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Abstract. The paper investigates singular nonlinear problems arising in hydrodynamics. In partic-
ular, it deals with the problem on the half–line of the form

(p(t)u′(t))′ = p(t) f (u(t)), u′(0) = 0, u(∞) = L.

The existence of a strictly increasing solution (a homoclinic solution) of this problem is proved by
the dynamical systems approach and the lower and upper functions method.
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1. INTRODUCTION

In the Cahn–Hillard theory used in hydrodynamics to study the behaviour of nonho-
mogenous fluids the following system of PDE’s was derived

ρt +div(ρv) = 0,
dv
dt

+∇(µ(ρ)− γ4ρ) = 0

with the density ρ and the velocity v of the fluid, µ is its chemical potential, γ is a
constant. In the simplest model, this system can be reduced into the boundary value
problem for the ODE of the second order (see [5] or [7])

(tku′)′ = 4λ
2tk(u+1)u(u−ξ ), u′(0) = 0, u(∞) = ξ ,

where k ∈N, ξ ∈ (0,1), λ ∈ (0,∞) are parameters. The function u(t)≡ ξ is a solution of
this problem and it corresponds to the case of homogenous fluid (without bubbles). But
only the existence of a strictly increasing solution of this problem and the solution itself
has a great physical significance. We refer to [1] and [2], where an equivalent problem
was investigated. The numerical treatment was done in papers [5], [7].

Here, for L > 0, we study the generalized problem

(p(t)u′(t))′ = p(t) f (u(t)), (1.1)

u′(0) = 0, u(∞) = L. (1.2)



2. AUTONOMOUS EQUATION

The investigation of autonomous equations corresponding to (1.1) turned out to be quite
useful, because some solutions of the perturbed autonomous equation (2.10) can serve
as an upper functions to (1.1).

Let h : R→ R and x1, x2, x3 ∈ R be such that x1 < x2 < x3 and

h is lipschitzian on [x1,x3], h(xi) = 0 for i = 1,2,3, (2.1)

there exists δ > 0 such that h ∈C1((x2−δ ,x2))
and lim

x→x−2
h′(x) = h′−(x2) < 0,

}
(2.2)

(x− x2)h(x) < 0 for x ∈ (x1,x3)\{x2}, (2.3)

H(x1) > H(x3), H(x) =−
∫ x

x2

h(z)dz for x ∈ R. (2.4)

Moreover we will assume that{
h(x) = 0 for x≤ x1,
h(x) = x− x3 for x≥ x3.

(2.5)

For B ∈ (x1,x2), let us consider the initial problem

u′′ = h(u), (2.6)

u(0) = B, u′(0) = 0. (2.7)

Equation (2.6) is equivalent with the gradient system

u′1 = u2, u′2 = h(u1). (2.8)

An energy function of the system (2.8) has the form

E(u1,u2) =
u2

2
2

+H(u1), u1,u2 ∈ R.

Lemma 2.1. Let (2.1) – (2.4) be satisfied. The function H has following properties

1. H(x) > 0 for x ∈ [x1,x2)∪ (x2,x3],
2. H is decreasing on (x1,x2) and increasing on (x2,x3),
3. there exists unique B̄ ∈ (x1,x2) such that H(B̄) = H(x3).

Proof. The first two properties follow from the definition of H and (2.3). The third
property is a consequence of (2.3) and (2.4).



It is well known that the level sets of the energy function E consist of the orbits of
the second–order conservative system (2.8). As an immediate consequence of the phase
portrait of system (2.8) and of the equivalence of (2.8) and (2.6), we get Lemma 2.2.
Lemma 2.2. (On escape solution) Let (2.1) – (2.5) be satisfied and u be a solution of
problem (2.6), (2.7) with B ∈ (x1, B̄). Then there exists b > 0 such that

u(b) = x3, u′(t) > 0 for t ∈ (0,b]. (2.9)

Choose ε > 0 and consider the perturbed equation

u′′ = h(u)− ε. (2.10)

Lemma 2.3. (On the perturbed equation) Let (2.1) – (2.5) be satisfied. There exists
ε0 > 0 such that for ε ∈ (0,ε0) the function h−ε has roots xi(ε) for i = 1,2,3, such that

h− ε is lipschitzian on [x1(ε),x3(ε)], h(xi(ε)) = ε for i = 1,2,3, (2.11)

there exists δ > 0 such that h− ε ∈C1((x2(ε)−δ ,x2(ε)))
and lim

x→x2(ε)−
(h(x)− ε)′ = (h− ε)′−(x2(ε)) < 0,

}
(2.12)

(x− x2(ε))(h(x)− ε) < 0 for x ∈ (x1(ε),x3(ε))\{x2(ε)}, (2.13)

Hε(x1(ε)) > Hε(x3(ε)), Hε(x) =−
∫ x

x2(ε)
(h(z)− ε)dz for x ∈ R. (2.14)

Proof. The assertion follows from (2.1) – (2.5) and the Implicit function theorem.

