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1 IntroductionThis paper deals with the singular boundary value problemx00 = f(t; x; x0); (1)x(0) = x(T ); x0(0) = x0(T ); (2)where f 2Car(J � (R+ � R)), J = [0; T ] � R, R+ = (0;1), and f has a repulsivesingularity at x = 0+, i.e.limx!0+ f(t; x; y) = +1 for a.e. t 2 J and each y 2 R:We are interested in positive solutions of (1), (2), because we have been motivated by aproblem from the Theory of Nonlinear Elasticity modelling radial oscillations of an elasticspherical membrane made up of a Neo-Hookean material, and subjected to an internalpressure. The oscillations are governed by the scalar equationx00 = p(t)x2 � x + x�5; (3)where the pressure p : R! (0;1) is continuous and T -periodic and x(t) is the ratio of thedeformed radius of the membrane at time t with respect to the undeformed radius, andhence x(t) > 0 on R. See [3] or [1]. Here, we prove the existence of at least two di�erentpositive solutions to the more general problem (1), (2) using theorems of [2] which arebased on a connection between lower and upper solutions and the topological degree ofan operator associated to (1), (2). We generalize results of [1], where the equationx00 = g(t; x); (4)with g : R�R! R continuous and T -periodic in t; is considered and where the authorsprove the existence of two positive periodic solutions for (4) by a variational method.Such an approach cannot be used for (1), (2).� Supported by Grant 201/98/0318 of the Grant Agency of the Czech Republic1



2 Notation and de�nitionsFor k 2 N[f0g, Ck(J) is the Banach space of functions having continuous k-th derivativeson J with the normkxkCk = kXi=0 maxfjx(i)(t)j : t 2 Jg for x 2 Ck(J);L1(J) is the Banach space of Lebesque integrable functions on J with the normkxkL1 = Z T0 jx(t)jdt for x 2 L1(J):By ACk(J) we denote the set of functions having absolutely continuous k-th derivativeson J , and we use C(J) or AC(J) instead of C0(J) or AC0(J): For B � R, the symbolCar(J � (B �R)) denotes the set of functions satisfying the Carath�eodory conditions onJ�(B�R), i.e. f(�; x; y) : J ! R is measurable for all x 2 B; y 2 R, f(t; �; �) : B�R! Ris continuous for a.e. t 2 J and supfjf(t; x; y)j : (x; y) 2 Kg 2L1(J) for any compact setK � (B �R). For ' 2L1(J) we denote by �' the mean value (1=T ) R T0 '(s)ds:By a solution of (1), (2) we understand a function u 2AC1(J) satisfying (1) for a.e.t 2 J , as well as the boundary conditions (2). By a lower solution of (1), (2) we mean afunction �1 2AC1(J) satisfying�001 (t) � f(t; �1(t); �01(t)) for a.e. t 2 J (5)and the boundary conditions�1(0) = �1(T ); �01(0) � �01(T ): (6)Similarly, by an upper solution of (1), (2) we mean a function �2 2AC1(J) satisfying�002 (t) � f(t; �2(t); �02(t)) for a.e. t 2 J (7)and the boundary conditions�2(0) = �2(T ); �02(0) � �02(T ): (8)3 AssumptionsWe will use the following assumptions in our lemmas and theorems:f 2 Car(J � (R+ �R)); (9)2



