of CT is fulfilled. The assertion of our lemma follows from CT and lemma 1.

Theorem 1. Let f satisfy (A_{1}) and $i \in\{3,4\}$. Then BVP (1), (i) has a solution u fulfilling

$$
\begin{equation*}
r_{1} \leq u(t) \leq r_{2}, \quad\left|u^{\prime}(t)\right| \leq \int_{0}^{1} \varphi(s) \mathrm{d} s \quad \text { for } t \in J \tag{12}
\end{equation*}
$$

Proof. Fix $i \in\{3,4\}$. For $n \in \mathbb{N}$ let us consider the sequence of BVPs $\left\{\left(6_{1}\right)_{n}\right.$, (i)\}. By lemma 3, we get an appropriate sequence of solutions $\left\{u_{n}\right\}$ for which (7) holds (with $u=u_{n}$). Then, by (5) and (7),

$$
\left|u_{n}^{\prime \prime}(t)\right|=\left|f_{n}\left(t, u_{n}(t),\left(F u_{n}\right)(t), u_{n}^{\prime}(t),\left(H u_{n}^{\prime}\right)(t)\right)\right| \leq \varphi(t)
$$

for a.e. $t \in J$ and each $n \in \mathbb{N}$. Further, by the Arzelà-Ascoli theorem, there exists a subsequence $\left\{u_{k_{n}}\right\}$ of $\left\{u_{n}\right\}$ converging in $C^{1}(J)$ to a u. The function u satisfies (12) and, hence, (cf. (5)) it is a solution of BVP (1), (i).

Corollary 1. Let $h \in \operatorname{Car}\left(J \times \mathbb{R}^{2}\right)$ and let there exist $r_{1}, r_{2} \in \mathbb{R}$ and $\varphi \in L_{1}(J)$ such that $r_{1} \leq r_{2}$ and

$$
h\left(t, r_{1}, 0\right) \leq 0 \leq h\left(t, r_{2}, 0\right), \quad|h(t, x, y)| \leq \varphi(t)
$$

for a.e. $t \in J$ and each $(x, y) \in\left[r_{1}, r_{2}\right] \times \mathbb{R}$. Then for each $i \in\{3,4\}$ BVP (2), (i) has a solution u satisfying (12).

Now, we shall prove analogous results as above under the inequalities which are inverse to that in (A_{1}). We shall assume:
(A_{2}) $f \in C^{0}\left(J \times \mathbb{R}^{4}\right)$ and there are $r_{1}, r_{2}, K \in \mathbb{R}$ such that $r_{1}<r_{2}, K>0$ and

$$
\begin{aligned}
f(t, x, u, 0, w) \geq 0 & \text { for }(t, x, u, w) \in J \times\left[r_{1}-K, r_{1}\right] \times\left(r_{1}-K, r_{2}+K ; F\right)_{2}, \\
f(t, x, u, 0, w) \leq 0 & \text { for }(t, x, u, w) \in J \times\left[r_{2}, r_{2}+K\right] \times\left(r_{1}-K, r_{2}+K ; F\right)_{2} \\
|f(t, x, u, v, w)| \leq K & \text { for }(t, x, u, v, w) \in J \times\left(r_{1}-K, r_{2}+K ; F\right)_{4}
\end{aligned}
$$

Assume $f \in C^{0}\left(J \times \mathbb{R}^{4}\right)$ and define $f^{*} \in C^{0}\left(J \times \mathbb{R}^{4}\right)$ by

$$
\begin{equation*}
f^{*}(t, x, u, v, w)=f(t, \tilde{x}, \bar{u}, v, w) \tag{13}
\end{equation*}
$$

where

$$
\begin{aligned}
& \tilde{x}= \begin{cases}r_{2}+K & \text { for } x>r_{2}+K \\
x & \text { for } r_{1}-K \leq x \leq r_{2}+K \\
r_{1}-K & \text { for } x<r_{1}-K,\end{cases} \\
& \bar{u}= \begin{cases}u & \text { for }|u| \leq p\left(F ;\left(r_{1}-K, r_{2}+K\right)_{X}\right) \\
\rho\left(F ;\left(r_{1}-K, r_{2}+K\right)_{X}\right) \operatorname{sign} u & \text { for }|u|>\rho\left(F ;\left(r_{1}-K, r_{2}+K\right)_{X}\right)\end{cases}
\end{aligned}
$$

Let ε be a positive constant, $\varepsilon<r_{2}-r_{1}, c \in[0,1)$ and consider the differential equation

$$
\begin{equation*}
x^{\prime \prime}(t)=\lambda\left(c f^{*}\left(t, x(t),(F x)(t), x^{\prime}(t),\left(H x^{\prime}\right)(t)\right)+(1-c) \frac{K\left(r_{2}-x(t)-\varepsilon\right)}{\left|r_{2}\right|+|x(t)|+\varepsilon}\right), \quad \lambda \in[0,1] \tag{c}
\end{equation*}
$$

Lemma 4 (a priori estimates). Let f satisfy $\left(\mathrm{A}_{2}\right)$ and let $\mathrm{BVP}\left(14_{\lambda}\right)_{c}$, (i) have a solution u for some $\lambda \in(0,1], c \in[0,1)$ and $i \in\{3,4\}$. Then the estimates

$$
\begin{equation*}
r_{1}-K<u(t)<r_{2}+K, \quad\left|u^{\prime}(t)\right|<K \quad \text { for } t \in J \tag{15}
\end{equation*}
$$

hold and

$$
\begin{equation*}
r_{1}<u\left(a_{u}\right)<r_{2} \tag{16}
\end{equation*}
$$

for an $a_{u} \in J$.
Proof. Assume $r_{2} \leq \min \{u(t) \mid t \in J\}=u\left(t_{0}\right)$ for a $t_{0} \in J$. Then $u^{\prime}\left(t_{0}\right)=0$ (see the first part of the proof of lemma 1) and $u^{\prime \prime}\left(t_{0}\right) \geq 0$. Since