Lemma 2.4. Let (2.1) – (2.5) be satisfied. Let ε ∈ (0,ε0), where ε0 is from Lemma 2.3.
Then there exist B∈ (x1,x2) and b > 0 such that the corresponding solution u of problem
(2.10), (2.7) satisfies (2.9) and

0≤ u′(t)≤
√

2H(x1) for t ∈ [0,b]. (2.15)

Proof. Let ε0 be from Lemma 2.3 and ε ∈ (0,ε0) be arbitrary. Then relations (2.11) –
(2.14) hold. From Lemma 2.1 (with Hε in place of H) it follows that there exists the
unique B̄(ε) ∈ (x1(ε),x2(ε)) such that Hε(B̄(ε)) = Hε(x3(ε)). Let B(ε) ∈ (x1(ε), B̄(ε))
and u be the solution of problem (2.10), (2.7) with B = B(ε). According to Lemma 2.2
there exists b(ε) > 0 such that

u(b(ε)) = x3(ε) and u′ > 0 on (0,b(ε)]. (2.16)

In particular, u(t) ∈ (x1(ε),x3(ε)] for every t ∈ [0,b(ε)]. Multiplying the perturbed
equation (2.10) by u′ and integrating it over interval (0, t) for t ∈ [0,b(ε)], we get
u′2(t)/2−u′2(0)/2 = −Hε(u(t))+ Hε(u(0)), that is u′(t) =

√
2(Hε(B(ε))−Hε(u(t)))

for t ∈ [0,b(ε)]. Since Hε(x1(ε)) is the maximum of the function Hε in [x1(ε),x3(ε)]
and Hε is nonnegative, we get u′(t)≤

√
2Hε(x1(ε)) for t ∈ [0,b(ε)]. In view of

Hε(x1(ε)) =
∫ x2(ε)

x1(ε)
(h(z)− ε)dz≤

∫ x2(ε)

x1(ε)
h(z)dz≤

∫ x2

x1

h(z)dz = H(x1)

and (2.16), it follows that 0≤ u′(t)≤
√

2H(x1) for t ∈ [0,b(ε)]. By B(ε) < x3 < x3(ε)
and (2.16), there exists b ∈ (0,b(ε)) such that (2.9) and (2.15) are valid.



3. NONAUTONOMOUS EQUATION

Let us consider equation (1.1), where

f is locally lipschitzian on R, (3.1)

there exist L0 < 0 < L such that f (L0) = f (0) = f (L) = 0, (3.2)

there exists δ > 0 such that f ∈C1((−δ ,0))
and lim

x→x−2
f ′(x) = f ′−(x2) < 0,

}
(3.3)

x f (x) < 0 for x ∈ (L0,L)\{0}, (3.4)

F(L0) > F(L), F(x) =−
∫ x

0
f (z)dz for x ∈ R. (3.5)

Further we assume that

p ∈C2((0,∞))∩C([0,∞)), (3.6)

p(0) = 0, p′(t) > 0 for t ∈ (0,∞), (3.7)

lim
t→∞

p′(t)
p(t)

= 0, lim
t→∞

p′′(t)
p(t)

= 0. (3.8)

The following classical result for non–singular initial problems will be useful in the
proofs.

Lemma 3.1. Assume that a > 0, B0, B1 ∈ R. Let (3.1), (3.6), (3.7) and

f (x) = 0 for x ∈ (−∞,L0]∪ [L,∞) (3.9)

be satisfied. Then there exists a unique solution on [a,∞) of the initial value problem
(1.1),

u(a) = B0, u′(a) = B1. (3.10)

We will study the singular initial value problem (1.1),

u(0) = B, u′(0) = 0 (3.11)

with B ∈ (L0,0). For this purpose we state several lemmas.

