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Abstract

The paper investigates the singular differential equation (p(t)u′)′ =
p(t)f(u), having a singularity at t = 0. The existence of a strictly increas-
ing solution (a homoclinic solution) satisfying u′(0) = 0, u(∞) = L > 0 is
proved provided f has two zeros and a linear behaviour near −∞.
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1 Introduction

Having a positive parameter L we consider the problem

(p(t)u′)′ = p(t)f(u), (1)

u′(0) = 0, u(∞) = L, (2)

under the following basic assumptions for f and p

f ∈ Liploc((−∞, L]), f(0) = f(L) = 0, (3)

f(x) < 0 for x ∈ (0, L), (4)

there exists B̄ < 0 such that f(x) > 0 for x ∈ [B̄, 0), (5)
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F (B̄) = F (L), where F (x) = −
∫ x

0

f(z) dz, (6)

p ∈ C ([0,∞)) ∩ C1((0,∞)), p(0) = 0, (7)

p′(t) > 0, t ∈ (0,∞), lim
t→∞

p′(t)
p(t)

= 0. (8)

Then problem (1), (2) generalizes some models arising in hydrodynamics or in
the nonlinear field theory (see [4]–[7],[9]). Equation (1) is singular at t = 0
because p(0) = 0.

Definition 1 If c > 0, then a solution of equation (1) on [0, c] is a function
u ∈ C1([0, c]) ∩ C2((0, c]) satisfying equation (1) on (0, c]. If u is a solution of
equation (1) on [0, c] for each c > 0, then u is a solution of equation (1) on
[0,∞).

Definition 2 Let u be a solution of equation (1) on [0,∞). If u moreover fulfils
conditions (2), it is called a solution of problem (1), (2).

Clearly, the constant function u(t) ≡ L is a solution of problem (1), (2).
An important question is the existence of a strictly increasing solution of (1),
(2) because if such a solution exists, many important physical properties of
corresponding models can be obtained. Note that if we extend the function
p(t) in equation (1) from the half–line onto R (as an even function), then any
solution of (1), (2) has the same limit L as t→ −∞ and t→∞. Therefore we
will use the next definition.

Definition 3 A strictly increasing solution of problem (1), (2) is called a ho-
moclinic solution.

Numerical investigation of problem (1), (2), where p(t) = t2 and f(u) =
4λ2(u+ 1)u(u− L), λ > 0, can be found in [4], [7]–[9]. Problem (1), (2) can be
also transformed onto a problem about the existence of a positive solution on the
half–line. For p(t) = tk, k ∈ N and for p(t) = tk, k ∈ (1,∞), such transformed
problem was solved by variational methods in [2] and [3], respectively. Some
additional assumptions imposed on f were needed there. Related problems were
solved e.g. in [1] and [10].

Here, we deal directly with problem (1), (2) and continue our earlier consid-
erations of papers [12] and [13], where we looked for additional conditions which
together with (3)–(8) would guarantee the existence of a homoclinic solution.

Let us characterize some results reached in [12] and [13] in more details.
Both these papers assume (3)–(8). In [12] we study the case that f has at least
three zeros L0 < 0 < L. More precisely, conditions

f(L0) = 0, there exists δ > 0 such that f ∈ C1((−δ, 0)), lim
x→0−

f ′(x) < 0, (9)

p ∈ C2((0,∞)), lim
t→∞

p′′(t)
p(t)

= 0, (10)
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are moreover assumed. Then there exist c > 0, B ∈ (L0, 0) and a solution u of
equation (1) on [0, c] such that

u(0) = B, u′(0) = 0 (11)

and
u′(t) > 0 for t ∈ (0, c], u(c) = L. (12)

We call such solution an escape solution. The main result of [12] is that (under
(3)–(8), (9), (10)) the set of solutions of (1), (11) for B ∈ (L0, 0) consists of
escape solutions and of oscillatory solutions (having values in (L0, L)) and of
at least one homoclinic solution. In [13] we omit assumptions (9) and (10)
and prove that assumptions (3)–(8) are sufficient for the existence of an escape
solution and also for the existence of a homoclinic solution provided p fulfils∫ 1

0

ds
p(s)

<∞. (13)

If (13) is not valid, then the existence of both an escape solution and a homo-
clinic solution is proved in [13] provided f satisfies moreover

f(x) > 0 for x < 0 (14)

and

lim
x→−∞

|x|
f(x)

=∞. (15)

Assumption (14) characterizes the case that f has just two zeros 0 and L in the
interval (−∞, L]. Further, we see that if (15) holds, then f is either bounded
on (−∞, L] or f is unbounded above and has a sublinear behaviour near −∞.

This paper also deals with the case that f satisfies (14) and is unbounded
above on (−∞, L]. In contrast to [13], here we prove the existence of a homo-
clinic solution for f having a linear behaviour near −∞. The proof is based on
a full description of the set of all solutions of problem (1), (11) for B < 0 and
on the existence of an escape solutions in this set.