$$
\begin{aligned}
u^{\prime \prime}\left(t_{0}\right) & =\lambda\left(c f^{*}\left(t_{0}, u\left(t_{0}\right),(F u)\left(t_{0}\right), 0,\left(H u^{\prime}\right)\left(t_{0}\right)\right)+(1-c) \frac{K\left(r_{2}-u\left(t_{0}\right)-\varepsilon\right)}{\left|r_{2}\right|+\left|u\left(t_{0}\right)\right|+\varepsilon}\right) \\
& \leq \lambda(1-c) \frac{K\left(r_{2}-u\left(t_{0}\right)-\varepsilon\right)}{\left|r_{2}\right|+\left|u\left(t_{0}\right)\right|+\varepsilon}<0
\end{aligned}
$$

we have a contradiction. Assume $r_{1} \geq \max \{u(t) \mid t \in J\}=u\left(t_{1}\right)$ for a $t_{1} \in J$. Then $u^{\prime}\left(t_{1}\right)=0$, $u^{\prime \prime}\left(t_{1}\right) \leq 0$ and since

$$
\begin{aligned}
u^{\prime \prime}\left(t_{1}\right) & =\lambda\left(c f^{*}\left(t_{1}, u\left(t_{1}\right),(F u)\left(t_{1}\right), 0,\left(H u^{\prime}\right)\left(t_{1}\right)\right)+(1-c) \frac{K\left(r_{2}-u\left(t_{1}\right)-\varepsilon\right)}{\left|r_{2}\right|+\left|u\left(t_{1}\right)\right|+\varepsilon}\right) \\
& \geq \lambda(1-c) \frac{K\left(r_{2}-u\left(t_{1}\right)-\varepsilon\right)}{\left|r_{2}\right|+\left|u\left(t_{1}\right)\right|+\varepsilon}>0
\end{aligned}
$$

we have a contradiction.
Hence, there exists an $a_{u} \in J$ such that $u\left(a_{u}\right) \in\left(r_{1}, r_{2}\right)$, so, (16) is valid. Since u satisfies boundary conditions (i), there exists a $b \in J$ such that $u^{\prime}(b)=0$. Integrating $\left(14_{\lambda}\right)_{c}$ (with $x=u$) from b to t and using the inequality

$$
\left|\left(c f^{*}\left(t, u(t),(F u)(t), u^{\prime}(t),\left(H u^{\prime}\right)(t)\right)+(1-c) \frac{K\left(r_{2}-u(t)-\varepsilon\right)}{\left|r_{2}\right|+|u(t)|+\varepsilon}\right)\right|<K \quad \text { for } t \in J
$$

we get

$$
\left|u^{\prime}(t)\right| \leq\left|\int_{b}^{t} u^{\prime \prime}(s) \mathrm{d} s\right|<K \quad \text { for } t \in J
$$

Then

$$
\begin{aligned}
& u(t)=u\left(a_{u}\right)+\int_{a_{u}}^{t} u^{\prime}(s) \mathrm{d} s<r_{2}+K, \\
& u(t)=u\left(a_{u}\right)+\int_{a_{u}}^{t} u^{\prime}(s) \mathrm{d} s>r_{1}-K
\end{aligned}
$$

on J; hence, (15) is proved.

Lemma 5. Let f satisfy $\left(\mathrm{A}_{2}\right)$. Then for each $i \in\{3,4\}$ and $c \in[0,1)$ BVP $\left(14_{1}\right)_{c}$, (i) has a solution u satisfying (15) and (16) with an $a_{u} \in J$.

Proof. Fix $i \in\{3,4\}$ and $c \in[0,1)$. Let L_{i}, P, Q and $K_{i P}$ be as in the proof of lemma 2 with $\mathbf{Y}=C^{2}(J), \mathbf{Z}=C^{0}(J)$. Set

$$
N_{c}: \mathbf{Y} \rightarrow \mathbf{Z}, \quad x \mapsto c f^{*}\left(\cdot, x(\cdot),(F x)(\cdot), x^{\prime}(\cdot),\left(H x^{\prime}\right)(\cdot)\right)+(1-c) \frac{K\left(r_{2}-u(\cdot)-\varepsilon\right)}{\left|r_{2}\right|+|u(\cdot)|+\varepsilon}
$$

and

$$
\Omega=\left\{x\left|x \in \mathbf{Y}, r_{1}-K<x(t)<r_{2}+K,\left|x^{\prime}(t)\right|<K \text { for } t \in J\right\}\right.
$$

Let us write problem $\left(14_{\lambda}\right)_{c}$, (i) in the form $L_{i} x=\lambda N_{c} x$ and apply CT. By the same consideration as in the proof of lemma 2 we get that N_{c} is L_{i}-compact on $\bar{\Omega}$. From lemma 4 it follows that assumption (I) of CT is fulfilled. Assume that $x \in \operatorname{Ker} L_{i} \cap \partial \Omega$. Then $x=r_{1}-K$ or $x=r_{2}+K$ and, by $\left(\mathrm{A}_{2}\right),(13)$ and (9)

$$
\begin{align*}
Q N_{c}\left(r_{1}-K\right)= & \int_{0}^{1}\left[c f\left(s, r_{1}-K, \overline{\left(F\left(r_{1}-K\right)\right)(s)}, 0,(H(0))(s)\right)\right. \\
& \left.+(1-c) \frac{K\left(r_{2}-r_{1}+K-\varepsilon\right)}{\left|r_{2}\right|+\left|r_{1}-K\right|+\varepsilon}\right] \mathrm{d} s>0 \tag{17}\\
Q N_{c}\left(r_{2}+K\right)= & \int_{0}^{1}\left[c f\left(s, r_{2}+K, \overline{\left(F\left(r_{2}+K\right)\right)(s)}, 0,(H(0))(s)\right)\right. \\
& \left.+(1-c) \frac{K(-K-\varepsilon)}{\left|r_{2}\right|+\left|r_{2}+K\right|+\varepsilon}\right] \mathrm{d} s<0 . \tag{18}
\end{align*}
$$

Hence, condition (II) of CT is realized. Moreover, inequalities (17) and (18) imply $d\left[J Q N_{c}, \Omega \cap \operatorname{Ker} L_{i}, 0\right] \neq 0$ and the last condition (III) of CT is fulfilled. By CT, there exists a solution u of BVP $\left(14_{1}\right)_{c}$, (i). By lemma $4, u$ satisfies (15) and (16) with an $a_{u} \in J$.