9m 2 L1(J) : f(t; x; y) > m(t) for a.e. t 2 J; 8(x; y) 2 R+ �R; (10)9g 2 C(R+) : f(t; x; y) > g(x) for a.e. t 2 J; 8(x; y) 2 R+ � [0;1); (11)where g(x) > 0 for all x 2 (0; r) and for some r 2 R+;G(0+) = �1; G(1) = �1; where G(x) = Z xr g(s)ds for x 2 R+; (12)9� 2 (r;1) : f(t; �; 0) � 0 for a.e. t 2 J ; (13)9" 2 R+ : f(t; � + "; 0) � 0 for a.e. t 2 J ; (14)9' 2 L1(J), 9A 2 R+ : �' � 0; f(t; x; y) � '(t) (15)for a.e. t 2 J; 8x > A; 8y 2 [�kmkL1 ; kmkL1 ]:Suppose, that the function p on the right-hand side of (3) satis�es0 < p1 = mint2J p(t) < maxt2J p(t) = p2 < 6=77=6 (16)and put b(t; x) = p(t)x2 � x+ x�5:Then (16) guarantees that b has both signs which is necessary for the existence of periodicsolutions to (3).Lemma 3.1. Under the assumption (16) f = b ful�ls all conditions (9) | (15).Proof. The condition (9) follows from the fact that b 2C(J�R+): The condition (10):b(t; x) > p1x2 � x � �1=4p1 on J �R+: The condition (11): b(t; x) > �x + x�5 = g(x)on J � R+, where g 2C(R+) and g(x) > 0 for all x 2 (0; 1). The condition (12):G(x) = R x1 g(s)ds = �x�44 � x22 + 34 and G(0+) = �1; G(1) = �1: The conditions(13) and (14): b(t; x) � p2x2 � x + x�5 =  p2(x) on J � R+: For p2 = 6=77=6 thefunction  p2 is nonnegative on R+ and it has just one minimal zero value at x = 71=6:For p2 2 (0; 6=77=6) we can �nd an interval (�; �) � (1;1) such that  p2(x) < 0 for allx 2 (�; �): Thus we can choose numbers �; � + " 2 (�; �) satisfying (13) and (14). Thecondition (15): b(t; x) > p1x2 � x > 2=p1 for all t 2 J; x > A; where A = 2=p1:3



4 A priori estimatesLemma 4.1. Suppose (9) and (10) hold. Then for any positive solution u of the problem(1), (2) the estimate ku0kC < kmkL1 (17)is true.Proof. Let u be a positive solution of (1), (2). Then there exists t0 2 J such thatu0(t0) = 0. (10) implies that m(t) < u00(t) for a.e. t 2 J: Therefore� Z Tt0 jm(t)jdt < u0(t) for any t 2 [t0; T ] and for t = 0:Thus �kmkL1 < u0(t) on J: Similarlyu0(t) < Z t00 jm(t)jdt for any t 2 [0; t0] and for t = T:So, u0(t) < kmkL1 on J , and (17) is proved.Lemma 4.2. Suppose (9), (10), (11) and (12) hold. Then there exists c� 2 R+ such thatany positive solution u of (1), (2) satis�es0 < c� < u(t) for any t 2 J: (18)Proof. Let u be a positive solution of (1), (2). According to (2) we can extend uperiodically on R. Suppose that there exists s 2 J such that0 < u(s) � r: (19)Using Lemma 4.1 we get (17) which together with (19) gives the estimatekukC < kmkL1T + r = r�: (20)Suppose that mint2J u(t) = u(t0) 2 (0; r): (21)Then u0(t0) = 0. Let " > 0 be such that u0(t) = 0 for all t 2 I" = [t0; t0 + "]: Thenu(t) = u(t0) and u00(t) = 0 for all t 2 I". So, by (11), we get0 = ZI" f(t; u(t0); 0)dt > ZI" g(u(t0))dt > 0;4