Finally, we want to mention the paper [11], where the problem
1
p(t) (p(t)u′(t))′ = f(t, u(t), p(t)u′(t))
u(0) = ρ0 ∈ (−1, 0), limt→∞ u(t) = ξ ∈ (0, 1),
limt→∞ p(t)u′(t) = 0

(16)

is investigated under the assumptions that f is continuous, it has three distinct
zeros and satisfies the sign conditions similar to (3.4) in [12]. In [11], an approach
quite different form [12] and [13] is used. In particular, by means of properties of
the associated vector field (u(t), p(t)u′(t)) together with the Kneser’s property of
the cross sections of the solutions’ funnel, the authors provide conditions which
guarantee the existence of a strictly increasing solution of (16). The authors
apply this general result to problem{

1
tn−1 (tn−1u′)′ = 4λ2(u+ 1)u(u− ξ),
limt→0+ t

n−1u′(t) = 0, limt→∞ u(t) = ξ,
(17)
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and get a strictly increasing solution of (17) for a sufficiently small ξ. This
corresponds to the results of [12], where ξ ∈ (0, 1) may be arbitrary.

2 Initial value problem

In this section, under the assumptions (3)–(8) and (14) we prove some basic
properties of solutions of the initial value problem (1), (11), where B < 0.

Lemma 4 For each B < 0 there exists a maximal c∗ ∈ (0,∞] such that problem
(1), (11) has a unique solution u on [0, c∗) and

u(t) ≥ B for t ∈ [0, c∗). (18)

Further, for each b ∈ (0, c∗) there exists Mb > 0 such that

|u(t)|+ |u′(t)| ≤Mb, t ∈ [0, b],
∫ b

0

p′(s)
p(s)

|u′(s)|ds ≤Mb. (19)

Proof. Let u be a solution of problem (1), (11) on [0, c) ⊂ [0,∞). By (1), we
have

u′′(t) +
p′(t)
p(t)

u′(t)− f(u(t)) = 0 for t ∈ (0, c),

and multiplying by u′ and integrating between 0 and t, we get

u′2(t)
2

+
∫ t

0

p′(s)
p(s)

u′2(s) ds+ F (u(t)) = F (B), t ∈ (0, c). (20)

Let u(t1) < B for some t1 ∈ (0, c). Then (20) yields F (u(t1)) ≤ F (B), which
is not possible, because F is decreasing on (−∞, 0). Therefore u(t) ≥ B for
t ∈ [0, c).

Let η > 0. Consider the Banach space C ([0, η]) (with the maximum norm)
and an operator F : C ([0, η])→ C ([0, η]) defined by

(Fu)(t) = B +
∫ t

0

1
p(s)

∫ s

0

p(τ)f(u(τ)) dτ ds.

A function u is a solution of problem (1), (2) on [0, η] if and only if it is a fixed
point of the operator F . Using the Lipschitz property of f we can prove that the
operator is contractive for each sufficiently small η and from the Banach Fixed
Point Theorem we conclude that there exists exactly one solution of problem
(1), (2) on [0, η]. This solution u has the form

u(t) = B +
∫ t

0

1
p(s)

∫ s

0

p(τ)f(u(τ)) dτ ds (21)

for t ∈ [0, η]. Hence, u can be extended onto each interval [0, b] where u is
bounded. So, we can put c∗ = sup{b > 0 : u is bounded on [0, b]}.

4



Let b ∈ (0, c∗). Then there exists M̃ ∈ (0,∞) such that |f(u(t))| ≤ M̃ for
t ∈ [0, b]. So, (21) yields

|u′(t)| ≤ M̃ 1
p(t)

∫ t

0

p(s) ds, t ∈ (0, b]. (22)

Put

ϕ(t) =
1
p(t)

∫ t

0

p(s) ds, ψ(t) =
∫ b

t

p′(s)
p2(s)

∫ s

0

p(τ) dτ ds, t ∈ (0, b].

Then
0 < ϕ(t) ≤ t for t ∈ (0, b], (23)

and, by ”per partes” integration we derive limt→0+ ψ(t) = b−ϕ(b). Multiplying
(22) by p′(t)/p(t) and integrating it over (0, b), we get∫ b

0

p′(t)
p(t)
|u′(t)|dt ≤ M̃

∫ b

0

p′(t)
p2(t)

∫ t

0

p(s) dsdt = M̃(b− ϕ(b)). (24)

Estimates (19) follow from (22)–(24) for

Mb = M̃b+ |B|+ M̃b2.

�

Remark 5 The proof of Lemma 4 yields that if c∗ <∞, then limt→c∗ u(t) =∞.
Let us put

f̃(x) =
{

0 for x > L,
f(x) for x ≤ L (25)

and consider an auxiliary equation

(p(t)u′)′ = p(t)f̃(u). (26)

Similarly as in the proof of Lemma 4 we deduce that problem (26), (11) has a
unique solution on [0,∞). Moreover the following lemma is true.

Lemma 6 ([13]) For each B0 < 0, b > 0 and each ε > 0, there exists δ > 0
such that for any B1, B2 ∈ [B0, 0)

|B1 −B2| < δ =⇒ |u1(t)− u2(t)|+ |u′1(t)− u′2(t)| < ε, t ∈ [0, b]. (27)

Here ui is a solution of problem (26), (11) with B = Bi, i = 1, 2.