Theorem 2. Let f satisfy $\left(\mathrm{A}_{2}\right)$ and $i \in\{3,4\}$. Then BVP (1), (i) has a solution u satisfying

$$
\begin{equation*}
r_{1}-K \leq u(t) \leq r_{2}+K, \quad\left|u^{\prime}(t)\right| \leq K \quad \text { for } t \in J \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{1} \leq u\left(a_{u}\right) \leq r_{2} \tag{20}
\end{equation*}
$$

for an $a_{u} \in J$.
Proof. Fix $i \in\{3,4\}$. Let $\left\{c_{n}\right\} \subset(0,1)$ be a convergent sequence $\lim _{n \rightarrow \infty} c_{n}=1$. By lemma 5 , there exists a solution u_{n} of BVP $\left(14_{1}\right)_{c_{n}}$, (i) for each $n \in \mathbf{N}$ satisfying (15) (with $u=u_{n}$) and

$$
r_{1}<u_{n}\left(a_{n}\right)<r_{2}, \quad n \in \mathbf{N}
$$

for an $a_{n} \in J$. Evidently, by the Arzelà-Ascoli theorem and the Bolzano-Weierstrass theorem, we can assume that $\lim _{n \rightarrow \infty} u_{n}=u$ in $C^{1}(J)$ and $\lim _{n \rightarrow \infty} a_{n}=a$. Then u is a solution of BVP (1), (i) satisfying (19) and (20) with $a_{u}=a$.

Note. Clearly, if f satisfy $\left(\mathrm{A}_{2}\right)$ with $r_{1}=r_{2}$, the constant function $u(t) \equiv r_{1}$ is a solution of (1), (i), $i \in\{3,4\}$.

Corollary 2. Let $h \in C^{0}\left(J \times \mathbb{R}^{2}\right)$ and there exist $r_{1}, r_{2}, K \in \mathbb{R}$ such that $r_{1} \leq r_{2}, K>0$ and

$$
\begin{aligned}
h(t, x, 0) \geq 0 & \text { for }(t, x) \in J \times\left[r_{1}-K, r_{1}\right] \\
h(t, x, 0) \leq 0 & \text { for }(t, x) \in J \times\left[r_{2}, r_{2}+K\right] \\
|h(t, x, y)| \leq K & \text { for }(t, x, y) \in J \times\left[r_{1}-K, r_{2}+K\right] \times \mathbb{R} .
\end{aligned}
$$

Then for each $i \in\{3,4\}$ BVP (2), (i) has a solution u satisfying (19) and (20) with an $a_{u} \in J$.

3. EXISTENCE RESULTS FOR GENERALLY UNBOUNDED NONLINEARITY f, MAIN RESULTS

In this section we shall assume that f satisfies some of the following assumptions:
$\left(\mathrm{H}_{1}\right) f \in \operatorname{Car}\left(J \times \mathbb{R}^{4}\right)$, there exist $r_{1}, r_{2}, L_{1}, L_{2} \in \mathbb{R}$ and $\mu, v \in\{-1,1\}$ such that $r_{1} \leq r_{2}$, $L_{1} \leq 0 \leq L_{2}$ and

$$
f\left(t, r_{1}, u, 0, w\right) \leq 0 \leq f\left(t, r_{2}, u, 0, w\right)
$$

for a.e. $t \in J$ and each $(u, w) \in\left(r_{1}, r_{2}, L_{1}, L_{2} ; F, H\right)_{2}$,

$$
v f\left(t, x, u, L_{1}, w\right) \leq 0 \leq \mu f\left(t, x, u, L_{2}, w\right)
$$

for a.e. $t \in J$ and each $(x, u, w) \in\left(r_{1}, r_{2}, L_{1}, L_{2} ; F, H\right)_{3}$.
$\left(\mathrm{H}_{2}\right) f \in C^{0}\left(J \times \mathbb{R}^{4}\right)$, there exist $r_{1}, r_{2}, L_{1}, L_{2} \in \mathbb{R}$ and $\mu, v \in\{-1,1\}$ such that $r_{1} \leq r_{2}$, $L_{1} \leq 0 \leq L_{2}$ and
$f(t, x, u, 0, w) \geq 0 \quad$ for $(t, x, u, w) \in J \times\left[r_{1}+L_{1}, r_{1}\right] \times\left(r_{1}+L_{1}, r_{2}+L_{2}, L_{1}, L_{2} ; F, H\right)_{2}$,
$f(t, x, u, 0, w) \leq 0 \quad$ for $(t, x, u, w) \in J \times\left[r_{2}, r_{2}+L_{2}\right] \times\left(r_{1}+L_{1}, r_{2}+L_{2}, L_{1}, L_{2} ; F, H\right)_{2}$,

$$
v f\left(t, x, u, L_{1}, w\right) \leq 0 \leq \mu f\left(t, x, u, L_{2}, w\right)
$$

for $(t, x, u, w) \in J \times\left(r_{1}+L_{1}, r_{2}+L_{2}, L_{1}, L_{2} ; F, H\right)_{3}$.

