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Abstract We investigate the singular periodic boundary value problem φ-Laplacian

(φ(u′))′ = f(t, u, u′),

u(0) = u(T ), u′(0) = u′(T ),

where φ is an increasing homeomorphism, φ(R) = R, φ(0) = 0. We assume that f satisfies the Carathéodory
conditions on each set [a, b]×R2, [a, b] ⊂ (0, T ) and f does not satisfy the Carathéodory conditions on [0, T ]×R2,
which means that f has time singularities at t = 0, t = T .

We provide sufficient conditions for the existence of solutions to the above problem belonging to C1[0, T ]. We
also find conditions which guarantee the existence of a sign-changing solution to the problem.
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1 Introduction

The growth in the theory of singular nonlinear boundary value problems has been strongly
influenced by the rich and large number of applications that occur particulary in the sciences.
For example the singular differential equation with the time singularity at t = 0

u′′ +
2
t
u′ = f(t, u)

arises in the study of steady-state oxygen diffusion in a cell with Michaelis-Menten Kinetics [1],
[13].

Here we will investigate the singular nonlinear periodic problem with φ-Laplacian

(φ(u′))′ = f(t, u, u′), (1.1)

u(0) = u(T ), u′(0) = u′(T ). (1.2)

We assume that φ is an increasing homeomorphism with φ(R) = R, φ(0) = 0, [0, T ] ⊂ R. The
function f is supposed to satisfy the Carathéodory conditions on each set [a, b] × R2, [a, b] ⊂
(0, T ), but f does not satisfy the Carathéodory conditions on [0, T ] × R2. We will write it
f ∈ Car((0, T )× R2).

Definition 1.1 The function f satisfies the Carathéodory conditions on the set [a, b]×R2, [a, b] ⊂
(0, T ) if

(i) f(·, x, y) : [a, b] → R is measurable for all (x, y) ∈ R2,

(ii) f(t, ·, ·) : R2 → R is continuous for a.e. t ∈ [a, b],
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(iii) for each compact set K ⊂ R2 there is a function mK ∈ L1[a, b] such that |f(t, x, y)| ≤ mK(t)
for a.e. t ∈ [a, b] and all (x, y) ∈ K.

Further we assume that f has time singularities at the endpoints 0 and T .

Definition 1.2 We say that f has time singularities at the points 0 and T , respectively, if there
exist x, y ∈ R such that∫ ε

0
|f(t, x, y)|dt = ∞ and

∫ T

T−ε
|f(t, x, y)|dt = ∞

for each sufficiently small ε > 0. The points 0 and T are called singular points of f .

In order to prove the existence of solutions for periodic problem (1.1), (1.2) we start with the
proof of the existence of solutions of auxiliary Dirichlet problems. For that reason we will consider
boundary conditions

u(0) = u(T ) = C, (1.3)

where C ∈ R.

Definition 1.3 Let i ∈ {2, 3}. A function u : [0, T ] → R with φ(u′) ∈ AC[0, T ] is called
a solution of problem (1.1), (1.i) if u satisfies

(φ(u′(t)))′ = f(t, u(t), u′(t))

for a.e. t ∈ [0, T ] and fulfils (1.i) .

Note that the condition φ(u′) ∈ AC[0, T ] implies u ∈ C1[0, T ]. Therefore we will seek solutions of
problems (1.1), (1.2) and (1.1), (1.3) in the space of functions having continuous first derivatives
on [0, T ], in particular at the singular points 0 and T . In the most works studying Dirichlet
problems with time singularities the existence of so called w-solutions has been proved. See e.g.
[9], [10], [11], [15].

Definition 1.4 A function u ∈ C[0, T ] is called a w-solution of problem (1.1), (1.3) if φ(u′) ∈
ACloc(0, T ), u satisfies

(φ(u′(t)))′ = f(t, u(t), u′(t))

for a.e. t ∈ [0, T ] and fulfils (1.3) .