Lemma 3.2. Let us assume that (3.1) – (3.4), (3.6) – (3.8) are satisfied. Let u be a
solution of the initial value problem (1.1), (3.11) on [0,∞). Then there exists θ > 0 such
that

u(θ) = 0 and u′(t) > 0 for t ∈ (0,θ ]. (3.12)

Moreover, for every b > θ satisfying

u(b) ∈ (0,L) and u′(t) > 0 for t ∈ [θ ,b), (3.13)

there exist α ∈ (0,θ), β ∈ (θ ,b) such that

p2(b)u′2(b) = 2[p2(α)F(B)− p2(β )F(u(b))]. (3.14)



Proof. Let u be a solution of problem (1.1), (3.11). From (1.1) and (3.4) it follows that
there exists ξ ≥ 0 such that u(t) ∈ (L0,0) and u′(t) > 0 for t ∈ (0,ξ ). Let us assume
that ξ = ∞. Then there exists l ∈ (B,0] such that lim

t→∞
u(t) = l. From (1.1) and (3.11), it

follows that
u′2(t)

2
+
∫ t

0

p′(s)
p(s)

u′2(s)ds = F(B)−F(u(t)). (3.15)

Consequently, lim
t→∞

u′(t) = 0. Then (1.1) together with (3.8) implies lim
t→∞

u′′(t) = f (l). By
(3.2) and (3.4), l = 0.

We define a function v(t) =
√

p(t)u(t) for t ∈ [0,∞). From (3.6) and (3.7) we see that
v is well defined and

v′′(t) = v(t)
[

1
2

p′′(t)
p(t)

− 1
4

(
p′(t)
p(t)

)2

+
f (u(t))

u(t)

]
for t > 0. In view of (3.8), from the fact that lim

t→∞
u(t) = 0, u is negative and from (3.3),

it follows that there exist ω > 0 and R > 0 such that

1
2

p′′(t)
p(t)

− 1
4

(
p′(t)
p(t)

)2

+
f (u(t))

u(t)
<−ω, t ≥ R.

Then
v′′(t) >−ωv(t) for t ≥ R. (3.16)

Thus, v′ is increasing on [R,∞) and has the limit lim
t→∞

v′(t) = V . If V > 0, then

limt→∞ v(t) = +∞, which contradicts the boundedness of v. If V ≤ 0, then v′(t) < 0
for every t ∈ (R,∞) and therefore 0 > v(R) ≥ v(t) for t ≥ R. In view of (3.16) we can
see that 0 <−ωv(R)≤−ωv(t) < v′′(t) for t ≥ R. We get lim

t→∞
v′(t) = ∞, which implies

lim
t→∞

v(t) = ∞, again. These contradictions imply the existence of θ > 0 satisfying
(3.12). Let us consider b > θ such that (3.13) is satisfied. Multiplying equation (1.1)
by pu′, integrating it over (0,θ) and (θ ,b) and using the Mean value theorem, we get
(3.14).

Lemma 3.3. Let us assume that (3.1) – (3.8) be satisfied. Let u be a solution of the initial
value problem (1.1), (3.11) on [0,∞) and let b > 0, L̄ ∈ (0,L) be such that

u(b) = L̄, u′(b) = 0. (3.17)

Then there exists θ > b such that

u(θ) = 0 and u′(t) < 0 for t ∈ (b,θ ]. (3.18)

Moreover, for every c > θ satisfying

u(c) ∈ (L0,0) and u′(t) < 0 for t ∈ (θ ,c), (3.19)

there exist α ∈ (b,θ) and β ∈ (θ ,c) such that

(pu′)2(c) = 2[p2(α)F(L̄)− p2(β )F(u(c))]. (3.20)



Proof. First of all we will prove the existence of θ satisfying (3.18). By (3.4) and (3.17)
there exists b1 > b such that f (u(t)) < 0 for t ∈ (b,b1). Thus p(t)u′(t) and u′(t) are
decreasing and negative on (b,b1) and u(t) is decreasing and positive on (b,b1). Assume
that θ > b satisfying (3.18) does not exist. Then b1 = ∞ and lim

t→∞
u(t) ∈ [0, L̄). On the

other hand, lim
t→∞

u′(t) < 0, which gives lim
t→∞

u(t) =−∞. The rest of the proof is similar to
the previous one.

Lemma 3.4. (On three types of solutions) Let (3.1) – (3.9) be satisfied, B∈ (L0,0). Then
there exists a unique solution u of problem (1.1), (3.11) and it is defined on [0,∞). There
are just three types of solutions:

• an escape solution if there exists b > 0 such that u(b) = L and u′ > 0 on (0,b],
• a homoclinic solution if u′ > 0 on (0,∞) and limt→∞ u(t) = L,
• an oscillatory solution if u has infinitely many roots and u(t) ∈ (B,L) for t ∈ (0,∞).

