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1 Introduction

This paper deals with the singular boundary value problem
" = f(t,x,2), (1)
2(0) = z(T), 2'(0) = 2/(T), (2)
where f €Car(J x (Rt x R)), J = [0,7] € R, RT = (0,00), and f has a repulsive
singularity at © = 07, i.e.

lim f(t,z,y) = +oo for a.e. t € J and each y € R.

z—0t

We are interested in positive solutions of (1), (2), because we have been motivated by a
problem from the Theory of Nonlinear Elasticity modelling radial oscillations of an elastic
spherical membrane made up of a Neo-Hookean material, and subjected to an internal
pressure. The oscillations are governed by the scalar equation

2" = p(t)r? —x+ 277, (3)

where the pressure p : R — (0, 00) is continuous and T-periodic and z(t) is the ratio of the
deformed radius of the membrane at time ¢ with respect to the undeformed radius, and
hence z(t) > 0 on R. See [3] or [1]. Here, we prove the existence of at least two different
positive solutions to the more general problem (1), (2) using theorems of [2] which are
based on a connection between lower and upper solutions and the topological degree of
an operator associated to (1), (2). We generalize results of [1], where the equation

2" = g(t, ), (4)

with ¢ : R X R — R continuous and 7T-periodic in ¢, is considered and where the authors
prove the existence of two positive periodic solutions for (4) by a variational method.
Such an approach cannot be used for (1), (2).
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2 Notation and definitions

For k € NU{0}, C*(J) is the Banach space of functions having continuous k-th derivatives
on J with the norm

k
|2ller =Y max{[z(t)] : t € J} for & € C¥(J);
i=0
L, (J) is the Banach space of Lebesque integrable functions on J with the norm

T
el :/ (t)]dt for = € Ly (J).
0

By AC*(J) we denote the set of functions having absolutely continuous k-th derivatives
on J, and we use C(J) or AC(J) instead of C°(J) or ACY(.J). For B C R, the symbol
Car(J x (B x R)) denotes the set of functions satisfying the Carathéodory conditions on
Jx(BxR),i.e. f(-,z,y):J — Rismeasurable forallz € B,y € R, f(t,-,-) : BXR - R
is continuous for a.e. t € J and sup{|f(¢t,z,y)|: (z,y) € K} €L;(J) for any compact set
K C (B xR). For p €L;(J) we denote by @ the mean value (1/7) fOT o(s)ds.

By a solution of (1), (2) we understand a function u €AC!(J) satisfying (1) for a.e.
t € J, as well as the boundary conditions (2). By a lower solution of (1), (2) we mean a
function oy €AC!(J) satisfying

ol (t) > f(t,o1(t),01(t)) for ae. t € J (5)
and the boundary conditions
01(0) = 01(T), 01(0) 2 01(T). (6)
Similarly, by an upper solution of (1), (2) we mean a function oo € AC!(J) satisfying
oy (t) < f(t,09(t),05(t)) for ae. t € J (7)
and the boundary conditions

2(0) = 0o(T), 05(0) < 05(T). (8)

3 Assumptions

We will use the following assumptions in our lemmas and theorems:

f e Car(J x (R x R)); 9)



Im e Li(J): f(t,z,y) > m(t) for a.e. t € JV(z,y) € RT x R; (10)

Jdg € C(RT) : f(t,z,y) > g(x) for ae. t € J,V(z,y) € RT x [0,0), (11)

where g(z) > 0 for all z € (0,7) and for some r € R™;

G(0%) = —o00, G(00) = —00, where G(z) = /Ig(s)ds for v € RT; (12)
do € (r,00) : f(t,0,0) <0 for a.e. t € J; (13)

Je e RY: f(t,0 +¢£,0) <0 for a.e. t € J; (14)
dpeli(J),FAe R : ¢ >0, f(t,z,y) > ©(t) (15)

for a.e. t € J,Vo > A Vy € [—||m||L,, [|m]|L,]-

Suppose, that the function p on the right-hand side of (3) satisfies

s _ 7/6
0<p = rgg}lp(t) < T&Xp(t) =py < 6/7 (16)

and put
b(t,z) = p(t)ax® — v+ 27°,

Then (16) guarantees that b has both signs which is necessary for the existence of periodic
solutions to (3).