a contradiction. Suppose that we can �nd a sequence ftng � R such that tn ! t0+ andu0(tn) = 0 for all n 2 N. Then there exists m 2 N such that u(t) 2 (0; r) and u0(t) > 0for all t 2 (tm; tm+1). Therefore0 = Z tm+1tm u00(t)dt = Z tm+1tm f(t; u(t); u0(t))dt > Z tm+1tm g(u(t))dt > 0;a contradiction. So, we have proved that u0 is positive on some right neighbourhood oft0. Let us show that there exists t1 such that0 < t1 � t0 < T; u0(t1) = 0 and u0(t) > 0 for all t 2 (t0; t1): (22)If u0(t) < 0 on [0; t0) and u0(t) > 0 on (t0; T ], then this contradicts (2). Hence t1 2 (t0; T ]or u0(�) = 0 for some � 2 [0; t0) and we set t1 = � + T:Now, using (11) and (22), we haveu00 � u0 = f(t; u(t); u0(t)) � u0(t) > g(u(t)) � u0(t) for a.e. t 2 (t0; t1)and Z t1t0 u0(t)u00(t)dt > Z t1t0 g(u(t))u0(t)dt:Thus 0 = 12(u02(t1)� u02(t0)) > G(u(t1))�G(u(t0)), i.e.G(u(t0)) > G(u(t1)): (23)We can suppose without loss of generality that g(x) < 0 for all x > r. Then G is increasingon (0; r) and decreasing on (r;1), which together with ( 21) and (23) imply that u(t1) > r:In view of (20) G(r�) < G(u(t1)) and there exists just one number c� 2 (0; r) such thatG(c�) = G(r�): (24)Therefore G(c�) < G(u(t0)), which gives (18). We have proved (18) for any positivesolution satisfying (19). If some positive solution v of (1), (2) has not the property (19),then mint2J v(t) > r, and so we get (18) immediately.Lemma 4.3. Suppose (9), (10), (11), (12) hold and set r� � kmkL1T+r, c� = G�1(G(r�)) 2(0; r): Further put f �(t; x; y) = � f(t; x; y) if x > c�f(t; c�; y) + c� � x if x � c� (25)for a.e. t 2 J and all x; y 2 R and consider the equationu00 = f �(t; u; u0): (26)Then any solution u of the problem (26), (2) is a solution of (1), (2) and satis�es theestimate (18). 5



Proof. f � 2Car(J �R2) and f � satis�es (10) for all x 2 R. Therefore the estimate(17) is true for any solution u of (26), (2). The proof of this assertion is similar to thatof Lemma 4.1. Let u be a solution of (26), (2) and suppose that mint2J u(t) = u(t0) < c�:Then we can argue like in the proof of Lemma 4.2 and get a point t1 satisfying (22). Ifu(t1) � c�, then0 = Z t1t0 u00(s)ds = Z t1t0 (f(s; c�; u0(s)) + c� � u(s))ds > Z t1t0 g(c�)ds > 0;a contradiction. Thus, suppose that u(t1) > c�. Then there exists t� 2 (t0; t1) such thatu(t�) = c� and0 = Z t1t0 u00(s)u0(s)ds = Z t�t0 (f(s; c�; u0(s)) + c� � u(s))u0(s)ds+Z t1t� f(s; u(s); u0(s))u0(s)ds > Z t1t� g(u(s))u0(s)ds = G(u(t1))�G(c�):Analogically like in the proof of Lemma 4.2 we deduce that u(t1) 2 (r; r�) and G(r�) <G(u(t1)). Since G(r�) = G(c�) > G(u(t1)), we get a contradiction. Thus u satis�es (18)and it is a solution of (1), (2), as well.5 Main resultsFirst, we will study a regular problem for the equationu00 = h(t; u; u0); (27)with h 2Car(J �R2).Theorem 5.1. Let �1 and �2 be lower and upper solutions of (27), (2). Further supposethat for a.e. t 2 J and all x; y 2 Rh(t; x; y) � ��(t; jxj + jyj); (28)where � 2Car(J � R+) is a nonnegative function, which is nondecreasing and sublinearin its second variable, i.e. limz!1 1z Z T0 �(t; z)dt = 0: (29)I. Then the problem (27), (2) has at least one solution u.II. a) If �1(t) � �2(t) for all t 2 J , then �1(t) � u(t) � �2(t) for all t 2 J .b) If �2(t) � �1(t) for all t 2 J , then there exists tu 2 J such that �2(tu) � u(tu) ��1(tu):c) If �1 and �2 are not ordered on J , then there exist tu; su 2 J such that �2(tu) � u(tu)and u(su) � �1(su): 6