Moreover, for t ∈ (0,∞) it is valid

|u′(t)| ≤ max
L0≤x≤L

| f (x)| · t, |u(t)| ≤ L0 + max
L0≤x≤L

| f (x)| · t
2

2
. (3.21)

Proof. From (3.1) and (3.9) it follows that there exists L̄ > 0 such that | f (x1)− f (x2)| ≤
L̄|x1−x2| for x1, x2 ∈R. Let us take η > 0 such that L̄η2/2 < 1 and consider the Banach
space C([0,η ]) with the maximum norm and an operator

(Fu)(t) = B+
∫ t

0

1
p(s)

∫ s

0
p(τ) f (u(τ))dτ ds,

F : C([0,η ])→C([0,η ]). Then F is a contraction and the Banach fixed point theorem
yields a unique fixed point u of the operator F . Therefore

u′(t) =
1

p(t)

∫ t

0
p(s) f (u(s))ds for t ∈ (0,η). (3.22)

Using (3.1), (3.7), (3.9) and (3.22) we derive that the fixed point u is a unique solution
of problem (1.1), (3.11). From Lemma 3.1 it follows, that the solution u can be extended
onto every interval, where it is bounded. Lemma 3.2 gives θ > 0 satisfying (3.12). Now,
we get three possibilities:
CASE A. There exists b > θ such that u(b) = L and u′(t) > 0 for t ∈ [θ ,b]. From (3.6),
(3.7) and (3.9) it follows that u can be extended on [0,∞). This solution is an escape
solution.
CASE B. For t ∈ (θ ,∞) it is valid u(t) ∈ (0,L) and u′(t) > 0. The monotonicity implies
the existence of L̃ ∈ (0,L] such that

lim
t→∞

u(t) = L̃. (3.23)

Since f (u(t)) < 0 for t > θ , from (1.1) it follows, that pu′ and u′ are decreasing on
(θ ,∞). Since u is bounded, necessarily lim

t→∞
u′(t) = 0. From (1.1) and (3.8) we get



lim
t→∞

u′′(t) = f (L̃). According to (3.2) and (3.4) we get L̃ = L. This solution satisfies
conditions (1.2) and so it is a solution with homoclinic orbit.
CASE C. There exists b > θ such that

u′(b) = 0, u(b) ∈ (0,L) and u′(t) > 0 for t ∈ (θ ,b). (3.24)

From the second part of Lemma 3.2 we get α ∈ (0,θ) and β ∈ (θ ,b) such that (3.14)
holds. In view of (3.24) we get

F(u(b)) =
(

p(α)
p(β )

)2

F(B). (3.25)

Using Lemma 3.3 we get the existence of θ1 > b such that u(θ1) = 0 and u′(t) < 0
for t ∈ (b,θ1]. Let us suppose that there exists b̄1 ∈ (θ1,∞) such that u(b̄1) = B and
u′(t) < 0 for t ∈ [θ1, b̄1). Using the second part of Lemma 3.3, we get ᾱ1 ∈ (b,θ1)
and β̄1 ∈ (θ1, b̄1) such that (pu′)2(b̄1) = 2[p2(ᾱ1)F(u(b))− p2(β̄1)F(B)]. This together
with (3.25) yield a contradiction. Hence there exists b1 > θ1 such that u(b1) ∈ (B,0),
u′(b1) = 0 and u′(t) < 0 for t ∈ (θ1,b1). Repeating this procedure we get a sequence
{θn}∞

n=1 of roots of the solution u and a sequence {bn}∞
n=1 of roots of the derivative u′

such that {|u(bn)|}∞
n=1 is decreasing. This solution corresponds to oscillatory solution.

Estimations (3.21) can be reached from (1.1) by a direct computation.

Lemma 3.5. (On oscillatory solutions) Let (3.1) – (3.8) be satisfied, B ∈ (L0,0) be such
that

F(B) < F(L). (3.26)

Then the corresponding solution of problem (1.1), (3.11) is oscillatory.