Proof. Choose B0 < 0, b > 0, ε > 0. Let K > 0 be the Lipschitz constant for
f on [B0, L]. By (21) for f = f̃ , B = Bi, u = ui, i = 1, 2,

|u1(t)− u2(t)| ≤ |B1 −B2|+
∫ t

0

1
p(s)

∫ s

0

p(τ)|f̃(u1(τ))− f̃(u2(τ))|dτ ds

≤ |B1 −B2|+Kt

∫ t

0

|u1(τ)− u2(τ)|dτ

≤ |B1 −B2|+Kb

∫ t

0

|u1(τ)− u2(τ)|dτ, t ∈ [0, b].
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From the Gronwall inequality, we get

|u1(t)− u2(t)| ≤ |B1 −B2|eKb
2
, t ∈ [0, b]. (28)

Similarly, by (21), (23) and (28),

|u′1(t)− u′2(t)| ≤ 1
p(t)

∫ t

0

p(s)|f̃(u1(s))− f̃(u2(s))|ds

≤ K 1
p(t)

∫ t

0

p(s)|u1(s)− u2(s)|ds

≤ Kb|B1 −B2|eKb
2
, t ∈ [0, b].

If we choose δ > 0 such that

δ <
ε

(1 +Kb)eKb2
,

we get (27). �

Remark 7 Choose a ≥ 0 and C ≤ L, and consider the initial conditions

u(a) = C, u′(a) = 0. (29)

Arguing as in the proof of Lemma 4 we get that problem (26), (29) has a unique
solution on [a,∞). In particular, for C = 0 and C = L, the unique solution
of problem (26), (29) (and also of problem (1), (29)) is u ≡ 0 and u ≡ L,
respectively.

Lemma 8 Let u be a solution of problem (1), (11). Assume that there exists
a ≥ 0 such that

u(t) < 0 for t ≥ a, u′(a) = 0. (30)

Then u′(t) > 0 for t > a and

lim
t→∞

u(t) = 0, lim
t→∞

u′(t) = 0. (31)

Proof. By (14) and (30), f(u(t)) > 0 on [a,∞) and thus p(t)u′(t) and u′(t)
are positive on (a,∞). Consequently there exists limt→∞ u(t) = B1 ∈ (u(a), 0].
Further, by (1),

u′′(t) +
p′(t)
p(t)

u′(t) = f(u(t)), t > 0, (32)

and, by multiplication and integration over [a, t],

u′2(t)
2

+
∫ t

a

p′(s)
p(s)

u′2(s) ds = F (u(a))− F (u(t)), t > a. (33)

Therefore

0 ≤ lim
t→∞

∫ t

a

p′(s)
p(s)

u′2(s) ds ≤ F (u(a))− F (B1) <∞,
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and hence limt→∞ u′2(t) exists. Since u is bounded on [0,∞), we get

lim
t→∞

u′2(t) = lim
t→∞

u′(t) = 0.

By (3), (8) and (32), limt→∞ u′′(t) exists and, since u′ is bounded on [0,∞),
we get limt→∞ u′′(t) = 0. Hence, letting t → ∞ in (32), we obtain f(B1) = 0.
Therefore B1 = 0 and (31) is proved. �

Lemma 9 Let u be a solution of problem (1), (11). Assume that there exist
a1 > 0 and A1 ∈ (0, L) such that

u(t) > 0 for all t > a1, u(a1) = A1, u
′(a1) = 0. (34)

Then u′(t) < 0 for all t > a1 and (31) holds.

Proof. Since u fulfils (34), we can find a maximal b > a1 such that 0 < u(t) < L
for t ∈ [a1, b) and consequently f(u(t)) = f̃(u(t)) for t ∈ [a1, b). By (62) and
(34), f(u(t)) < 0 on [a1, b) and thus p(t)u′(t) and u′(t) are negative on (a1, b).
So, u is positive and decreasing on [a1, b) which yields b = ∞ (otherwise we
get u(b) = 0, contrary to (34)). Consequently there exists limt→∞ u(t) = L1 ∈
[0, A1). By multiplication and integration (32) over [a1, t], we obtain

u′2(t)
2

+
∫ t

a1

p′(s)
p(s)

u′2(s) ds = F (A1)− F (u(t)), t > a1.

By similar argument as in the proof of Lemma 8 we get that limt→∞ u′(t) = 0
and L1 = 0. Therefore (31) is proved.

�

3 Damped solutions

In this section, under assumptions (3)–(8) and (14) we describe a set of all
damped solutions which are defined in the following way.

Definition 10 A solution of problem (1), (11) (or of problem (26), (11)) on
[0,∞) is called damped, if

sup{u(t) : t ∈ [0,∞)} < L. (35)

Remark 11 We see, by (25), that u is a damped solution of problem (1), (11)
if and only if u is a damped solution of problem (26), (11). Therefore, we can
borrow the arguments of [13] in the proofs of this section.

Theorem 12 If u is a damped solution of problem (1), (11), then u has a
finite number of isolated zeros and satisfies (31); or u is oscillatory (it has an
unbounded set of isolated zeros).