Since the condition φ(u′) ∈ ACloc(0, T ) implies that a w-solution u belongs only to C1(0, T ), we
do not know the behaviour of u′ at the singular endpoints 0, T . The notion of w-solutions can
not be used for periodic problem (1.1), (1.2), where condition (1.2) requires u ∈ C1[0, T ]. That
is why existence results for periodic problem (1.1), (1.2) with time singularities have not beeen
proved up to now and in literature we can find only existence results for periodic problems with
space singularities (i.e. f(t, x, y) has singularities at x or at y). See e.g [4], [5], [6], [7], [8], [12],
[14], [17], [18], [20], where the existence of positive periodic solutions was proved.

It seems worth to fill in this gap and to present existence results for problem (1.1), (1.2)
with time singularities, which is the main goal of our paper (Theorem 4.1). Moreover we show
conditions giving sign-changing solutions of (1.1), (1.2) (Corollary 4.2).

We will investigate singular problem (1.1), (1.2) by means of Dirichlet problem (1.1), (1.3). To
establish the existence of a solution of the singular problem (1.1), (1.3) we introduce a sequence
of approximating regular Dirichlet problems which are solvable. Then we pass to the limit in the
sequence of approximate solutions to get a solution (a w-solution) of the problem (1.1), (1.3) and
finally of the original problem (1.1), (1.2). In the next theorem we provide an existence principle
which contains the main rules for the construction of such approximating sequences.
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For n ∈ N consider equations
(φ(u′))′ = fn(t, u, u′), (1.4)

where fn ∈ Car([0, T ]×R2). Denote

Jn = [
1
n
, T − 1

n
] ∩ [0, T ]. (1.5)

Theorem 1.5 [16, Theorem 2.1] Assume that

f ∈ Car((0, T )×R2) has time singularities at t = 0 and t = T, (1.6)

fn(t, x, y) = f(t, x, y) for a.e. t ∈ Jn and all x, y ∈ R, n ∈ N, (1.7)

there exists a bounded set Ω ⊂ C1[0, T ] such that for each n ∈ N (1.8)
the regular problem (1.4), (1.3) has a solution un ∈ Ω.

Then

• there exist u ∈ C[0, T ] ∩ C1(0, T ) and a subsequence {unl
} ⊂ {un} such that

liml→∞ ‖unl
− u‖C[0,T ] = 0, liml→∞ u′nl

(t) = u′(t) locally uniformly on (0, T ),

• u is a w-solution of (1.1), (1.3).

Moreover, assume that there exist η ∈ (0, T
2 ), λ1, λ2 ∈ {−1, 1}, d ∈ R and ψ ∈ L1[0, T ] such that

for each n ∈ N {
λ1 sign(u′n(t)− d)fn(t, un(t), u′n(t)) ≥ ψ(t) a.e. on (0, η),
λ2 sign(u′n(t)− d)fn(t, un(t), u′n(t)) ≥ ψ(t) a.e. on (T − η, T ).

(1.9)

Then u is a solution of (1.1), (1.3).

2 Lemmas

Consider a sequence of functions vn : [0, T ] → R, n ∈ N.

Definition 2.1 We say that the sequence {vn} is equicontinuos in t0 ∈ [0, T ], if

∀ε > 0 ∃δ > 0 ∀t ∈ (t0 − δ, t0 + δ) ∩ [0, T ],∀n ∈ N : |vn(t)− vn(t0)| < ε

We will show conditions which imply the equicontinuity of {vn} at the points 0, T . This result
will be used in Section 4.

Lemma 2.2 Assume that there exist η ∈ (0, T
2 ) and nonnegative functions α ∈ C[0, η], β ∈

C(0, η], α(0) = 0, β(0+) = 0 such that for each n ∈ N, n > 1
η

|vn(t)| ≤ β(t) for t ∈ [
1
n
, η], (2.1)

|vn(t)− vn(0)| ≤ α(t) for t ∈ [0,
1
n

). (2.2)

Then {vn} is equicontinuous in 0 and limn→∞ vn(0) = 0.

