Existence of two positive solutions of a singular nonlinear periodic boundary value problem

Irena Rachůnková *

Department of Mathematics, Palacký University, Tomkova 40, 77900 Olomouc, Czech Republic

1 Introduction

This paper deals with the singular boundary value problem

$$x'' = f(t, x, x'),$$
 (1)

$$x(0) = x(T), x'(0) = x'(T),$$
 (2)

where $f \in \operatorname{Car}(J \times (\mathbf{R}^+ \times \mathbf{R}))$, $J = [0, T] \subset \mathbf{R}$, $\mathbf{R}^+ = (0, \infty)$, and f has a repulsive singularity at $x = 0^+$, i.e.

$$\lim_{x \to 0^+} f(t, x, y) = +\infty \text{ for a.e. } t \in J \text{ and each } y \in \mathbf{R}.$$

We are interested in positive solutions of (1), (2), because we have been motivated by a problem from the Theory of Nonlinear Elasticity modelling radial oscillations of an elastic spherical membrane made up of a Neo-Hookean material, and subjected to an internal pressure. The oscillations are governed by the scalar equation

$$x'' = p(t)x^2 - x + x^{-5}, (3)$$

where the pressure $p: \mathbf{R} \to (0, \infty)$ is continuous and *T*-periodic and x(t) is the ratio of the deformed radius of the membrane at time *t* with respect to the undeformed radius, and hence x(t) > 0 on **R**. See [3] or [1]. Here, we prove the existence of at least two different positive solutions to the more general problem (1), (2) using theorems of [2] which are based on a connection between lower and upper solutions and the topological degree of an operator associated to (1), (2). We generalize results of [1], where the equation

$$x'' = g(t, x),\tag{4}$$

with $g : \mathbf{R} \times \mathbf{R} \to \mathbf{R}$ continuous and *T*-periodic in *t*, is considered and where the authors prove the existence of two positive periodic solutions for (4) by a variational method. Such an approach cannot be used for (1), (2).

^{*} Supported by Grant 201/98/0318 of the Grant Agency of the Czech Republic

2 Notation and definitions

For $k \in \mathbb{N} \cup \{0\}$, $\mathbb{C}^k(J)$ is the Banach space of functions having continuous k-th derivatives on J with the norm

$$||x||_{C^k} = \sum_{i=0}^k \max\{|x^{(i)}(t)| : t \in J\} \text{ for } x \in C^k(J);$$

 $L_1(J)$ is the Banach space of Lebesque integrable functions on J with the norm

$$||x||_{L_1} = \int_0^T |x(t)| dt \text{ for } x \in \mathcal{L}_1(J).$$

By $\operatorname{AC}^k(J)$ we denote the set of functions having absolutely continuous k-th derivatives on J, and we use $\operatorname{C}(J)$ or $\operatorname{AC}(J)$ instead of $\operatorname{C}^0(J)$ or $\operatorname{AC}^0(J)$. For $B \subset \mathbf{R}$, the symbol $\operatorname{Car}(J \times (B \times \mathbf{R}))$ denotes the set of functions satisfying the Carathéodory conditions on $J \times (B \times \mathbf{R})$, i.e. $f(\cdot, x, y) : J \to \mathbf{R}$ is measurable for all $x \in B, y \in \mathbf{R}, f(t, \cdot, \cdot) : B \times \mathbf{R} \to \mathbf{R}$ is continuous for a.e. $t \in J$ and $\sup\{|f(t, x, y)| : (x, y) \in K\} \in \operatorname{L}_1(J)$ for any compact set $K \subset (B \times \mathbf{R})$. For $\varphi \in \operatorname{L}_1(J)$ we denote by $\overline{\varphi}$ the mean value $(1/T) \int_0^T \varphi(s) ds$.

By a solution of (1), (2) we understand a function $u \in AC^1(J)$ satisfying (1) for a.e. $t \in J$, as well as the boundary conditions (2). By a lower solution of (1), (2) we mean a function $\sigma_1 \in AC^1(J)$ satisfying

$$\sigma_1''(t) \ge f(t, \sigma_1(t), \sigma_1'(t)) \text{ for a.e. } t \in J$$
(5)

and the boundary conditions

$$\sigma_1(0) = \sigma_1(T), \ \sigma_1'(0) \ge \sigma_1'(T).$$
 (6)

Similarly, by an upper solution of (1), (2) we mean a function $\sigma_2 \in AC^1(J)$ satisfying

$$\sigma_2''(t) \le f(t, \sigma_2(t), \sigma_2'(t)) \text{ for a.e. } t \in J$$
(7)

and the boundary conditions

$$\sigma_2(0) = \sigma_2(T), \ \sigma'_2(0) \le \sigma'_2(T).$$
 (8)