7



Proof. Let u be a damped solution of problem (1), (11). By Remark 5 we have
c∗ =∞ in Lemma 4 and hence

u(t) ≥ B for t ∈ [0,∞). (36)

Step 1. If u has no zero in (0,∞), then u(t) < 0 for t ≥ 0 and, by Lemma 8, u
fulfils (31).
Step 2. Assume that θ > 0 is the first zero of u on (0,∞). Then, due to
Remark 7, u′(θ) > 0. Let u(t) > 0 for t ∈ (θ,∞). By virtue of (4), f(u(t)) < 0
for t ∈ (θ,∞) and thus p(t)u′(t) is decreasing. Let u′ be positive on (θ,∞).
Then u′ is also decreasing, u is increasing and limt→∞ u(t) = L̄ ∈ (0, L), due
to (35). Consequently, limt→∞ u′(t) = 0. Letting t → ∞ in (32), we get
limt→∞ u′′(t) = f(L̄) < 0, which is impossible because u′ is bounded below.
Therefore there are a1 > θ and A1 ∈ (0, L) satisfying (34) and, by Lemma 9,
either u fulfils (31) or u has the second zero θ1 > a1 with u′(θ1) < 0. So u
is positive on (θ, θ1) and has just one local maximum A1 = u(a1) in (θ, θ1).
Moreover, putting a = 0 and t = a1 in (33), we have

0 <
∫ a1

0

p′(s)
p(s)

u′2(s) ds = F (B)− F (A1),

and hence
F (A1) < F (B). (37)

Step 3. Let u have no other zeros. Then u(t) < 0 for t ∈ (θ1,∞). Assume that
u′ is negative on [θ1,∞). Then, due to (18), limt→∞ u(t) = L̄ ∈ [B, 0). Putting
a = a1 in (33) and letting t→∞, we obtain

0 < lim
t→∞

[
u′2(t)

2
+
∫ t

a1

p′(s)
p(s)

u′2(s) ds
]

= F (A1)− F (L̄).

Therefore limt→∞ u′2(t) exists and, since u is bounded, we deduce that

lim
t→∞

u′(t) = 0.

Letting t → ∞ in (32), we get limt→∞ u′′(t) = f(L̄) > 0, which contradicts
the fact that u′ is bounded above. Therefore u′ cannot be negative on the
whole interval [θ1,∞) and there exists b1 > θ1 such that u′(b1) = 0. Moreover,
according to (36), u(b1) ∈ [B, 0).

Then, Lemma 8 yields that u fulfils (31). Since u′ is positive on (b1,∞), u
has just one minimum B1 = u(b1) on (θ1,∞). Moreover, putting a = a1 and
t = b1 in (33), we have

0 <
∫ b1

a1

p′(s)
p(s)

u′2(s) ds = F (A1)− F (B1),

which together with (37) yields

F (B1) < F (A1) < F (B). (38)
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Step 4. Assume that u has its third zero θ2 > θ1. Then we prove as in Step 2
that u has just one negative minimum B1 = u(b1) in (θ1, θ2) and (38) is valid.
Further, as in Step 2, we deduce that either u fulfils (31) or u has the fourth zero
θ3 > θ2, u is positive on (θ2, θ3) with just one local maximum A2 = u(a2) < L
on (θ2, θ3), and F (A2) < F (B1). This together with (38) yields

F (A2) < F (B1) < F (A1) < F (B). (39)

If u has no other zeros, we deduce as in Step 3 that u has just one negative
minimum B2 = u(b2) in (θ3,∞), F (B2) < F (A2) and u fulfils (31).
Step 5. If u has other zeros, we use the previous arguments and get that either
u has a finite number of zeros and then fulfils (31) or u is oscillatory. �

Remark 13 According to the proof of Theorem 12 we see, that if u is oscilla-
tory, it has just one positive local maximum between the first and the second
zero, then just one negative local minimum between the second and the third
zero, and so on. By (38), (39), (4)–(6) and (14), these maxima are decreasing
(minima are increasing) for t increasing.

Lemma 14 A solution u of problem (1), (11) fulfils the condition

sup{u(t) : t ∈ [0,∞)} = L (40)

if and only if u fulfils the condition

lim
t→∞

u(t) = L, u′(t) > 0 for t ∈ (0,∞). (41)

Proof. Assume that u fulfils (40). Then there exists θ ∈ (0,∞) such that
u(θ) = 0, u′(t) > 0 for t ∈ (0, θ]. Otherwise sup{u(t) : t ∈ [0,∞)} = 0, due to
Lemma 8. Let a1 ∈ (θ,∞) be such that u′(t) > 0 on (θ, a1), u′(a1) = 0. By
Remark 7 and (40), u(a1) ∈ (0, L). Integrating the equality (1) over (a1, t), we
get

u′(t) =
1
p(t)

∫ t

a1

p(s)f(u(s)) ds, for all t > a1.

Due to (4), we see that u is strictly decreasing for t > a1 as long as u(t) ∈ (0, L).
Thus, there are two possibilities. If u(t) > 0 for all t > a1, then from Lemma 9
we get (31), which contradicts (40). If there exists θ1 > a1 such that u(θ1) = 0,
then in view Remark 7 we have u′(θ1) < 0. Using the arguments of Steps 3–5 of
the proof of Theorem 12, we get that u is damped, contrary to (40). Therefore
such a1 cannot exist and u′ > 0 on (0,∞). Consequently, limt→∞ u(t) = L. So,
u fulfils (41). The inverse implication is evident. �

Remark 15 According to Definition 3 and Lemma 14, u is a homoclinic solu-
tion of problem (1), (11) if and only if u is a homoclinic solution of problem
(26), (11).