Proof. Let us set H(�) = 1� R T0 �(s; �(T + 1) + r)ds for � 2 (0;1) and r = k�1kC +k�2kC . The condition (29) implies that there exists �� 2 (0;1) withH(�) < 1 for all � � ��: (30)Now, let us consider the auxiliary di�erential equationu00 = h�(t; u; u0); (31)where h�(t; x; y) = �(jxj+ jyj; r�)h(t; x; y) for a.e. t 2 J and all x; y 2 R;r� = ��(T + 1) + r;�(s; �) = 8<: 1 for 0 � s � �2� s=� for � < s < 2�0 for s � 2� :Since there exists m� 2L1(J) such that jh�(t; x; y)j < m�(t) for a.e. t 2 J and all x; y 2 R,we can apply Theorem 6 from [2] onto the problem (31), (2) and get a solution of thisproblem which ful�lls the assertion II of our Theorem 5.1. Let us prove that u is a solutionof (27). Putting � = ku0kC , we get kukC � �T + r. In view of (2) we can �nd t0 2 J suchthat u0(t0) = 0 and (28) givesu00(t) � ��(t; juj+ ju0j) for a.e. t 2 J: (32)In a way similar to the proof of Theorem 8 in [2] we get from (32) by integrationju0(t)j � Z T0 �(t; �(T + 1) + r)dt for all t 2 J;and so 1 � H(�). The latter inequality together with (30) imply that � < ��. ThuskukC + ku0kC < r� and u satis�es (27).Theorem 5.2. Suppose (9), (10), (11), (12) hold and let a positive function �1 be a lowersolution of the problem (1), (2). Then this problem has at least one positive solution.Proof. Let r� and c� be the numbers from Lemma 4.3. Without loss of generality wecan suppose c� � mint2J �1(t): (Otherwise we take instead of r� and c� numbers r�� andc��, which ssatisfy c�� = mint2J �1(t) < c� and r�� = G�1(G(c��) 2 (r�;1)). Now, let usconsider the auxiliary problem (26), (2). By (9), (10) and (25), f � 2Car(J �R2) and f �satis�es (28) with �(t; z) = jm(t)j. Since c� and �1 are upper and lower solution of (26),(2), respectively, Theorem 5.1 implies that (26), (2) has a solution u withc� � u(tu) � �1(tu) for some tu 2 J: (33)By Lemma 4.3, u is a solution of (1), (2) and satis�es (18).7



Theorem 5.3. Suppose (9), (10), (15) hold and let a positive function �1 be a lowersolution of (1), (2). Then this problem has at least one solution u with �1(t) � u(t) forall t 2 J:Proof. Let c� be a positive number satisfying c� � mint2J �1(t) and let f � be givenby (25). Let us consider the problem (26), (2). Without loss of generality we can supposethat A in (15) satis�es A > maxt2J �1(t) and we can check that�2(t) = A+ 2Tk'kL1 � tT Z T0 Z �0 '(s)dsd� + Z t0 Z �0 '(s)dsd�is an upper solution of (26), (2). So, by Theorem 5.1, the problem (26), (2) has a solutionu lying between �1 and �2 on J: In view of (25), u is a solution of (1), as well.Theorem 5.4. Suppose (9), (10), (11), (12), (15) hold and let positive functions �1 and�1 + ", where " 2 R+, be lower solutions of the problem (1), (2). Then this problem hasat least two positive solutions.Proof. Theorem 5.2 implies the existence of a positive solution u of (1), (2) whichsatis�es (33). Theorem 5.3 gives the existence of a solution v of (1), (2) which has theproperty �1(t) + " � v(t) for all t 2 J: (34)According to (33) and (34) we see that u and v are di�erent solutions.Theorem 5.5. Suppose (9), (10), (11), (12), (13), (14) and (15) hold. Then the problem(1), (2) has at least two positive solutions.Proof. Since (13) and (14) imply that the numbers � and �+ " are constant positivelower solutions of (1), (2), the assertion follows from Theorem 5.4.Corollary 5.6. Suppose (16) holds. Then the equation (4) has at least two positive T -periodic solutions.Proof. This assertion is a direct consequence of Theorem 5.4 and Lemma 3.1.References[1] S. Gaete, R. F. Man�asevich: Existence of a Pair of Periodic Solutions of an O. D. E.Generalizing a Problem in Nonlinear Elasticity, via Variational Methods, Journal ofMath. Anal. Appl. 134 (1988), 257-271.[2] I. Rach�unkov�a: Multiplicity results for the periodic boundary value problem in theCarath�eodory case. Faculty of Science, Palack�y Univ. Olomouc, Preprint 22/1998,1-23.[3] C. C. Wang: On the radial oscillations of a spherical thin shell in the �nite elasticitytheory, Quart. Appl. Math. 23, No. 3 (1965), 270-274.8