3 Assumptions

We will use the following assumptions in our lemmas and theorems:

$$f \in \operatorname{Car}(J \times (\mathbf{R}^+ \times \mathbf{R})); \tag{9}$$

$$\exists m \in \mathcal{L}_1(J) : f(t, x, y) > m(t) \text{ for a.e. } t \in J, \forall (x, y) \in \mathbf{R}^+ \times \mathbf{R};$$
(10)

$$\exists g \in \mathcal{C}(\mathbf{R}^+) : f(t, x, y) > g(x) \text{ for a.e. } t \in J, \forall (x, y) \in \mathbf{R}^+ \times [0, \infty),$$
(11)

where g(x) > 0 for all $x \in (0, r)$ and for some $r \in \mathbf{R}^+$;

$$G(0^+) = -\infty, G(\infty) = -\infty, \text{ where } G(x) = \int_r^x g(s)ds \text{ for } x \in \mathbf{R}^+;$$
(12)

$$\exists \sigma \in (r, \infty) : f(t, \sigma, 0) \le 0 \text{ for a.e. } t \in J;$$
(13)

$$\exists \varepsilon \in \mathbf{R}^+ : f(t, \sigma + \varepsilon, 0) \le 0 \text{ for a.e. } t \in J;$$
(14)

$$\exists \varphi \in \mathcal{L}_1(J), \ \exists A \in \mathbf{R}^+ : \bar{\varphi} \ge 0, \ f(t, x, y) \ge \varphi(t)$$
for a.e. $t \in J, \forall x > A, \forall y \in [-\|m\|_{L_1}, \|m\|_{L_1}].$

$$(15)$$

Suppose, that the function p on the right-hand side of (3) satisfies

$$0 < p_1 = \min_{t \in J} p(t) < \max_{t \in J} p(t) = p_2 < 6/7^{7/6}$$
(16)

and put

$$b(t, x) = p(t)x^2 - x + x^{-5}.$$

Then (16) guarantees that b has both signs which is necessary for the existence of periodic solutions to (3).

Lemma 3.1. Under the assumption (16) f = b fulfils all conditions (9) — (15).

Proof. The condition (9) follows from the fact that $b \in C(J \times \mathbb{R}^+)$. The condition (10): $b(t,x) > p_1x^2 - x \ge -1/4p_1$ on $J \times \mathbb{R}^+$. The condition (11): $b(t,x) > -x + x^{-5} = g(x)$ on $J \times \mathbb{R}^+$, where $g \in C(\mathbb{R}^+)$ and g(x) > 0 for all $x \in (0,1)$. The condition (12): $G(x) = \int_1^x g(s)ds = -\frac{x^{-4}}{4} - \frac{x^2}{2} + \frac{3}{4}$ and $G(0^+) = -\infty, G(\infty) = -\infty$. The conditions (13) and (14): $b(t,x) \le p_2x^2 - x + x^{-5} = \psi_{p_2}(x)$ on $J \times \mathbb{R}^+$. For $p_2 = 6/7^{7/6}$ the function ψ_{p_2} is nonnegative on \mathbb{R}^+ and it has just one minimal zero value at $x = 7^{1/6}$. For $p_2 \in (0, 6/7^{7/6})$ we can find an interval $(\alpha, \beta) \subset (1, \infty)$ such that $\psi_{p_2}(x) < 0$ for all $x \in (\alpha, \beta)$. Thus we can choose numbers $\sigma, \sigma + \varepsilon \in (\alpha, \beta)$ satisfying (13) and (14). The condition (15): $b(t,x) > p_1x^2 - x > 2/p_1$ for all $t \in J, x > A$, where $A = 2/p_1$.

4 A priori estimates

Lemma 4.1. Suppose (9) and (10) hold. Then for any positive solution u of the problem (1), (2) the estimate

$$\|u'\|_C < \|m\|_{L_1} \tag{17}$$

is true.

Proof. Let u be a positive solution of (1), (2). Then there exists $t_0 \in J$ such that $u'(t_0) = 0$. (10) implies that m(t) < u''(t) for a.e. $t \in J$. Therefore

$$-\int_{t_0}^T |m(t)| dt < u'(t) \text{ for any } t \in [t_0, T] \text{ and for } t = 0.$$

Thus $-||m||_{L_1} < u'(t)$ on J. Similarly

$$u'(t) < \int_0^{t_0} |m(t)| dt$$
 for any $t \in [0, t_0]$ and for $t = T$.