Theorem 16 (On damped solutions) Let B̄ satisfy (5) and (6). Assume that
u is a solution of problem (1), (11) with B ∈ [B̄, 0). Then u is damped.
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Proof. Let u be a solution of (1), (11) with B ∈ [B̄, 0). Then, by (4)–(6),

F (B) ≤ F (L). (42)

Assume on the contrary that u is not damped. Then u is defined on the interval
[0,∞) and sup{u(t) : t ∈ [0,∞)} = L or there exists b ∈ (0,∞) such that
u(b) = L, u′(b) > 0 and u(t) < L for t ∈ [0, b). If the latter possibility occurs,
(32) and (42) give by integration

0 <
u′2(b)

2
+
∫ b

0

p′(s)
p(s)

u′2(s) ds = F (B)− F (L) ≤ 0,

a contradiction. If sup{u(t) : t ∈ [0,∞)} = L, then, by Lemma 14, u fulfils (41).
So u has a unique zero θ > 0. Integrating (32) over [0, θ], we get

u′2(θ)
2

+
∫ θ

0

p′(s)
p(s)

u′2(s) ds = F (B),

and so
u′2(θ) < 2F (B). (43)

Integrating (32) over [θ, t], we obtain for t > θ

u′2(t)
2
− u′2(θ)

2
+
∫ t

θ

p′(s)
p(s)

u′2(s) ds = F (u(θ))− F (u(t)) = −F (u(t)).

Therefore, u′2(θ) > 2F (u(t)) on (θ,∞), and letting t → ∞, we get u′2(θ) ≥
2F (L). This together with (43) contradicts (42). We have proved that u is
damped. �

Theorem 17 Let Md be the set of all B < 0 such that corresponding solutions
of problem (1), (11) are damped. Then Md is open in (−∞, 0).

Proof. Let B0 ∈ Md and u0 be a solution of (1), (11) with B = B0. So, u0 is
damped and u0 is also a solution of equation (26).
(a) Let u0 be oscillatory. Then its first local maximum belongs to (0, L). Lemma
6 guarantees that if B is sufficiently close to B0, the corresponding solution u
of (26), (11) has also its first local maximum in (0, L). That means that there
exist a1 > 0 and A1 ∈ (0, L) such that u satisfies (34). Now, we can continue as
in the proof of Theorem 12 using the arguments of Steps 2–5 and Remark 11 to
get that u is damped.
(b) Let u0 have at most a finite number of zeros. Then, by Theorem 12, u0

fulfils (31). Choose c0 ∈ (0, F (L)/3). Since u0 fulfils (32), we get by integration
over [0, t]

u′20 (t)
2

+
∫ t

0

p′(s)
p(s)

u′20 (s) ds = F (B0)− F (u0(t)), t > 0.
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For t→∞ we get, by (31),∫ ∞
0

p′(s)
p(s)

u′20 (s) ds = F (B0). (44)

Therefore we can find b > 0 such that∫ ∞
b

p′(s)
p(s)

u′20 (s) ds < c0. (45)

Let Mb be the constant of Lemma 4. Choose ε ∈ (0, c0
2Mb

). Assume that B < 0
and u is a corresponding solution of problem (26), (11). Using Lemma 4, Lemma
6 and the continuity of F , we can find δ > 0 such that if |B −B0| < δ, then

|F (B)− F (B0)| < c0, (46)

moreover |u′0(t)− u′(t)| < ε for t ∈ [0, b] and∫ b

0

p′(s)
p(s)

|u′20 (s)− u′2(s)|ds ≤ max
t∈[0,b]

|u′0(t)− u′(t)|
∫ b

0

p′(s)
p(s)

(|u′0(s)|+ |u′(s)|) ds

≤ ε · 2Mb <
c0

2Mb
2Mb = c0.

Therefore, we have ∫ b

0

p′(s)
p(s)

|u′20 (s)− u′2(s)|ds < c0. (47)

Consequently, integrating (26) over [0, t] and using (44) – (47), we get for t ≥ b

F (B)− F̃ (u(t)) =
∫ t

0

p′(s)
p(s)

u′2(s) ds+
u′2(t)

2
≥
∫ t

0

p′(s)
p(s)

u′2(s) ds

≥
∫ b

0

p′(s)
p(s)

u′2(s) ds =
∫ b

0

p′(s)
p(s)

(u′2(s)− u′20 (s)) ds

+
∫ b

0

p′(s)
p(s)

u′20 (s) ds > −c0 +
∫ b

0

p′(s)
p(s)

u′20 (s) ds

= −c0 +
∫ ∞

0

p′(s)
p(s)

u′20 (s) ds−
∫ ∞
b

p′(s)
p(s)

u′20 (s) ds

> −c0 + F (B0)− c0 = −2c0 + F (B0)− F (B) + F (B)
> −3c0 + F (B).