Proof. Let u be a solution of problem (1.1), (3.11) with B ∈ (L0,0) satisfying (3.26).
Let us assume that u is an escape solution. Then there exist b > 0, θ ∈ (0,b) such that
u(θ) = 0, u(b) = L and u′(t) > 0 for t ∈ (0,b]. From Lemma 3.2 we get α ∈ (0,θ),
β ∈ (θ ,b) such that (3.14) holds. Then

(pu′)2(b) = 2F(L)p2(β )
[(

p(α)
p(β )

)2 F(B)
F(L)

−1
]
≤ 0.

This contradicts the fact that u′(b) > 0. Let us assume that u is a homoclinic solution. Let
θ > 0 be the root of u and b > θ be arbitrary. Then by Lemma 3.2 there exist α ∈ (0,θ),
β ∈ (θ ,b) such that (3.14) holds. From (3.14), the fact (pu′)2(b) > 0 and (3.7) we get

F(B) >

(
p(β )
p(α)

)2

F(u(b)) > F(u(b)).

Letting b→ ∞ we get F(B)≥ F(L), which contradicts (3.26).

Actually, the homoclinic solution is the desired strictly increasing solution of problem
(1.1), (1.2). In order to prove the existence of such solution we need the lower and upper
functions method for the singular mixed problem



(p(t)u′)′ = p(t) f (u), u′(a) = 0, u(b) = L, (3.27)

where a, b ∈ R, a≥ 0, b > a.

Definition 3.6. A function σ ∈C([a,b]) is called a lower function of problem (3.27), if
there exists a finite set Σ ⊂ (a,b) such that σ ∈C2((a,b] \Σ), σ ′(τ+), σ ′(τ−) ∈ R for
τ ∈ Σ,

(p(t)σ ′(t))′ ≥ p(t) f (σ(t)) for t ∈ (a,b]\Σ,

σ
′(a+)≥ 0, σ(b)≤ L, σ

′(τ−) < σ
′(τ+) for τ ∈ Σ.

If all inequalities are reversed, then σ is called an upper function of problem (3.27).

Note that σ ′(a+) need not be bounded if a = 0.

Theorem 3.7. Let p satisfy (3.6), (3.7), f ∈C(R), σ1 and σ2 be a lower function and an
upper function of problem (3.27) and let σ1(t)≤ σ2(t) for t ∈ [a,b]. Then problem (3.27)
has a solution u ∈C1([a,b])∩C2((a,b]) such that σ1(t)≤ u(t)≤ σ2(t) for t ∈ [a,b].

Proof. See [8] or [9].

The next assertion is based on Lemma 2.3 and Theorem 3.7.

Lemma 3.8. (On escape solutions) Let (3.1) – (3.9) be satisfied. There exist B∗ ∈ (L0,0)
and c∗ ∈ (0,∞) such that a solution u∗ of problem (1.1), (3.11) with B = B∗ satisfies the
condition u∗(c∗) = L, u′∗(t) > 0 on (0,c∗].

Proof. Let us put f̃ (x) = f (x) for x ≤ L and f̃ (x) = x− L for x > L. Let ε0 ∈ R be
from Lemma 2.3 for L0, 0, L, f̃ , F̃ in place of x1, x2, x3, h, H, respectively. Here,
F̃(x) =−

∫ x
0 f̃ (z)dz for x ∈ R. Consider

u′′ = f̃ (u)− ε, (3.28)

with ε ∈ (0,ε0). From Lemma 2.4 it follows that there exists BL ∈ (L0,0) such that for
the corresponding solution uL of problem (3.28), (3.11) with B = BL, there exists b > 0
such that uL(b) = L and 0 < u′L(t) ≤

√
2F̃(L0) for t ∈ [0,b]. From (3.8) it follows that

there exists a > 0 such that

p′(t)
p(t)

<
ε√

2F̃(L0)
for t > a.

Put v(t) = uL(t − a) for t ∈ [a,a + b]. Then f̃ (v(t) = f (v(t)) on [a,a + b] and we can
check that v is an upper function of the problem

u′′+
p′(t)
p(t)

u′ = f (u), u′(a) = 0, u(a+b) = L. (3.29)

Since L0 is a lower function of problem (3.29), by Theorem 3.7 there exists a solution
u0 of problem (3.29) such that

L0 < u0(t) < v(t) for t ∈ (a,a+b), u′0(a+b) > 0. (3.30)



If there exists a0 > 0 such that u0(a0) = 0, we put

β (t) =
{

0 for t ∈ [0,a0],
u0(t) for t ∈ (a0,a+b].