Lemma 3.1. Under the assumption (16) f = b fulfils all conditions (9) — (15).

Proof. The condition (9) follows from the fact that b €C(J xR™). The condition (10):
b(t,x) > p1x? —x > —1/4p; on J x R*. The condition (11): b(t,z) > —x + 2% = g(x)
on J x R*, Where g EC(R*) and g( ) > 0 for all z € (0,1). The condition (12):

= [Tg(s)ds = -2~ — = 43 and G(0%) = —o00,G(00) = —oo. The conditions
(13) and (14): b(t,z) < pgx —x —|— 7% = i, (x) on J x R*. For p, = 6/77/% the
function 1), is nonnegative on R* and it has just one minimal zero value at z = 7%/5.
For py € (0,6/77/%) we can find an interval (a, 3) C (1,00) such that v,,(x) < 0 for all
z € («,3). Thus we can choose numbers 0,0 + ¢ € (a, ) satisfying (13) and (14). The

condition (15): b(t,z) > p1z*> —x > 2/p, for all t € J,x > A, where A = 2/p,. O



4 A priori estimates

Lemma 4.1. Suppose (9) and (10) hold. Then for any positive solution u of the problem
(1), (2) the estimate

[u'llc < llmllz, (17)
18 true.

Proof. Let u be a positive solution of (1), (2). Then there exists ¢, € J such that
u'(tg) = 0. (10) implies that m(t) < u”(t) for a.e. t € J. Therefore

T
-1/ im(t)|dt < '(¢) for any t € [to, T] and for £ = 0.

to

Thus —||m||z, < '(t) on J. Similarly
to
u'(t) < / |m(t)|dt for any t € [0,1o] and for t = T..
0

So, u/(t) < ||m||L, on J, and (17) is proved. O

Lemma 4.2. Suppose (9), (10), (11) and (12) hold. Then there exists ¢* € RT such that
any positive solution u of (1), (2) satisfies

0 <c" <ul(t) forany t € J. (18)

Proof. Let u be a positive solution of (1), (2). According to (2) we can extend u
periodically on R. Suppose that there exists s € .J such that

0<u(s) <r. (19)

Using Lemma 4.1 we get (17) which together with (19) gives the estimate

lulle < [mlle, T +r =" (20)
Suppose that
Itréljnu(t) = u(ty) € (0,7). (21)

Then u/(ty) = 0. Let € > 0 be such that u'(t) = 0 for all t € I. = [ty,ty + ¢]. Then
u(t) = u(ty) and u”(t) = 0 for all ¢t € I.. So, by (11), we get

oz/ﬂmmmw>/mwmmxx
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a contradiction. Suppose that we can find a sequence {t,} C R such that ¢, — 5, and
u'(t,) = 0 for all n € N. Then there exists m € N such that u(¢) € (0,7) and v/(¢) > 0
for all t € (t,, tyny1). Therefore

o= [ wrwa= [ s uto,uenac> [ gty o

a contradiction. So, we have proved that ' is positive on some right neighbourhood of
to. Let us show that there exists ¢; such that

0 <t —ty<T,u(t;) =0 and u'(t) > 0 for all ¢t € (¢, t1). (22)

If w'(t) < 0 on [0,%y) and u'(t) > 0 on (to, 7], then this contradicts (2). Hence t; € (o, T
or u'(7) = 0 for some 7 € [0,1) and we set t, =7 + 1.
Now, using (11) and (22), we have

u" - = ftu(t),d () - u'(t) > g(u(t)) - u'(t) for ae. t € (to,t1)

and

Lﬁuwwnw>/ﬁﬂmmw@ﬁ

"(t)u"( t
Thus 0 = L(u?(t;) — u(tg)) > G(u(t,)) — G(u(ty)), ie.
G(u(to)) > G(u(t1))- (23)