We get F̃ (u(t)) < 3c0 < F (L) for t ≥ b. Therefore F̃ (u(t)) = F (u(t)) for t ≥ b
and, due to (4)–(6),

sup{u(t) : t ∈ [b,∞)} < L. (48)

Assume that there is b0 ∈ (0, b) such that u(b0) = L, u′(b0) > 0. Then, since
(p(t)u′(t))′ = 0 if t > b0 and u(t) > L, we get u′(t) > 0 and u(t) > L for t > b0,
contrary to (48). Hence we get that u fulfils (35). �
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4 Escape solutions

During the whole section we assume (3)–(8) and (14). We prove that problem
(1), (11) has at least one escape solution. According to Section 1 and Remark
5, we work with the following definitions:

Definition 18 Let c > 0. A solution of problem (1), (11) on [0, c] is called an
escape solution if

u(c) = L, u′(t) > 0 for t ∈ (0, c]. (49)

Definition 19 A solution u of problem (26), (11) is called an escape solution,
if there exists c > 0 such that

u(c) = L, u′(t) > 0 for t ∈ (0,∞). (50)

Remark 20 If u is an escape solution of problem (26), (11), then u is an escape
solution of problem (1), (11) on some interval [0, c].

Theorem 21 (On three types of solutions) Let u be a solution of problem (1),
(11). Then u is just one of the following three types

(I) u is damped;

(II) u is homoclinic;

(III) u is escape.

Proof. By Definition 10, u is damped if and only if (35) holds. By Lemma
14 and Definition 3, u is homoclinic if and only if (40) holds. Let u is neither
damped nor homoclinic. Then there exists c > 0 such that u is bounded on
[0, c], u(c) = L, u′(c) > 0. So, u has its first zero θ ∈ (0, c) and u′(t) > 0 on
(0, θ]. Let us assume that there exists a1 ∈ (θ, c) such that u(a1) ∈ (0, L) and
u′(a1) = 0. Then, by Lemma 9, either u fulfils (31) or u has its second zero
and, arguing as in Steps 2–5 of the proof of Theorem 12, we deduce that u is a
damped solution. This contradiction implies that u′(t) > 0 on (0, c]. Therefore,
by Definition 18, u is an escape solution. �

Theorem 22 LetMe ⊂ (−∞, 0) be the set of all B such that the corresponding
solutions of (1), (11) are escape solutions. The set Me is open in (−∞, 0).

Proof. Let B0 ∈ Me and u0 be a solution of problem (1), (11) with B = B0.
So, u0 fulfils (49) for some c > 0. Let ũ0 be a solution of problem (26), (11) with
B = B0. Then u0 = ũ0 on [0, c] and ũ0 is increasing on [c,∞). There exists
ε > 0 and c0 > c such that ũ0(c0) = L + ε. Let u1 be a solution of problem
(26), (11) for some B1 < 0. Lemma 6 yields δ > 0 such that if |B1 − B0| < δ,
then u1(c0) > ũ0(c0) − ε = L. Therefore u1 is an escape solution of problem
(26), (11). By Remark 20, u1 is also an escape solution of problem (1), (11) on
some interval [0, c1] ⊂ [0, c0]. �

To prove that the set Me of Theorem 22 is nonempty we will need the
following two lemmas.
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Lemma 23 Let B < 0. Assume that u is a solution of problem (1), (11) on
[0, b) and [0, b) is a maximal interval where u is increasing and u(t) ∈ [B,L] for
t ∈ [0, b). Then∫ t

0

2F (u(s))p(s)p′(s) ds = F (u(t))p2(t) +
1
2
p2(t)u′2(t), t ∈ (0, b). (51)

Proof. Step 1. We show that the interval (0, b) is nonempty. Since u(0) =
B < 0 and f satisfies (3), (14), we can find θ > 0 such that

u(t) < 0 and f(u(t)) > 0 for t ∈ (0, θ).

Integrating equation (1) over (0, t) we obtain

u′(t) =
1
p(t)

∫ t

0

p(s)f(u(s)) ds > 0 for t ∈ (0, θ].

So, u is an increasing solution of problem (1), (11) on [0, θ] and u(t) ∈ [B, 0] for
t ∈ [0, θ]. Therefore the nonempty interval [0, b) exists.
Step 2. By multiplication of (1) by pu′ and integration over (0, t) we obtain

1
2
p2(t)u′2(t) =

∫ t

0

f(u(s))u′(s)p2(s) ds, t ∈ (0, b). (52)

Using the “per partes” integration, we get for t ∈ (0, b)∫ t

0

f(u(s))u′(s)p2(s) ds = −F (u(t))p2(t) +
∫ t

0

2F (u(s))p(s)p′(s) ds

This relation together with (52) implies (51). �

Remark 24 Consider a solution u of Lemma 23. If u is an escape solution, then
b <∞. Assume that u is not an escape solution. Then both possibilities b <∞
and b =∞ can occur. Let b <∞. By Theorem 21 and Lemma 8, u(b) ∈ (0, L),
u′(b) = 0. Let b = ∞. We write u(b) = limt→∞ u(t), u′(b) = limt→∞ u′(t).
Using Lemmas 14 and 8 and Theorem 21, we obtain u′(b) = 0 and either
u(b) = 0 or u(b) = L.

Lemma 25 Let C < B̄ and let {Bn}∞n=1 ⊂ (−∞, C). Then for each n ∈ N
(i) there exists a solution un of problem (1), (11) with B = Bn,
(ii) there exists bn > 0 such that [0, bn) is the maximal interval on which the
solution un is increasing and its values in this interval are contained in [Bn, L],
(iii) there exists γn ∈ (0, bn) satisfying un(γn) = C.
If the sequence {γn}∞n=1 is unbounded, then there exists ` ∈ N such that u` is an
escape solution.