So, $u'(t) < ||m||_{L_1}$ on *J*, and (17) is proved.

Lemma 4.2. Suppose (9), (10), (11) and (12) hold. Then there exists $c^* \in \mathbf{R}^+$ such that any positive solution u of (1), (2) satisfies

$$0 < c^* < u(t) \text{ for any } t \in J.$$

$$(18)$$

Proof. Let u be a positive solution of (1), (2). According to (2) we can extend u periodically on **R**. Suppose that there exists $s \in J$ such that

$$0 < u(s) \le r. \tag{19}$$

Using Lemma 4.1 we get (17) which together with (19) gives the estimate

$$||u||_C < ||m||_{L_1}T + r = r^*.$$
(20)

Suppose that

$$\min_{t \in J} u(t) = u(t_0) \in (0, r).$$
(21)

Then $u'(t_0) = 0$. Let $\varepsilon > 0$ be such that u'(t) = 0 for all $t \in I_{\varepsilon} = [t_0, t_0 + \varepsilon]$. Then $u(t) = u(t_0)$ and u''(t) = 0 for all $t \in I_{\varepsilon}$. So, by (11), we get

$$0 = \int_{I_{\varepsilon}} f(t, u(t_0), 0) dt > \int_{I_{\varepsilon}} g(u(t_0)) dt > 0,$$

a contradiction. Suppose that we can find a sequence $\{t_n\} \subset \mathbf{R}$ such that $t_n \to t_{0+}$ and $u'(t_n) = 0$ for all $n \in \mathbf{N}$. Then there exists $m \in \mathbf{N}$ such that $u(t) \in (0, r)$ and u'(t) > 0 for all $t \in (t_m, t_{m+1})$. Therefore

$$0 = \int_{t_m}^{t_{m+1}} u''(t)dt = \int_{t_m}^{t_{m+1}} f(t, u(t), u'(t))dt > \int_{t_m}^{t_{m+1}} g(u(t))dt > 0,$$

a contradiction. So, we have proved that u' is positive on some right neighbourhood of t_0 . Let us show that there exists t_1 such that

$$0 < t_1 - t_0 < T, u'(t_1) = 0 \text{ and } u'(t) > 0 \text{ for all } t \in (t_0, t_1).$$
(22)

If u'(t) < 0 on $[0, t_0)$ and u'(t) > 0 on $(t_0, T]$, then this contradicts (2). Hence $t_1 \in (t_0, T]$ or $u'(\tau) = 0$ for some $\tau \in [0, t_0)$ and we set $t_1 = \tau + T$.

Now, using (11) and (22), we have

$$u'' \cdot u' = f(t, u(t), u'(t)) \cdot u'(t) > g(u(t)) \cdot u'(t)$$
 for a.e. $t \in (t_0, t_1)$

and

$$\int_{t_0}^{t_1} u'(t)u''(t)dt > \int_{t_0}^{t_1} g(u(t))u'(t)dt.$$

Thus $0 = \frac{1}{2}(u'^2(t_1) - u'^2(t_0)) > G(u(t_1)) - G(u(t_0))$, i.e.

$$G(u(t_0)) > G(u(t_1)).$$
 (23)

We can suppose without loss of generality that g(x) < 0 for all x > r. Then G is increasing on (0, r) and decreasing on (r, ∞) , which together with (21) and (23) imply that $u(t_1) > r$. In view of (20) $G(r^*) < G(u(t_1))$ and there exists just one number $c^* \in (0, r)$ such that

$$G(c^*) = G(r^*).$$
 (24)

Therefore $G(c^*) < G(u(t_0))$, which gives (18). We have proved (18) for any positive solution satisfying (19). If some positive solution v of (1), (2) has not the property (19), then $\min_{t \in J} v(t) > r$, and so we get (18) immediately.

Lemma 4.3. Suppose (9), (10), (11), (12) hold and set $r^* \ge ||m||_{L_1}T + r$, $c^* = G^{-1}(G(r^*)) \in (0, r)$. Further put

$$f^{*}(t, x, y) = \begin{cases} f(t, x, y) & \text{if } x > c^{*} \\ f(t, c^{*}, y) + c^{*} - x & \text{if } x \le c^{*} \end{cases}$$
(25)

for a.e. $t \in J$ and all $x, y \in \mathbf{R}$ and consider the equation

$$u'' = f^*(t, u, u').$$
(26)

Then any solution u of the problem (26), (2) is a solution of (1), (2) and satisfies the estimate (18).