We can suppose without loss of generality that g(z) < 0 for all z > r. Then G is increasing
on (0,7) and decreasing on (r, c0), which together with ( 21) and (23) imply that u(t;) > r.
In view of (20) G(r*) < G(u(t;)) and there exists just one number ¢* € (0,7) such that

G(c") = G(r"). (24)

Therefore G(c*) < G(u(ty)), which gives (18). We have proved (18) for any positive
solution satisfying (19). If some positive solution v of (1), (2) has not the property (19),
then minge s v(¢) > r, and so we get (18) immediately. O

Lemma 4.3. Suppose (9), (10), (11), (12) hold and set r* > ||m||p, T+r, ¢t = G7HG(r*)) €
(0,7). Further put

.  ftx,y) if x©>c*
f (t,l‘,y) - { f(t, C*,y) +C* — Zf €T S c* (25)

for a.e. t € J and all x,y € R and consider the equation
u" = f*(t, u,u’). (26)

Then any solution u of the problem (26), (2) is a solution of (1), (2) and satisfies the
estimate (18).



Proof. f* €Car(J x R?) and f* satisfies (10) for all z € R. Therefore the estimate
(17) is true for any solution u of (26), (2). The proof of this assertion is similar to that
of Lemma 4.1. Let u be a solution of (26), (2) and suppose that mine ; u(t) = u(ty) < ¢*.
Then we can argue like in the proof of Lemma 4.2 and get a point ¢; satisfying (22). If
u(t;) < ¢*, then

t1

0:/hM@Ms:/%U@mﬂd@»+&—u@Wk>/‘ﬂ&Ms>Q

to to to

a contradiction. Thus, suppose that u(t;) > ¢*. Then there exists t* € (o, ?;) such that
u(t*) = ¢* and

0= / 1 u"(s)u'(s)ds = / (f(s,c" u'(s)) + ¢ —u(s))u'(s)ds +

to to

:f@M%M@M%MS>!AEW@M%MV%MMM—GW)

t

Analogically like in the proof of Lemma 4.2 we deduce that u(t,) € (r,r*) and G(r*) <
G(u(ty)). Since G(r*) = G(c¢*) > G(u(t1)), we get a contradiction. Thus u satisfies (18
and it is a solution of (1), (2), as well. O

5 Main results

First, we will study a regular problem for the equation
u" = h(t,u,u'), (27)
with i €Car(J x R?).

Theorem 5.1. Let 0y and oy be lower and upper solutions of (27), (2). Further suppose
that for a.e. t € J and all x,y € R

h(t,z,y) = —p(t, || +1yl), (28)

where p € Car(J x R") is a nonnegative function, which is nondecreasing and sublinear
in its second variable, i.e.

1 /7
lim — [ p(t,z)dt = 0. (29)
z—=00 2 Jq
L. Then the problem (27), (2) has at least one solution w.
II. a) If 01 (t) < 09(t) for allt € J, then oy (t) < u(t) < oa(t) for all t € J.
b) If 09(t) < oy(t) for all t € J, then there exists t, € J such that o9(t,) < u(t,) <
01 (tu)
¢) If o1 and o4 are not ordered on J, then there exist t,, s, € J such that o5(t,) < u(t,)
and u(sy) < o1(Sy)-



Proof. Let us set H(u) = ifoT p(s, (T + 1) + r)ds for p € (0,00) and r = ||o1||c +
|loa|lc. The condition (29) implies that there exists p* € (0, 00) with