Proof. Similar arugmets can be found in [13]. By Lemma 4, the assertion (i)
holds. The arguments in Step 1 of the proof of Lemma 23 imply (ii). The strict
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monotonicity of un and Remark 24 yield a unique γn. Assume that {γn}∞n=1 is
unbounded. Then

lim
n→∞

γn =∞, γn < bn, n ∈ N, (53)

(otherwise we take a subsequence). Assume on the contrary that for any n ∈ N,
un is not an escape solution. Choose n ∈ N. Then, by Remark 24,

un(bn) ∈ [0, L] and u′n(bn) = 0. (54)

Due to (54), (2) and (ii) there exists γ̄n ∈ [γn, bn) satisfying

u′n(γ̄n) = max{u′n(t) : t ∈ [γn, bn)} (55)

By (i) and (ii), un satisfies equation

u′′n(t) +
p′(t)
p(t)

u′n(t) = f(un(t)), t ∈ (0, bn).

Integrating it over [0, t] we get

u′2n (t)
2

+ F (un(t)) = F (Bn)−
∫ t

0

p′(s)
p(s)

u′2n (s) ds, t ∈ (0, bn). (56)

Put

En(t) =
u′2n (t)

2
+ F (un(t)), t ∈ (0, bn). (57)

Then, by (56),
dEn(t)

dt
= −p

′(t)
p(t)

u′2n (t) < 0, t ∈ (0, bn). (58)

We see that En is decreasing. From (4) and (6) we get that F is increasing on
[0, L] and consequently by (54) and (57) we have

En(γn) > F (un(γn)) = F (C), En(bn) = F (un(bn)) ≤ F (L). (59)

Integrating (58) over (γn, bn) and using (55), we obtain

En(γn)− En(bn) =
∫ bn

γn

p′(t)
p(t)

u′2n (t) dt ≤ u′n(γ̄n)(L− C)Kn,

where

Kn = sup
{
p′(t)
p(t)

: t ∈ [γn, bn)
}
∈ (0,∞).

Further, by (59),

F (C) < En(γn) ≤ F (L) + u′n(γ̄n)(L− C)Kn, (60)

and
F (C)− F (L)

L− C
· 1
Kn

< u′n(γ̄n).
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Conditions (8) and (53) yield limn→∞Kn = 0, which implies

lim
n→∞

u′n(γ̄n) =∞. (61)

By (57) and (60),

u′2n (γ̄n)
2

≤ En(γ̄n) ≤ En(γn) ≤ F (L) + u′n(γ̄n)(L− C)Kn,

and consequently

u′n(γ̄n)
(

1
2
u′n(γ̄n)− (L− C)Kn

)
≤ F (L) <∞, n ∈ N,

which contradicts (61). Therefore at least one escape solution of (1), (11) with
B < B̄ must exist. �

Theorem 26 (On escape solution) Assume that (3)–(8) and (14) hold and let

0 < lim inf
x→−∞

|x|
f(x)

<∞. (62)

Then there exists B < B̄ such that the corresponding solution of problem (1),
(11) is an escape solution.

Proof. Let C < B̄ and let {Bn}∞n=1, {un}∞n=1, {bn}∞n=1 and {γn}∞n=1 be
sequences from Lemma 25. Moreover, let

lim
n→∞

Bn = −∞. (63)

By (63) we can find n0 ∈ N such that Bn < 2C for n ≥ n0. We assume that for
any n ∈ N, un is not an escape solution and we construct a contradiction.
Step 1. We derive some inequality for u′n. By Remark 24 we have

un(bn) ∈ [0, L], u′n(bn) = 0, n ∈ N, (64)

and, by Lemma 25, the sequence {γn}∞n=1 is bounded. Therefore there exists
Γ ∈ (0,∞) such that

γn ≤ Γ, n ∈ N. (65)

Choose an arbitrary n ≥ n0. According to Lemma 23, un satisfies equality (51),
that is∫ t

0

2F (un(s))p(s)p′(s) ds = F (un(t))p2(t) +
1
2
p2(t)u′2n (t), t ∈ (0, bn). (66)

Since un(0) = Bn < 2C < 0 and un is increasing on [0, bn), there exists a unique
γ̄n ∈ (0, γn) such that

un(γ̄n) =
1
2
Bn < C = un(γn).
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Having in mind, due to (4)–(8), that the inequality

F (un(t))p(t)p′(t) ≥ 0 for t ∈ [0, bn)

holds, we get∫ t

0

2F (un(s))p(s)p′(s) ds >
∫ γ̄n

0

2F (un(s))p(s)p′(s) ds, t ∈ [γn, bn).

By virtue of (6) and (14), we see that F is decreasing on (−∞, 0), which yields

min{F (un(t)) : t ∈ [0, γ̄n]} = F (un(γ̄n)) = F

(
Bn
2

)
.