Proof. $f^* \in \operatorname{Car}(J \times \mathbb{R}^2)$ and f^* satisfies (10) for all $x \in \mathbb{R}$. Therefore the estimate (17) is true for any solution u of (26), (2). The proof of this assertion is similar to that of Lemma 4.1. Let u be a solution of (26), (2) and suppose that $\min_{t \in J} u(t) = u(t_0) < c^*$. Then we can argue like in the proof of Lemma 4.2 and get a point t_1 satisfying (22). If $u(t_1) \leq c^*$, then

$$0 = \int_{t_0}^{t_1} u''(s) ds = \int_{t_0}^{t_1} (f(s, c^*, u'(s)) + c^* - u(s)) ds > \int_{t_0}^{t_1} g(c^*) ds > 0,$$

a contradiction. Thus, suppose that $u(t_1) > c^*$. Then there exists $t^* \in (t_0, t_1)$ such that $u(t^*) = c^*$ and

$$0 = \int_{t_0}^{t_1} u''(s)u'(s)ds = \int_{t_0}^{t^*} (f(s, c^*, u'(s)) + c^* - u(s))u'(s)ds + \int_{t^*}^{t_1} f(s, u(s), u'(s))u'(s)ds > \int_{t^*}^{t_1} g(u(s))u'(s)ds = G(u(t_1)) - G(c^*).$$

Analogically like in the proof of Lemma 4.2 we deduce that $u(t_1) \in (r, r^*)$ and $G(r^*) < G(u(t_1))$. Since $G(r^*) = G(c^*) > G(u(t_1))$, we get a contradiction. Thus u satisfies (18) and it is a solution of (1), (2), as well.

5 Main results

First, we will study a regular problem for the equation

$$u'' = h(t, u, u'),$$
 (27)

with $h \in \operatorname{Car}(J \times \mathbf{R}^2)$.

Theorem 5.1. Let σ_1 and σ_2 be lower and upper solutions of (27), (2). Further suppose that for a.e. $t \in J$ and all $x, y \in \mathbf{R}$

$$h(t, x, y) \ge -\rho(t, |x| + |y|),$$
(28)

where $\rho \in Car(J \times \mathbf{R}^+)$ is a nonnegative function, which is nondecreasing and sublinear in its second variable, i.e.

$$\lim_{z \to \infty} \frac{1}{z} \int_0^T \rho(t, z) dt = 0.$$
 (29)

I. Then the problem (27), (2) has at least one solution u.

II. a) If $\sigma_1(t) \leq \sigma_2(t)$ for all $t \in J$, then $\sigma_1(t) \leq u(t) \leq \sigma_2(t)$ for all $t \in J$.

b) If $\sigma_2(t) \leq \sigma_1(t)$ for all $t \in J$, then there exists $t_u \in J$ such that $\sigma_2(t_u) \leq u(t_u) \leq \sigma_1(t_u)$.

c) If σ_1 and σ_2 are not ordered on J, then there exist $t_u, s_u \in J$ such that $\sigma_2(t_u) \leq u(t_u)$ and $u(s_u) \leq \sigma_1(s_u)$. **Proof.** Let us set $H(\mu) = \frac{1}{\mu} \int_0^T \rho(s, \mu(T+1) + r) ds$ for $\mu \in (0, \infty)$ and $r = ||\sigma_1||_C + ||\sigma_2||_C$. The condition (29) implies that there exists $\mu^* \in (0, \infty)$ with

$$H(\mu) < 1 \text{ for all } \mu \ge \mu^*.$$
(30)

Now, let us consider the auxiliary differential equation

$$u'' = h^*(t, u, u'), \tag{31}$$

where

$$h^*(t, x, y) = \chi(|x| + |y|, r^*)h(t, x, y)$$
 for a.e. $t \in J$ and all $x, y \in \mathbf{R}$,
 $r^* = \mu^*(T+1) + r$,

$$\chi(s,\phi) = \begin{cases} 1 & \text{for } 0 \le s \le \phi \\ 2 - s/\phi & \text{for } \phi < s < 2\phi \\ 0 & \text{for } s \ge 2\phi \end{cases}$$

Since there exists $m^* \in L_1(J)$ such that $|h^*(t, x, y)| < m^*(t)$ for a.e. $t \in J$ and all $x, y \in \mathbf{R}$, we can apply Theorem 6 from [2] onto the problem (31), (2) and get a solution of this problem which fulfills the assertion II of our Theorem 5.1. Let us prove that u is a solution of (27). Putting $\mu = ||u'||_C$, we get $||u||_C \le \mu T + r$. In view of (2) we can find $t_0 \in J$ such that $u'(t_0) = 0$ and (28) gives

$$u''(t) \ge -\rho(t, |u| + |u'|)$$
 for a.e. $t \in J$. (32)

In a way similar to the proof of Theorem 8 in [2] we get from (32) by integration

$$|u'(t)| \le \int_0^T \rho(t, \mu(T+1) + r) dt \text{ for all } t \in J,$$

and so $1 \leq H(\mu)$. The latter inequality together with (30) imply that $\mu < \mu^*$. Thus $||u||_C + ||u'||_C < r^*$ and u satisfies (27).