If u0(t) ≤ 0 for t ∈ [0,a], we put β (t) = u0(t) for t ∈ [0,a + b]. Denote c∗ = a + b. In
both cases the function β is an upper function of the problem

u′′+
p′(t)
p(t)

u′ = f (u), u′(0) = 0, u(c∗) = L. (3.31)

Since the constant L0 is a lower function of problem (3.31), there exists a solution u∗ of
problem (3.31) such that

L0 < u∗(t) < β (t) for t ∈ (0,c∗). (3.32)

We put B∗ = u∗(0). Then u∗ is a solution of (1.1), (3.11) with B = B∗. Finally, by (3.29),
(3.30) we have β (c∗) = L, β ′(c∗) > 0. This, together with the inequality in (3.30) gives
u′∗(c∗) > 0. Hence by Lemma 3.4, u′(t) > 0 for t ∈ (0,c∗].

Theorem 3.9. (On homoclinic solutions) Let (3.1) – (3.8) be satisfied. Then there exists
at least one strictly increasing solution of problem (1.1), (1.2).

Proof. First, we will assume that (3.9) is satisfied. Let us define

M = {B0 ∈ (L0,0) : each solution of (1.1),(3.11) with B ∈ [B0,0) is oscillatory},

and B̃ = infM . Lemma 3.5 guarantees that M 6= /0 and from Lemma 3.8 it follows
that B̃ > L0. We will prove that there exists Bhom ∈ (L0, B̃] such that the corresponding
solution of problem (1.1), (3.11) with B = Bhom is a homoclinic solution. Assume that
Bhom does not exist.
CASE A. Let ũ be an oscillatory solution of (1.1), (3.11) with B = B̃. Then we can find
a sequence {Bn} ⊂ (L0, B̃) such that limn→∞ Bn = B̃ and the corresponding solutions
un of (1.1), (3.11) with B = Bn are escape solutions. Let θ1 be the second zero of ũ,
that is, θ1 fulfils ũ(θ1) = 0, ũ′(θ1) < 0. By Lemma 3.4, the sequence {un} is bounded
and equicontinuous on [0,θ1]. Therefore we can choose a subsequence {um}, which is
uniformly convergent on [0,θ1] to a function v ∈C([0,θ1]).
We can check that v is a solution of problem (1.1), (3.11) and therefore v = ũ on [0,θ1].
Since um are increasing, it follows that v is nondecreasing on [0,θ1]. This contradicts the
fact that v′(θ1) < 0.
CASE B. Let ũ be an escape solution of (1.1), (3.11) with B = B̃. Then there exists b > 0
such that

ũ(b) = L, ũ′(t) > 0 for t ∈ (0,∞). (3.33)

From the definition of B̃ we get a sequence {Bn} ⊂ (B̃,0) such that limn→∞ Bn = B̃ and
the corresponding solutions un of (1.1), (3.11), with B = Bn, are oscillatory. Therefore

L0 ≤ un(t)≤ L, |u′n(t)| ≤ t · max
L0≤x≤L

| f (x)|, t ∈ [0,∞), n ∈ N,



and there exist bn > 0 such that un(bn) = Ln ∈ (0,L), u′n(bn) = 0 for n ∈ N. Then there
exist θn > bn such that

un(θn) = 0, u′n(θn) < 0, n ∈ N. (3.34)

The sequence {un} is bounded and equicontinuous on every [0,K] ⊂ [0,∞) and so we
can choose a subsequence {um} which is uniformly convergent on [0,K] to a function
w ∈C([0,K]). As in CASE A we conclude that w = ũ on [0,K]. Let lim

m→∞
θm = θ0 < ∞.

Put K = max{θ0,b}+ 1. By (3.34), each um is decreasing at a neighbourhood of θm
and ũ is nonincreasing at θ0, which contradicts (3.33). Let lim

m→∞
θm = ∞. Put K = b+1.

Since um(b + 1) < L for m ∈ N, it follows that ũ(b + 1) ≤ L, which is a contradiction.
The function ũ can be neither an escape solution nor an oscillatory solution. Lemma 3.4
yields that ũ is a homoclinic solution of problem (1.1), (1.2). Since ũ(t) ∈ [L0,L] for
t ∈ [0,∞) we see that assumption (3.9) can be omitted.

For more details in the proofs see [10].
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10. I. Rachunková, J. Tomeček, Singular problems on the half–line, preprint 17/2008, [online:
http://mant.upol.cz/cs/preprinty.asp/p17-08.pdf].