Theorem 3. Let f satisfy $\left(\mathrm{H}_{1}\right)$ and $i \in\{3,4\}$. Then BVP (1), (i) has a solution u with

$$
\begin{equation*}
r_{1} \leq u(t) \leq r_{2}, \quad L_{1} \leq u^{\prime}(t) \leq L_{2} \quad \text { for } t \in J \tag{21}
\end{equation*}
$$

Proof. Define the function $\bar{f}_{\mu \nu} \in \operatorname{Car}\left(J \times \mathbb{R}^{4}\right)$ by f in the following way

$$
\bar{f}_{\mu \nu}(t, x, u, v, w)= \begin{cases}f\left(t, x, u, L_{2}, \bar{w}\right)+\mu \frac{v-L_{2}}{v-L_{2}+1} & \text { for } v>L_{2} \tag{22}\\ f(t, x, u, v, \bar{w}) & \text { for } L_{1} \leq v \leq L_{2} \\ f\left(t, x, u, L_{1}, \bar{w}\right)+v \frac{v-L_{1}}{L_{1}-v+1} & \text { for } v<L_{1}\end{cases}
$$

where

$$
\bar{w}= \begin{cases}w & \text { for }|w| \leq \rho\left(H ;\left(L_{1}, L_{2}\right)_{X}\right) \\ \rho\left(H ;\left(L_{1}, L_{2}\right)_{X}\right) \operatorname{sign} w & \text { for }|w|>\rho\left(H ;\left(L_{1}, L_{2}\right)_{X}\right)\end{cases}
$$

Then $\bar{f}_{\mu v}$ fulfils assumption $\left(\mathrm{A}_{1}\right)$ with $\varphi(t)=1+\sup | | f\left(t_{2} x, u, v, w\right)| |(x, u, v, w) \in \mathbb{R}^{4}$, $r_{1} \leq x \leq r_{2},|u| \leq \rho\left(F ;\left(r_{1}, r_{2}\right)_{X}\right), L_{1} \leq v \leq L_{2},|w| \leq \rho\left(H ;\left(L_{1}, L_{2}\right)_{X}\right)$. So, by theorem 1, BVP (23), (i) ($i=3,4$) has a solution u satisfying (12), where

$$
\begin{equation*}
x^{\prime \prime}(t)=\bar{f}_{\mu \nu}\left(t, x(t),(F x)(t), x^{\prime}(t),\left(H x^{\prime}\right)(t)\right), \quad t \in J . \tag{23}
\end{equation*}
$$

Let us prove that u fulfils the second inequality in (21). Assume, on the contrary, $\max \left\{u^{\prime}(t) \mid t \in J\right\}=u^{\prime}\left(t_{0}\right)>L_{2}$. Boundary conditions (3) (resp. (4)) imply $t_{0} \in(0,1)$ (resp. $\left.t_{0} \in J\right)$. Let $t_{0} \in(0,1)$. Then there is a $\delta>0$ such that $L_{2}<u^{\prime}(t) \leq u^{\prime}\left(t_{0}\right)$ for each t belonging to the interval with the end points t_{0} and $t_{0}+\mu \delta$ and, consequently,

$$
\int_{t_{0}}^{t_{0}+\mu \delta} u^{\prime \prime}(s) \mathrm{d} s=u^{\prime}\left(t_{0}+\mu \delta\right)-u^{\prime}\left(t_{0}\right) \leq 0
$$

On the other hand (cf. (22)),

$$
\begin{aligned}
\int_{t_{0}}^{t_{0}+\mu \delta} u^{\prime \prime}(s) \mathrm{d} s & =\int_{t_{0}}^{t_{0}+\mu \delta} \bar{f}_{\mu p}\left(s, u(s),(F u)(s), u^{\prime}(s),\left(H u^{\prime}\right)(s)\right) \mathrm{d} s \\
& =\mu \int_{t_{0}}^{t_{0}+\mu \delta}\left[\mu f\left(s, u(s),(F u)(s), L_{2}, \overline{\left(H u^{\prime}\right)(s)}\right)+\frac{u^{\prime}(s)-L_{2}}{u^{\prime}(s)-L_{2}+1}\right] \mathrm{d} s>0
\end{aligned}
$$

a contradiction. Let $t_{0} \in\{0,1\}$. Then necessarily u satisfies boundary conditions (4). Set $\tau_{\mu}=\frac{1}{2}(1-\operatorname{sign} \mu)$. Since $u^{\prime}\left(\tau_{\mu}\right)=\max \left\{u^{\prime}(t) \mid t \in J\right\}$, there is an $\varepsilon>0$ such that $u^{\prime}\left(\tau_{\mu}\right) \geq u^{\prime}(t)>L_{2}$ on the interval with the end points τ_{μ} and $\tau_{\mu}+\mu \varepsilon$. Then

$$
\int_{\tau_{\mu}}^{\tau_{\mu}+\mu \varepsilon} u^{\prime \prime}(s) \mathrm{d} s=u^{\prime}\left(\tau_{\mu}+\mu \varepsilon\right)-u^{\prime}\left(\tau_{\mu}\right) \leq 0
$$

On the other hand

$$
\int_{\tau_{\mu}}^{\tau_{\mu}+\mu e} u^{\prime \prime}(s) \mathrm{d} s=\mu \int_{\tau_{\mu}}^{\tau_{\mu}+\mu \varepsilon}\left[\mu f\left(s, u(s),(F u)(s), L_{2}, \overline{\left(H u^{\prime}\right)(s)}\right)+\frac{u^{\prime}(s)-L_{2}}{u^{\prime}(s)-L_{2}+1}\right] \mathrm{d} s>0
$$

a contradiction. Hence, $u^{\prime}(t) \leq L_{2}$ on J.
Similarly, $u^{\prime}(t) \geq L_{1}$ on J. Hence, (cf. (12)) u satisfies (21) and then (cf. (22)) u is a solution of BVP (1), (i), $i \in\{3,4\}$.