Proof
Choose an arbitrary ε > 0. Then there exists δ > 0 such that

t ∈ [0, δ) ⇒ |α(t)| < ε

3
, t ∈ (0, δ) ⇒ |β(t)| < ε

3
.

Choose an arbitrary t ∈ [0, δ) an and arbitrary n ∈ N.
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(a) Let t ∈ [0, 1
n ]. Then by (2.2), |vn(t)− vn(0)| ≤ α(t) < ε

3 .

(b) Let t ∈ [ 1
n , δ). Then by (2.1), (2.2), |vn(t) − vn(0)| ≤ |vn(t)| + |vn(0) − vn( 1

n)| + |vn( 1
n)| ≤

β(t) + α( 1
n) + β( 1

n) < ε.

Hence, we have proved that {vn} is equicontinuous in 0. Further, |vn(0)| ≤ |vn(0) − vn( 1
n)| +

|vn( 1
n)| ≤ α( 1

n) + β( 1
n) → 0 for n→∞.

�

Lemma 2.3 Assume that there exist η ∈ (0, T
2 ) and nonnegative functions α ∈ C[T − η, T ],

β ∈ C[T − η, T ), α(T ) = 0, β(T−) = 0 such that for each n ∈ N, n > 1
η

|vn(t)| ≤ β(t) for t ∈ [T − η, T − 1
n

], (2.3)

|vn(t)− vn(T )| ≤ α(t) for t ∈ (T − 1
n
, T ]. (2.4)

Then {vn} is equicontinuous in T and limn→∞ vn(T ) = 0.

Proof
Choose an arbitrary ε > 0. Then there exists δ > 0 such that

t ∈ (T − δ, T ] ⇒ |α(t)| < ε

3
, t ∈ (T − δ, T ) ⇒ |β(t)| < ε

3
.

Choose an arbitrary t ∈ (T − δ, T ] and an arbitrary n ∈ N.

(a) Let t ∈ [T − 1
n , T ]. Then by (2.4), |vn(t)− vn(T )| ≤ α(t) < ε

3 .

(b) Let t ∈ (T − δ, T − 1
n). Then by (2.3), (2.4), |vn(t)− vn(T )| ≤ |vn(t)|+ |vn(T )− vn(T − 1

n)|+
|vn(T − 1

n)| ≤ β(t) + α(T − 1
n) + β(T − 1

n) < ε.

Hence, we have proved that {vn} is equicontinuous in T . Further, |vn(T )| ≤ |vn(T ) − vn(T −
1
n)|+ |vn(T − 1

n)| ≤ α(T − 1
n) + β(T − 1

n) → 0 for n→∞.
�

Lemma 2.4 Assume that η ∈ (0, T
2 ), β0 ∈ (0,∞), γ ∈ L1[0, T ], g∗ ∈ L1[0, T ] and that h∗ ∈

L1loc
(0, T ) is nonnegative. Further let for each n ∈ N, n > 1

η , a function vn ∈ AC[0, T ] fulfil
conditions

|vn(η)| ≤ β0, (2.5)

v′n(t) sign vn(t) ≥ h∗(t)|vn(t)|+ g∗(t) for a.e. t ∈ [
1
n
, η], (2.6)

v′n(t) = γ(t) for a.e. t ∈ (0,
1
n

), (2.7)

where ∫ ε

0
h∗(s)ds = ∞ for each sufficiently small ε > 0. (2.8)

Then the sequence {vn} is equicontinuous in 0 and limn→∞ vn(0) = 0.

Proof
We will construct functions α and β of Lemma 2.2. Consider the auxiliary problem

β′(t) = h∗(t)β(t) + g∗(t), β(η) = β0. (2.9)
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Problem (2.9) has a unique solution of the form

β(t) = e−
∫ η

t h∗(s)ds
[
β0 −

∫ η

t
g∗(τ)e

∫ η
τ h∗(s)dsdτ

]
for t ∈ (0, η].