H(p) < 1forall p> p*. (30)
Now, let us consider the auxiliary differential equation
u" = h*(t,u,u'), (31)
where

h*(t,z,y) = x(|z| + y|, r*)h(t, z,y) for a.e. t € J and all z,y € R,

=t (T 4+ 1) +

1 for 0<s<¢
X(s,0) =4 2—s/¢p for ¢p<s<2¢ .
0 for s> 2¢

Since there exists m* €L, (J) such that |h*(t,z,y)| < m*(¢) for a.e. t € Jand all z,y € R,
we can apply Theorem 6 from [2] onto the problem (31), (2) and get a solution of this
problem which fulfills the assertion II of our Theorem 5.1. Let us prove that « is a solution
of (27). Putting p = ||u'||¢, we get ||ul|c < pT"+r. In view of (2) we can find ¢, € J such
that u'(ty) = 0 and (28) gives

u"(t) > —p(t, Ju| + |u']) for a.e. t € J. (32)

In a way similar to the proof of Theorem 8 in [2] we get from (32) by integration

T
[u'(t)] < / p(t, (T + 1) +r)dt for all ¢t € J,
0

and so 1 < H(u). The latter inequality together with (30) imply that p < p*. Thus
|ulle + ||@'||c < r* and w satisfies (27). 0

Theorem 5.2. Suppose (9), (10), (11), (12) hold and let a positive function oy be a lower
solution of the problem (1), (2). Then this problem has at least one positive solution.

Proof. Let r* and ¢* be the numbers from Lemma 4.3. Without loss of generality we
can suppose ¢* < minge; o1(t). (Otherwise we take instead of 7* and ¢* numbers r** and
c**, which ssatisfy ¢** = mine; 0q(t) < ¢* and r** = GG (c**) € (r*,00)). Now, let us
consider the auxiliary problem (26), (2). By (9), (10) and (25), f* €Car(J x R?) and f*
satisfies (28) with p(t, z) = |m(t)|. Since ¢* and oy are upper and lower solution of (26),
(2), respectively, Theorem 5.1 implies that (26), (2) has a solution u with

c* <u(ty) < oy(t,) for some t, € J. (33)

By Lemma 4.3, u is a solution of (1), (2) and satisfies (18). O
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Theorem 5.3. Suppose (9), (10), (15) hold and let a positive function oy be a lower
solution of (1), (2). Then this problem has at least one solution u with oy(t) < u(t) for
all t € J.

Proof. Let ¢* be a positive number satisfying ¢* < min,c; o1(¢) and let f* be given
by (25). Let us consider the problem (26) (2). Without loss of generality we can suppose
that A in (15) satisfies A > maxc; 01(t) and we can check that

o9(t) = A+ 2T\ ¢||r, — / / dsd7'+// s)dsdr

is an upper solution of (26), (2). So, by Theorem 5.1, the problem (26), (2) has a solution
u lying between oy and oy on J. In view of (25), u is a solution of (1), as well. O

Theorem 5.4. Suppose (9), (10), (11), (12), (15) hold and let positive functions oy and
o1+ &, where e € RT, be lower solutions of the problem (1), (2). Then this problem has
at least two positive solutions.

Proof. Theorem 5.2 implies the existence of a positive solution u of (1), (2) which
satisfies (33). Theorem 5.3 gives the existence of a solution v of (1), (2) which has the

property
o1(t) +e <w(t) for all t € J. (34)

According to (33) and (34) we see that u and v are different solutions. O

Theorem 5.5. Suppose (9), (10), (11), (12), (13), (14) and (15) hold. Then the problem
(1), (2) has at least two positive solutions.

Proof. Since (13) and (14) imply that the numbers o and o + ¢ are constant positive
lower solutions of (1), (2), the assertion follows from Theorem 5.4. O

Corollary 5.6. Suppose (16) holds. Then the equation (4) has at least two positive T -
pertodic solutions.

Proof. This assertion is a direct consequence of Theorem 5.4 and Lemma 3.1. 0
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