Corollary 3. Let $h \in \operatorname{Car}\left(J \times \mathbb{R}^{2}\right)$ and let there exist $r_{1}, r_{2}, L_{1}, L_{2} \in \mathbb{R}$ such that $r_{1} \leq r_{2}$, $L_{1} \leq 0 \leq L_{2}$,

$$
\begin{equation*}
h\left(t, r_{1}, 0\right) \leq 0 \leq h\left(t, r_{2}, 0\right) \quad \text { for a.e. } t \in J \tag{24}
\end{equation*}
$$

and

$$
\begin{align*}
& h\left(t, x, L_{1}\right), h\left(t, x, L_{2}\right) \text { do not change their signs for } \tag{25}\\
& \text { a.e. } t \in J \text { and each } x \in\left[r_{1}, r_{2}\right] \text {. }
\end{align*}
$$

Then for each $i \in\{3,4\}$ BVP (2), (i) has a solution u satisfying (21).

Theorem 4. Let f satisfy $\left(\mathrm{H}_{2}\right)$ and $i \in\{3,4\}$. Then BVP (1), (i) has a solution u satisfying

$$
\begin{equation*}
r_{1}+L_{1} \leq u(t) \leq r_{2}+L_{2}, \quad L_{1} \leq u^{\prime}(t) \leq L_{2} \quad \text { for } t \in J . \tag{26}
\end{equation*}
$$

Proof. Define the function $f_{\mu \nu}^{*} \in C^{0}\left(J \times \mathbb{R}^{4}\right)$ by f as follows

$$
f_{\mu v}^{*}(t, x, u, v, w)= \begin{cases}f\left(t, \tilde{x}, \hat{u}, L_{2}, \bar{w}\right)+\mu \frac{v-L_{2}}{v-L_{2}+1} & \text { for } v>L_{2} \tag{27}\\ f(t, \tilde{x}, \hat{u}, v, \bar{w}) & \text { for } L_{1} \leq v \leq L_{2} \\ f\left(t, \tilde{x}, \hat{u}, L_{1}, \bar{w}\right)+v \frac{v-L_{1}}{L_{1}-v+1} & \text { for } v<L_{1}\end{cases}
$$

where

$$
\begin{aligned}
& \tilde{x}= \begin{cases}r_{2}+L_{2} & \text { for } x>r_{2}+L_{2} \\
x & \text { for } r_{1}+L_{1} \leq x \leq r_{2}+L_{2} \\
r_{1}+L_{1} & \text { for } x<r_{1}+L_{1},\end{cases} \\
& \hat{u}= \begin{cases}u & \text { for }|u| \leq \rho\left(F ;\left(r_{1}+L_{1}, r_{2}+L_{2}\right)_{X}\right) \\
\rho\left(F ;\left(r_{1}+L_{1}, r_{2}+L_{2}\right)_{X}\right) \operatorname{sign} u & \text { for }|u|>\rho\left(F ;\left(r_{1}+L_{1}, r_{2}+L_{2}\right)_{X}\right)\end{cases}
\end{aligned}
$$

and

$$
\bar{w}= \begin{cases}w & \text { for }|w| \leq \rho\left(H ;\left(L_{1}, L_{2}\right)_{X}\right) \\ \rho\left(H ;\left(L_{1}, L_{2}\right)_{X}\right) \operatorname{sign} w & \text { for }|w|>\rho\left(H ;\left(L_{1}, L_{2}\right)_{X}\right)\end{cases}
$$

Then $f_{\mu \nu}^{*}$ fulfils assumption $\left(\mathbf{A}_{2}\right)$ (with $f=f_{\mu \nu}^{*}$ and $K=1+\max \{|f(t, x, u, v, w)| \mid$ $(t, x, u, v, w) \in J \times \mathbb{R}^{4}, r_{1}+L_{1} \leq x \leq r_{2}+L_{2},|u| \leq \rho\left(F ;\left(r_{1}+L_{1}, r_{2}+L_{2}\right)_{x}\right), L_{1} \leq v \leq L_{2}$, $\left.|w| \leq \rho\left(H ;\left(L_{1}, L_{2}\right)_{X}\right)\right\}$. By theorem 2, BVP (28), (i), $i \in\{3,4\}$, has a solution u satisfying (19) and (20), where

$$
\begin{equation*}
x^{\prime \prime}(t)=f_{\mu \nu}^{*}\left(t, x(t),(F x)(t), x^{\prime}(t),\left(H x^{\prime}\right)(t)\right), \quad t \in J . \tag{28}
\end{equation*}
$$

By the same arguments as in the proof of theorem 3 we can prove that u fulfils also the second inequality in (26). Then (cf. (20)) u satisfies the first inequality of (26); hence, (cf. (27)) u is a solution of BVP (1), (i) $(i \in\{3,4\})$.

Example 1. Consider the differential equation

$$
\begin{equation*}
x^{\prime \prime}(t)=-x(t)+\lambda \operatorname{arctg} x^{\prime}(t)+p(t)+\beta \sin (x(\alpha(t))) \tag{29}
\end{equation*}
$$

where $p \in C^{0}(J), \alpha: J \rightarrow J$ is continuous and λ, μ are parameters. Let L be an arbitrary but fixed positive constant. Applying theorem 4 (with $-r_{1}=r_{2}=\|p\|+|\mu|,-L_{1}=L_{2}=L$ and $F x=x \circ \alpha$) we can verify that for each $\lambda, \mu \in \mathbb{R}$ such that

$$
|\lambda|>\frac{2\|p\|+2|\mu|+L}{\operatorname{arctg} L},
$$

there exists a solution u of BVP (29), (i), $i \in\{3,4\}$ and, moreover,

$$
\|u\| \leq\|p\|+|\mu|+L, \quad\left\|u^{\prime}\right\| \leq L
$$

Corollary 4. Let $h \in C^{0}\left(J \times \mathbb{R}^{2}\right)$ and let $r_{1}, r_{2}, L_{1}, L_{2} \in \mathbb{R}$ be such that $r_{1} \leq r_{2}, L_{1} \leq 0 \leq L_{2}$,

$$
\begin{array}{ll}
h(t, x, 0) \leq 0 & \text { for }(t, x) \in J \times\left[r_{2}, r_{2}+L_{2}\right] \\
h(t, x, 0) \geq 0 & \text { for }(t, x) \in J \times\left[L_{1}+r_{1}, r_{1}\right]
\end{array}
$$

and $h\left(t, x, L_{1}\right), h\left(t, x, L_{2}\right)$ do not change their signs for $(t, x) \in J \times\left[r_{1}+L_{1}, r_{2}+L_{2}\right]$. Then for each $i \in\{3,4\}$ BVP (2), (i) has a solution u satisfying (26).