By (2.8) we get

lim
t→0+

β(t) = β0e
−

∫ η
0 h∗(s)ds −

∫ η

0
g∗(τ)e−

∫ τ
0 h∗(s)dsdτ = 0

because
∫ τ
0 h

∗(s)ds = ∞ for each τ ∈ (0, η].
Choose an arbitrary n ∈ N. Let us prove that (2.1) is satisfied. In contrary assume that there
exist t1 ∈ ( 1

n , η) and t2 ∈ (t1, η] such that

|vn(t2)| = β(t2), |vn(t)| > β(t) for all t ∈ [t1, t2).

Then, by (2.6) and (2.9), we get

0 < |vn(t1)| − β(t1) = −
∫ t2

t1

(v′n(t) sign vn(t)− β′(t))dt ≤
∫ t2

t1

−h∗(t)(|vn(t)| − β(t))dt ≤ 0,

a contradiction. Further, due to (2.7), we have

|vn(t)− vn(0)| ≤ |
∫ t

0
γ(s)ds| = α(t) for t ∈ [0,

1
n

).

It means that (2.2) is satisfied and, using Lemma 2.2, Lemma 2.4 is proved.
�

Lemma 2.5 Assume that η ∈ (0, T
2 ), β0 ∈ (0,∞), γ ∈ L1[0, T ], g∗ ∈ L1[0, T ] and that h∗ ∈

L1loc
(0, T ) is nonnegative. Further let for each n ∈ N, n > 1

η , a function vn ∈ AC[0, T ] fulfil
conditions

|vn(T − η)| ≤ β0, (2.10)

−v′n(t) sign vn(t) ≥ h∗(t)|vn(t)|+ g∗(t) for a.e. t ∈ [T − η, T − 1
n

], (2.11)

v′n(t) = γ(t) for a.e. t ∈ (T − 1
n
, T ), (2.12)

where ∫ T

T−ε
h∗(s)ds = ∞ for each sufficiently small ε > 0. (2.13)

Then the sequence {vn} is equicontinuous in T and limn→∞ vn(T ) = 0.

Proof
We will construct functions α and β of Lemma 2.3. Consider the auxiliary problem

β′(t) = −h∗(t)β(t)− g∗(t), β(T − η) = β0. (2.14)

Problem (2.14) has a unique solution of the form

β(t) = e−
∫ t

T−η h∗(s)ds[β0 −
∫ t

T−η
g∗(τ)e

∫ τ
T−η h∗(s)dsdτ

]
for t ∈ [T − η, T ).

By (2.13) we get

lim
t→T−

β(t) = β0e
−

∫ T
T−η h∗(s)ds −

∫ T

T−η
g∗(τ)e−

∫ T
τ h∗(s)dsdτ = 0
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because
∫ T
τ h∗(s)ds = ∞ for each τ ∈ [T − η, T ).

Choose an arbitrary n ∈ N. Let us prove that (2.3) is satisfied. In contrary assume that there
exist t1 ∈ [T − η, T − 1

n) and t2 ∈ (t1, T − 1
n) such that

|vn(t1)| = β(t1), |vn(t)| > β(t) for all t ∈ (t1, t2].

Then, by (2.11) and (2.14), we get

0 < |vn(t2)| − β(t2) =
∫ t2

t1

(v′n(t) sign vn(t)− β′(t))dt ≤
∫ t2

t1

−h∗(t)(|vn(t)| − β(t))dt ≤ 0,

a contradiction. Further, due to (2.12), we have

|vn(t)− vn(T )| ≤ |
∫ T

t
γ(s)ds| = α(t) for t ∈ (T − 1

n
, T ].

It means that (2.4) is satisfied and, by Lemma 2.3, Lemma 2.5 is proved.
�

3 Regular Dirichlet BVP’s

In order to fulfil the basic condition (1.8) in Theorem 1.5 we need existence results for regular
problems (1.4), (1.3) and a priori estimates for their solutions. To this aim we consider a regular
equation

(φ(u′))′ = h(t, u, u′), (3.1)

h ∈ Car([0, T ]×R2), and use the lower and upper functions method to get solvability of problem
(3.1), (1.3).