Theorem 5.2. Suppose (9), (10), (11), (12) hold and let a positive function σ_1 be a lower solution of the problem (1), (2). Then this problem has at least one positive solution.

Proof. Let r^* and c^* be the numbers from Lemma 4.3. Without loss of generality we can suppose $c^* \leq \min_{t \in J} \sigma_1(t)$. (Otherwise we take instead of r^* and c^* numbers r^{**} and c^{**} , which ssatisfy $c^{**} = \min_{t \in J} \sigma_1(t) < c^*$ and $r^{**} = G^{-1}(G(c^{**}) \in (r^*, \infty))$. Now, let us consider the auxiliary problem (26), (2). By (9), (10) and (25), $f^* \in \operatorname{Car}(J \times \mathbf{R}^2)$ and f^* satisfies (28) with $\rho(t, z) = |m(t)|$. Since c^* and σ_1 are upper and lower solution of (26), (2), respectively, Theorem 5.1 implies that (26), (2) has a solution u with

$$c^* \le u(t_u) \le \sigma_1(t_u)$$
 for some $t_u \in J$. (33)

By Lemma 4.3, u is a solution of (1), (2) and satisfies (18).

Theorem 5.3. Suppose (9), (10), (15) hold and let a positive function σ_1 be a lower solution of (1), (2). Then this problem has at least one solution u with $\sigma_1(t) \leq u(t)$ for all $t \in J$.

Proof. Let c^* be a positive number satisfying $c^* \leq \min_{t \in J} \sigma_1(t)$ and let f^* be given by (25). Let us consider the problem (26), (2). Without loss of generality we can suppose that A in (15) satisfies $A > \max_{t \in J} \sigma_1(t)$ and we can check that

$$\sigma_2(t) = A + 2T \|\varphi\|_{L_1} - \frac{t}{T} \int_0^T \int_0^\tau \varphi(s) ds d\tau + \int_0^t \int_0^\tau \varphi(s) ds d\tau$$

is an upper solution of (26), (2). So, by Theorem 5.1, the problem (26), (2) has a solution u lying between σ_1 and σ_2 on J. In view of (25), u is a solution of (1), as well.

Theorem 5.4. Suppose (9), (10), (11), (12), (15) hold and let positive functions σ_1 and $\sigma_1 + \varepsilon$, where $\varepsilon \in \mathbf{R}^+$, be lower solutions of the problem (1), (2). Then this problem has at least two positive solutions.

Proof. Theorem 5.2 implies the existence of a positive solution u of (1), (2) which satisfies (33). Theorem 5.3 gives the existence of a solution v of (1), (2) which has the property

$$\sigma_1(t) + \varepsilon \le v(t) \text{ for all } t \in J.$$
(34)

According to (33) and (34) we see that u and v are different solutions.

Theorem 5.5. Suppose (9), (10), (11), (12), (13), (14) and (15) hold. Then the problem (1), (2) has at least two positive solutions.

Proof. Since (13) and (14) imply that the numbers σ and $\sigma + \varepsilon$ are constant positive lower solutions of (1), (2), the assertion follows from Theorem 5.4.

Corollary 5.6. Suppose (16) holds. Then the equation (4) has at least two positive T-periodic solutions.

Proof. This assertion is a direct consequence of Theorem 5.4 and Lemma 3.1. \Box

References

- S. Gaete, R. F. Manásevich: Existence of a Pair of Periodic Solutions of an O. D. E. Generalizing a Problem in Nonlinear Elasticity, via Variational Methods, Journal of Math. Anal. Appl. 134 (1988), 257-271.
- [2] I. Rachůnková: Multiplicity results for the periodic boundary value problem in the Carathéodory case. Faculty of Science, Palacký Univ. Olomouc, Preprint 22/1998, 1-23.
- [3] C. C. Wang: On the radial oscillations of a spherical thin shell in the finite elasticity theory, Quart. Appl. Math. 23, No. 3 (1965), 270-274.