Example 2. Consider the differential equation

$$
\begin{equation*}
x^{\prime \prime}=h(x)+p\left(x^{\prime}\right)+s(t) \tag{30}
\end{equation*}
$$

where $h, p \in C^{0}(\mathbb{R}), s \in C^{0}(J), \lim _{x \rightarrow \varepsilon \infty} h(x)=-\varepsilon \infty$ for each $\varepsilon \in\{-1,1\}$ and

$$
\begin{gathered}
\limsup _{|x| \rightarrow \infty}\left|\frac{p(x)}{h^{*}(k|x|)}\right|=: \alpha>1 \quad \text { with a constant } k>1 \text { and } \\
h^{*}(x):=\max \{h(u) \mid ;-x \leq u \leq x\} \quad \text { for } x \in[0, \infty) .
\end{gathered}
$$

Then for each $i \in\{3,4\}$, BVP (30), (i) has a solution.
To verify this fact set $S=\|S\|$ and suppose that r is a positive constant such that $h(x) \geq S-p(0)$ for $x \leq-r$ and $h(x) \leq-S-p(0)$ for $x \geq r$. Let L be a positive constant such that $L \geq r /(1-k), h^{*}(L) \geq 2 S /(\alpha-1)$ and $\left|p(\pm L) / h^{*}(k L)\right| \geq(1+\alpha) / 2$. Then

$$
h(x)+p(0)+s(t) \leq 0 \text { for } x \geq r, \quad h(x)+p(0)+s(t) \geq 0 \text { for } x \leq-r
$$

and
$|p(\pm L)| \geq h^{*}(k L)+(\alpha-1) h^{*}(k L) / 2 \geq h^{*}(L+(k-1) L)+(\alpha-1) h^{*}(L) / 2 \geq h^{*}(L+r)+S$.
If $p(\tau L)>0$ for a $\tau \in\{-1,1\}$, then

$$
h(x)+p(\tau L)+s(t) \geq h(x)+h^{*}(L+r)+S+s(t) \geq 0 \quad \text { for } x \in[-L-r, L+r]
$$

and if $p(\tau L)<0$ for a $\tau \in\{-1,1\}$, then

$$
h(x)+p(\tau L)+s(t) \leq h(x)-h^{*}(L+r)-S+s(t) \leq 0 \quad \text { for } x \in[-L-r, L+r]
$$

By corollary 4 (with $-r_{1}=r_{2}=r,-L_{1}=L_{2}=L$), BVP (30), (i), $i \in\{3,4\}$, has a solution u satisfying

$$
-r-L \leq u(t) \leq r+L, \quad-L \leq u^{\prime}(t) \leq L \quad \text { for each } t \in J .
$$

For example functions $h(x)=-x^{2 n-1}+\sum_{k=0}^{2 n-2} a_{k} x^{k}, n \in \mathbb{N}, n \geq 1, p(x)=\sin x \cdot \mathrm{e}^{|x|}$ satisfy the above conditions.

4. MULTIPLICITY RESULTS

Here, combining the previous results, we get the existence of at least two or three solutions of BVP (1), (i), $i \in\{3,4\}$.

Using theorem 3 two times, we obtain the following theorem.

Theorem 5 (two solutions). Assume that
$\left(\mathrm{H}_{3}\right) f \in \operatorname{Car}\left(J \times \mathbb{R}^{4}\right)$ and there exist $r_{1}, r_{2}, r_{3}, r_{4}, L_{1}, L_{2} \in \mathbb{R}$ and $\mu, v \in\{-1,1\}$ such that $r_{1} \leq r_{2}<r_{3} \leq r_{4}, L_{1} \leq 0 \leq L_{2}$ and

$$
f\left(t, r_{j}, u, 0, w\right) \leq 0 \leq f\left(t, r_{k}, u, 0, w\right)
$$

for a.e. $t \in J$ and each $(u, w) \in\left(r_{1}, r_{4}, L_{1}, L_{2} ; F, H\right)_{2}, j=1,3, k=2,4$, and

$$
v f\left(t, x, u, L_{1}, w\right) \leq 0 \leq \mu f\left(t, x, u, L_{2}, w\right)
$$

for a.e. $t \in J$ and each $(x, u, w) \in\left(r_{1}, r_{4}, L_{1}, L_{2} ; F, H\right)_{3}$.
Then for each $i \in\{3,4\}$ BVP (1), (i) has at least two different solutions u_{1}, u_{2} and

$$
\begin{equation*}
r_{1} \leq u_{1}(t) \leq r_{2}, \quad r_{3} \leq u_{2}(t) \leq r_{4}, \quad L_{1} \leq u_{k}^{\prime}(t) \leq L_{2} \quad \text { for } t \in J, k=1,2 \tag{31}
\end{equation*}
$$

Proof. Fix $i \in\{3,4\}$. By theorem 3, there exists a solution u_{1} of BVP (1), (i) satisfying (21) (with $u=u_{1}$) and by the same theorem there exists a solution u_{2} of BVP (1), (i) satisfying $r_{3} \leq u_{2}(t) \leq r_{4}, L_{1} \leq u_{2}^{\prime}(t) \leq L_{2}$ on J. Since $r_{2}<r_{3}$, we get $u_{1} \neq u_{2}$.