Definition 3.1 Functions σ1, σ2 : [0, T ] → R are respectively lower and upper functions of
problem (3.1), (1.3) if φ(σ′i) ∈ AC[0, T ] for i ∈ {1, 2} and

(φ(σ′1(t)))
′ ≥ f(t, σ1(t), σ′1(t)), (φ(σ′2(t)))

′ ≤ f(t, σ2(t), σ′2(t)) for a.e. t ∈ [0, T ],
σ1(0) ≤ C, σ1(T ) ≤ C, σ2(0) ≥ C, σ2(T ) ≥ C.

Since the lower and upper functions method for regular problems with φ-Laplacian can be found
in literature (see e.g. [3], [2], [19], [16]), we only cite the results without their proofs..

Lemma 3.2 [2, Theorem 2.1] Let σ1 and σ2 be respectively lower and upper functions of problem
(3.1), (1.3) and let σ1 ≤ σ2 on [0, T ]. Further assume that there is h0 ∈ L1[0, T ] such that

|h(t, x, y)| ≤ h0(t) for a.e. t ∈ [0, T ] and for all (x, y) ∈ [σ1(t), σ2(t)]×R.

Then problem (3.1), (1.3) has a solution u ∈ C1[0, T ] with φ(u′) ∈ AC[0, T ] such that

σ1 ≤ u ≤ σ2 on [0, T ]. (3.2)

Lemma 3.2 gives the existence result for (3.1), (1.3) provided the function h has a Lebesgue
integrable majorant h0. The method of a priori estimates enables us to extend this result to
more general right-hand sides h.

Lemma 3.3 [16, Lemma 3.3](An a priori estimate)
Assume that a, b ∈ [0, T ], a ≤ b, d ∈ R, c0 ∈ (0,∞). Let g0 ∈ L1[0, T ] be nonnegative and let
ω ∈ C[0,∞) be positive and ∫ ∞

0

ds

ω(s)
= ∞. (3.3)
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Then there exists %0 ∈ (c0,∞) such that for each function u ∈ C1[0, T ] satisfying the conditions

φ(u′) ∈ AC[0, T ],

|u(t)| ≤ c0 for each t ∈ [0, T ], (3.4)

|u′(ξ)| ≤ c0 for some ξ ∈ [a, b], (3.5)

(φ(u′(t)))′ sign(u′(t)− d) ≥ −ω(|φ(u′(t))− φ(d)|)(g0(t) + |u′(t)− d|)
for a.e. t ∈ [0, b] and for |φ(u′(t))| > |φ(d)| (3.6)

and

(φ(u′(t)))′ sign(u′(t)− d) ≤ ω(|φ(u′(t))− φ(d)|)(g0(t) + |u′(t)− d|)
for a.e. t ∈ [a, T ] and for |φ(u′(t))| > |φ(d)|, (3.7)

the estimate
|u′(t)| ≤ %0 for each t ∈ [0, T ] (3.8)

is valid.

Using Lemma 3.2 and Lemma 3.3 we get the existence result for (3.1), (1.3) under one-sided
growth restrictions of the Nagumo type (3.12), (3.13).

Theorem 3.4 [16, Theorem 3.4] Assume that the following conditions are fulfilled:

σ1 and σ2 are respectively lower and upper functions of (3.1), (1.3) and σ1 ≤ σ2 on [0, T ],
(3.9)

a, b ∈ [0, T ], a < b, d ∈ R, c0 ≥ 2
1 + b− a

b− a
(‖σ1‖∞ + ‖σ2‖∞), (3.10)

g ∈ L1[0, T ] is nonnegative, ω ∈ C[0,∞) is positive and fulfils (3.3), (3.11)

h(t, x, y) sign y ≥ −ω(|φ(y)− φ(d)|)(g(t) + |y|)
for a.e. t ∈ [0, b],∀x ∈ [σ1(t), σ2(t)],∀y ∈ R such that |φ(y)| > |φ(d)| (3.12)

and

h(t, x, y) sign y ≤ ω(|φ(y)− φ(d)|)(g(t) + |y|)
for a.e. t ∈ [a, T ],∀x ∈ [σ1(t), σ2(t)],∀y ∈ R such that |φ(y)| > |φ(d)|. (3.13)