Hence ∫ t

0

2F (un(s))p(s)p′(s) ds > F

(
Bn
2

)
p2(γ̄n), t ∈ [γn, bn). (67)

Since un(γn) = C and un(bn) ∈ [0, L], the monotonicity of un yields un(t) ∈
[C,L] for t ∈ [γn, bn], and consequently

max{F (un(t)) : t ∈ [γn, bn)} = F (C). (68)

Therefore (66) and (67) give

F

(
Bn
2

)
p2(γ̄n)
p2(t)

< F (C) +
1
2
u′2n (t), t ∈ [γn, bn). (69)

Step 2. We prove that the sequence {γ̄n}∞n=1 is bounded below by some positive
number. Since un is a solution of (1) on [0, bn), we have

(p(t)u′n(t))′ = p(t)f(un(t)), t ∈ (0, γ̄n).

Integrating it we get

u′n(t) =
1
p(t)

∫ t

0

p(s)f(un(s)) ds ≤ f(σnBn)
P (t)
p(t)

, t ∈ (0, γ̄n), (70)

where σn ∈ [ 1
2 , 1] satisfies f(σnBn) = max{f(x) : x ∈ [Bn, 1

2Bn]} and P (t) =∫ t
0
p(s) ds. Having in mind (8), we see that p is increasing and 0 < P (t)

p(t) ≤ t for
t ∈ (0,∞). Consequently

lim
t→0+

∫ t

0

P (s)
p(s)

ds = 0. (71)

Integrating (70) over (0, γ̄n), we obtain

1
2
Bn −Bn ≤ f(σnBn)

∫ γ̄n

0

P (s)
p(s)

ds,
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and hence ∫ γ̄n

0

P (s)
p(s)

ds ≥ 1
2
|Bn|

f(σnBn)
. (72)

By (62) we get

lim inf
n→∞

1
2
|Bn|

f(σnBn)
= lim inf

n→∞

1
2σn

|σnBn|
f(σnBn)

> 0,

which, due to (72), yields

lim inf
n→∞

∫ γ̄n

0

P (s)
p(s)

ds > 0.

So, by virtue of (71), there exists γ0 > 0 such that γ̄n ≥ γ0 for n ≥ n0.
Step 3. We construct a contradiction. Putting γ0 in (69) we have

F

(
Bn
2

)
p2(γ0)
p2(t)

− F (C) <
1
2
u′2n (t), t ∈ [γn, bn). (73)

Due to (62), limx→−∞ f(x) = ∞. Therefore limx→−∞ F (x) = ∞, and conse-
quently, by (63),

lim
n→∞

F

(
Bn
2

)
=∞. (74)

In order to get a contradiction, we distinguish two cases.
Case 1. Let lim supn→∞ bn <∞, that is we can find b0 > 0, n1 ∈ N, n1 ≥ n0,
such that

bn ≤ b0 for n ∈ N, n ≥ n1.

Then, by (74), for each sufficiently large n ∈ N, we get

F

(
Bn
2

)
>
p2(b0)
p2(γ0)

(F (C) +
1
2

).

Putting it to (73), we have

1
2
< F

(
Bn
2

)
p2(γ0)
p2(b0)

− F (C) <
1
2
u′2n (t), t ∈ [γn, bn).

Therefore 1 ≤ u′n(bn), contrary to (64).
Case 2. Let lim supn→∞ bn =∞. We may assume limn→∞ bn =∞ (otherwise
we take a subsequence). Then there exists n2 ∈ N, n2 ≥ n0, such that

Γ + 1 ≤ bn for n ∈ N, n ≥ n2.

Due to (74), for each sufficiently large n ∈ N, we get

F

(
Bn
2

)
>
p2(Γ + 1)
p2(γ0)

(F (C) +
1
2

(L− C)2).
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Putting it to (73), we have

1
2

(L− C)2 < F

(
Bn
2

)
p2(γ0)

p2(Γ + 1)
− F (C) <

1
2
u′2n (t), t ∈ [γn,Γ + 1].

Therefore L − C < u′n(t) for t ∈ [γn,Γ + 1]. Integrating it over [γn,Γ + 1], we
obtain

(L− C)(Γ + 1− γn) < un(Γ + 1)− un(γn) = un(Γ + 1)− C,

which yields, by (65), L < un(Γ+1) and also L < un(bn), contrary to (64). The
above contradictions obtained in both cases imply that there exists ` ∈ N such
that u` is an escape solution. �

5 Homoclinic solution

The next theorem provides the existence of a homoclinic solution under the
assumption that the function f in equation (1) has a linear behaviour near −∞.
According to Definition 2, a homoclinic solution is a strictly increasing solution
of problem (1), (2).

Theorem 27 (On homoclinic solution) Let the assumptions of Theorem 26 be
satisfied. Then there exists B < B̄ such that the corresponding solution of
problem (1), (11) is a homoclinic solution.

Proof. For B < 0 denote by uB the corresponding solution of problem (1),
(11). Let Md and Me be the set of all B < 0 such that uB is a damped
solution and an escape solution, respectively. By Theorems 16, 17, 22 and
26 the sets Md and Me are nonempty and open in (−∞, 0). Therefore the set
Mh = (−∞, 0)\(Md∪Me) is nonempty. Choose B∗ ∈Mh. Then, by Theorem
21, uB∗ is a homoclinic solution. Moreover, due to Theorem 16, B∗ < B̄. �

Example 28 The function

f(x) =
{
c0x for x < 0,
x(x− L) for x ∈ [0, L],

where c0 is a negative constant, satisfies the conditions (3)–(6), (14) and (62).
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