Corollary 5. Let $h \in \operatorname{Car}\left(J \times \mathbb{R}^{2}\right)$ and there exist $r_{1}, r_{2}, r_{3}, r_{4}, L_{1}, L_{2} \in \mathbb{R}$ such that $r_{1} \leq r_{2}<r_{3} \leq r_{4}, L_{1} \leq 0 \leq L_{2}$ and

$$
\begin{equation*}
h\left(t, r_{j}, 0\right) \leq 0 \leq h\left(t, r_{k}, 0\right) \quad \text { for a.e. } t \in J, \quad \text { where } j=1,3, k=2,4 \tag{32}
\end{equation*}
$$

and

$$
\begin{align*}
& h\left(t, x, L_{1}\right), h\left(t, x, L_{2}\right) \text { do not change their signs } \\
& \text { for a.e. } t \in J \text { and each } x \in\left[r_{1}, r_{4}\right] \text {. } \tag{33}
\end{align*}
$$

Then for each $i \in\{3,4\}$ BVP (2), (i) has at least two different solutions u_{1}, u_{2} satisfying (31).
Suppose $f \in C^{0}\left(J \times \mathbb{R}^{4}\right)$. Then we can use theorem 3 together with theorem 4 and get various multiplicity results. For example if the distance between r_{2} and r_{3} is long enough we can obtain a theorem which guarantees three different solutions.

Theorem 6 (three solutions). Assume that
$\left(\mathrm{H}_{4}\right) f \in C^{0}\left(J \times \mathbb{R}^{4}\right)$ and there exist $r_{1}, r_{2}, r_{3}, r_{4}, L_{1}, L_{2} \in \mathbb{R}$ and $\mu, v \in\{-1,1\}$ such that

$$
\begin{equation*}
r_{1} \leq r_{2}, \quad r_{2}-L_{1}+L_{2}<r_{3} \leq r_{4}, \quad L_{1} \leq 0 \leq L_{2} \tag{34}
\end{equation*}
$$

and for each $(t, u, w) \in J \times\left(r_{1}, r_{4}, L_{1}, L_{2} ; F, H\right)_{2}$ the following inequalities are fulfilled

$$
\begin{gathered}
f\left(t, r_{1}, u, 0, w\right) \leq 0 \leq f\left(t, r_{4}, u, 0, w\right), \\
f(t, x, u, 0, w)>0 \quad \text { for } x \in\left(r_{2}, r_{2}-L_{1}\right], \\
f(t, x, u, 0, w)<0 \quad \text { for } x \in\left[r_{3}-L_{2}, r_{3}\right), \\
v f\left(t, x, u, L_{1}, w\right) \leq 0 \leq \mu f\left(t, x, u, L_{2}, w\right) \quad \text { for } x \in\left[r_{1}, r_{4}\right] .
\end{gathered}
$$

Then for each $i \in\{3,4\}$, BVP (1), (i) has at least three different solutions u_{1}, u_{2}, u_{3} fulfilling for each $t \in J$
$r_{1} \leq u_{1}(t) \leq r_{2}, \quad r_{2}<u_{2}(t)<r_{3}, \quad r_{3} \leq u_{3}(t) \leq r_{4}, \quad L_{1} \leq u_{k}^{\prime}(t) \leq L_{2}, \quad k=1,2,3$.

Proof. Fix $i \in\{3,4\}$. Since $f \in C^{0}\left(J \times \mathbb{R}^{4}\right)$, there exists $\varepsilon>0$ such that $r_{2}-L_{1}+L_{2}+$ $2 \varepsilon<r_{3}$, and for each $(t, u, w) \in J \times\left(r_{1}, r_{4}, L_{1}, L_{2} ; F, H\right)_{2}$ the inequalities $f(t, x, u, 0, w) \geq 0$ for $x \in\left[r_{2}, r_{2}-L_{1}+\varepsilon\right]$, and $f(t, x, u, 0, w) \leq 0$ for $x \in\left[r_{3}-L_{2}-\varepsilon, r_{3}\right]$ are valid. By theorem 3, there exists a solution u_{1} of BVP (1), (i) satisfying (21) (with $u=u_{1}$). Further, by theorem 4, there exists a solution u_{2} of BVP (1), (i) satisfying $r_{2}+\varepsilon \leq u_{2}(t) \leq r_{3}-\varepsilon$, $L_{1} \leq u_{2}^{\prime}(t) \leq L_{2}$ for $t \in J$, and finally, by theorem 3, there exists a solution u_{3} of BVP (1), (i) satisfying $r_{3} \leq u_{3}(t) \leq r_{4}, L_{1} \leq u_{3}^{\prime}(t) \leq L_{2}$ for $t \in J$. Clearly, $u_{1} \neq u_{2} \neq u_{3}$.

Corollary 6. Let $h \in C^{0}\left(J \times \mathbb{R}^{2}\right)$ and there exist $r_{1}, r_{2}, r_{3}, r_{4}, L_{1}, L_{2} \in \mathbb{R}$ such that the conditions (33), (34) and the inequalities

$$
\begin{array}{cc}
h\left(t, r_{1}, 0\right) \leq 0 \leq h\left(t, r_{4}, 0\right) \quad \text { for each } t \in J, \\
h(t, x, 0)>0 & \text { for each }(t, x) \in J \times\left(r_{2}, r_{2}-L_{1}\right], \\
h(t, x, 0)<0 & \text { for each }(t, x) \in J \times\left[r_{3}-L_{2}, r_{3}\right),
\end{array}
$$

are satisfied.
Then for each $i \in\{3,4\}$, BVP (1), (i) has at least three different solutions u_{1}, u_{2}, u_{3} fulfilling (35).

Example 3. Consider a polynomial

$$
p_{n}: \mathbb{R} \rightarrow \mathbb{R}, \quad x \mapsto \sum_{i=0}^{n} a_{i} x^{i}
$$

and a continuous function $g: \mathbb{R} \rightarrow \mathbb{R}$. Suppose that $g(0)=0$ and p_{n} has k different real zeros $x_{1}, x_{2}, \ldots, x_{k}, k \in \mathbb{N}$. Then it is clear that equation $x^{\prime \prime}=p_{n}(x)+g\left(x^{\prime}\right)$ has k different constant solutions which clearly fulfil (3) or (4) (cf. [2, example 6.4]).