Then problem (3.1), (1.3) has a solution u satisfying

σ1 ≤ u ≤ σ2 on [0, T ] (3.14)

and
|u′(t)| ≤ %0 for t ∈ [0, T ], (3.15)

where %0 ∈ (0,∞) is the constant from Lemma 3.3 with g0 = g + |d|.
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4 Main result

In this section we prove our main result about the solvability of the singular periodic boundary
value problem (1.1), (1.2).

Theorem 4.1 (Existence of a solution of the periodic problem)
Let a, b ∈ [0, T ], a < b. Let there exist r1, r2, d ∈ R, such that{

r1 + td ≤ C, r2 + td ≥ C for t ∈ [0, T ],
f(t, r1 + td, d) ≤ 0, f(t, r2 + td, d) ≥ 0 for a.e. t ∈ [0, T ].

(4.1)

Further, let there exist nonnegative function g ∈ L1[0, T ] and positive function ω ∈ C[0,∞)
satisfying (3.3),

f(t, x, y) sign y ≥ −ω(|φ(y)− φ(d)|)(g(t) + |y|)
for a.e. t ∈ [0, b],∀x ∈ [r1 + td, r2 + td],∀y ∈ R such that |φ(y)| > |φ(d)| (4.2)

and

f(t, x, y) sign y ≤ ω(|φ(y)− φ(d)|)(g(t) + |y|)
for a.e. t ∈ [a, T ],∀x ∈ [r1 + td, r2 + td],∀y ∈ R such that |φ(y)| > |φ(d)|. (4.3)

Then there exists a function u which is w-solution of problem (1.1), (1.3) and satisfies

r1 + td ≤ u(t) ≤ r2 + td for t ∈ [0, T ] (4.4)

and
|u′(t)| ≤ %0 for each t ∈ (0, T ), (4.5)

where %0 is the constant from Lemma 3.3 with g0 = g + |d|.
Moreover, let there exist η ∈ (0, T

2 ), g∗ ∈ L1[0, T ] and nonnegative function h∗ ∈ L1loc
(0, T )

such that

sign(y − d)f(t, x, y) ≥ h∗(t)|φ(y)− φ(d)|+ g∗(t)
for a.e. t ∈ (0, η),∀x ∈ [r1 + td, r2 + td],∀y ∈ [−%0, %0], (4.6)

− sign(y − d)f(t, x, y) ≥ h∗(t)|φ(y)− φ(d)|+ g∗(t)
for a.e. t ∈ (T − η, T ),∀x ∈ [r1 + td, r2 + td],∀y ∈ [−%0, %0]. (4.7)

Then the function u is a solution of problem (1.1), (1.2) and u′(0) = u′(T ) = d.

Proof
For each n ∈ N define Jn by (1.5),

fn(t, x, y) =

{
f(t, x, y) for a.e. t ∈ Jn,∀x, y ∈ R,
0 for a.e. t ∈ [0, 1

n) ∪ (T − 1
n , T ],∀x, y ∈ R.