Example 4. Consider the nonautonomous equation

$$
\begin{equation*}
x^{\prime \prime}=p_{n}(x)+g\left(t, x^{\prime}\right) \tag{36}
\end{equation*}
$$

where $g \in C^{0}(J \times \mathbb{R})$.
Denote $M=\max \{g(t, 0) \mid t \in J\}, m=\min \{g(t, 0) \mid t \in J\}$.
(1) Let p_{n} have a simple zero $x_{1} \in \mathbb{R}$ and
(a) p_{n} is increasing in x_{1}. Then if $p_{n}(x) \geq M$ for some $x>x_{1}$ and $p_{n}(x) \leq m$ for some $x<x_{1}$, we can choose $r_{1}, r_{2} \in \mathbb{R}$ such that (24) is fulfilled. Further, let

$$
\begin{equation*}
\limsup _{|x| \rightarrow \infty}|g(t, x)|=\infty \quad \text { on } J . \tag{37}
\end{equation*}
$$

Then there exist $L_{1}, L_{2}, L_{1} \leq 0 \leq L_{2}$ such that (25) is satisfied. Therefore, by corollary 3 , problem (36), (i), $i \in\{3,4\}$ has at least one solution.
(b) p_{n} is decreasing in x_{1}. Then the connection between p_{n} and g has to be closer. Let $\left[a_{1}, a_{2}\right] \subset\left(-\infty, x_{1}\right),\left[b_{1}, b_{2}\right] \subset\left(x_{1}, \infty\right)$ be such that

$$
\begin{equation*}
p_{n}(x) \geq M \text { for each } x \in\left[a_{1}, a_{2}\right], \quad p_{n}(x) \leq m \text { for each } x \in\left[b_{1}, b_{2}\right], \tag{38}
\end{equation*}
$$

and let on $J \times\left[a_{1}, b_{2}\right]$
$\left|p_{n}(x)+g\left(t, L_{j}\right)\right|>0 \quad$ for $j=1,2$ and for some $L_{1} \in\left[a_{1}-a_{2}, 0\right), L_{2} \in\left(0, b_{2}-b_{1}\right]$.

Then we can set $r_{1}=a_{2}, r_{2}=b_{1}$ and we see that all conditions of corollary 4 are fulfilled, hence, BVP (36), (i), $i \in\{3,4\}$, has at least one solution.
(2) Let p_{n} have two simple zeros $x_{1}, x_{2} \in \mathbb{R}, x_{1}<x_{2}$. Then we can apply corollary 3 for p_{n} increasing as well as for p_{n} decreasing in x_{1}. It is also possible to combine corollary 3 and corollary 4 and get two solutions. This technique will be shown more precisely for the case of three different solutions.
(3) Let p_{n} have three different simple zeros $x_{1}, x_{2}, x_{3} \in \mathbb{R}, x_{1}<x_{2}<x_{3}$. Let p_{n} increase in x_{1}.
(a) Suppose that $p_{n}(x) \geq M$ for some $x \in\left(x_{1}, x_{2}\right)$ and some $x>x_{3}$ and $p_{n}(x) \leq m$ for some $x \in\left(x_{2}, x_{3}\right)$ and some $x<x_{1}$. Further, let condition (37) be fulfilled. Then we can choose $r_{1}<x_{1}, r_{2} \in\left(x_{1}, x_{2}\right), r_{3} \in\left(x_{2}, x_{3}\right), r_{4}>x_{3}$ and $L_{1} \leq 0 \leq L_{2}$ such that all conditions of corollary 5 are fulfilled and problem (34), (i), $i \in\{3,4\}$ has at least two different solutions.
(b) Let $r_{1} \in\left(-\infty, x_{1}\right), r_{4} \in\left(x_{3}, \infty\right),\left[a_{1}, a_{2}\right] \subset\left[x_{1}, x_{2}\right]$ and $\left[b_{1}, b_{2}\right] \subset\left[x_{2}, x_{3}\right]$ be such that $p_{n}\left(r_{1}\right) \leq m, p_{n}\left(r_{4}\right) \geq M$ and (38) is satisfied. Further, let (39) be fulfilled on $J \times\left[r_{1}, r_{4}\right]$. Then we can set $r_{2}=a_{1}$ and $r_{3}=b_{2}$ and by corollary 6 our problem has at least three different solutions.

This occurs, e.g. for $p_{3}(x)=x^{3}-3 x$ and $g(t, v)=5 v^{3}+\sin 2 \pi t$. Then we have $x_{1}=-\sqrt{3}$, $x_{2}=0, x_{3}=\sqrt{3}, M=1, m=-1$, and we can set $r_{1}=-2, r_{2}=a_{1}=-3 / 2, r_{3}=b_{2}=3 / 2$, $r_{4}=2, L_{1}=-1, L_{2}=1, a_{2}=-1 / 2, b_{1}=1 / 2$.

REFERENCES

1. RACHŮNKOVÁ I., Periodic boundary value problems for second order differential equations, Acta UP Olomucensis Math. 29, 83-91 (1990).
2. RACHÚNKOVÁ I. \& STANĔK S., Topological degree methods in functional boundary value problems, preprint.
3. KELEVEDJIEV P., Existence of solutions for two-point boundary value problems, Nonlinear Analysis 22, 217-224 (1994).
4. GRANAS A., GUENTHER R. \& LEE J., Nonlinear Boundary Value Problems for Ordinary Differential Equations. Dissert. Math., Warszawa (1985).
5. GAINES R. E. \& MAWHIN J. L., Coincidence Degree and Nonlinear Differential Equations. Springer, Berlin (1977).
6. MAWHIN J. L., Topological Degree Methods in Nonlinear Boundary Value Problems. AMS, Providence, R.I. (1979).

[^0]: \dagger Supported by grant no. 201/93/2311 of the Grant Agency of Czech Republic.