(4.8)

Then fn ∈ Car([0, T ] × R2) for each n ∈ N. Choose n ∈ N and show that problem (1.4), (1.3)
satisfies the assumptions of Theorem 3.4. Let us put σ1(t) = r1 + td and σ2(t) = r2 + td for
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t ∈ [0, T ]. Then σ1 ≤ σ2 on [0, T ] and according to (4.1), σ1 and σ2 are lower and upper function
of problem (1.4), (1.3), i.e. (3.9) holds. From inequalities (4.2) and (4.3) we get

fn(t, x, y) sign y = f(t, x, y) sign y ≥ −ω(|φ(y)− φ(d)|)(g(t) + |y|)
for a.e. t ∈ [0, b] ∩ Jn,∀x ∈ [r1 + td, r2 + td],∀y ∈ R, |φ(y)| > |φ(d)|,

fn(t, x, y) sign y = 0 ≥ −ω(|φ(y)− φ(d)|)(g(t) + |y|)
for a.e. t ∈ [0, b]\Jn,∀x ∈ [r1 + td, r2 + td],∀y ∈ R,

fn(t, x, y) sign y = f(t, x, y) sign y ≤ ω(|φ(y)− φ(d)|)(g(t) + |y|)
for a.e. t ∈ [a, T ] ∩ Jn,∀x ∈ [r1 + td, r2 + td],∀y ∈ R, |φ(y)| > |φ(d)|,

fn(t, x, y) sign y = 0 ≤ ω(|φ(y)− φ(d)|)(g(t) + |y|)
for a.e. t ∈ [a, T ]\Jn,∀x ∈ [r1 + td, r2 + td],∀y ∈ R.

It means that conditions (3.12) and (3.13) are fulfilled for h = fn. By Theorem 3.4, problem
(1.4), (1.3) has a solution un ∈ C1[0, T ] with φ(u′n) ∈ AC[0, T ]. Moreover, un satisfies (4.4) and

|u′n(t)| ≤ %0 for t ∈ [0, T ], (4.9)

where %0 ∈ (0,∞) is the constant from Lemma 3.3 with g0 = g + |d|. By virtue of Lemma 3.3,
%0 does not depend on un. Therefore condition (1.8) is fulfilled, where

Ω = {x ∈ C1([0, T ]) : ‖x‖∞ ≤ ‖σ1‖∞ + ‖σ2‖∞ + %0}.

Hence, by Theorem 1.5, problem (1.4), (1.3) has a w-solution u which satisfies (4.4) and (4.5).
Now, furthermore, assume (4.6), (4.7). Let us define

ψ(t) = min{g∗(t), 0} for t ∈ [0, T ].

Then ψ ∈ L1[0, T ]. Let us put λ1 = 1 and λ2 = −1. We can see that

λ1 sign(u′n(t)− d)fn(t, un(t), u′n(t)) = sign(u′n(t)− d)f(t, un(t), u′n(t)) ≥
h∗(t)|φ(u′n(t))− φ(d)|+ g∗(t) ≥ ψ(t) for a.e. t ∈ [0, η] ∩ Jn,

λ1 sign(u′n(t)− d)fn(t, un(t), u′n(t)) = 0 ≥ ψ(t) for a.e. t ∈ [0, η]\Jn,

λ2 sign(u′n(t)− d)fn(t, un(t), u′n(t)) = − sign(u′n(t)− d)f(t, un(t), u′n(t)) ≥
h∗(t)|φ(u′n(t))− φ(d)|+ g∗(t) ≥ ψ(t) for a.e. t ∈ [0, η] ∩ Jn,

λ2 sign(u′n(t)− d)fn(t, un(t), u′n(t)) = 0 ≥ ψ(t) for a.e. t ∈ [0, η]\Jn.

Hence, by Theorem 1.5, u is the solution of the problem (1.1), (1.3). Moreover there exists a
subsequence {unl

} ⊂ {un}, which uniformly converges to u on [0, T ] and {u′nl
} converges locally

uniformly to u′ on (0, T ).
Let us show that u is also a solution of the periodic problem (1.1), (1.2). Without lost of
generality, let us denote {unl

} as {un}. We will verify the assumptions of Lemmas 2.4 and 2.5
to show that {u′n} is equicontinuous in 0 and T . Note that sign(φ(y) − φ(d)) = sign(y − d) for
all y ∈ R and that fn = f for t ≥ 1

n . Let us put φ(u′n(t)) − φ(d) = vn(t). By (4.9) there exists
β0 > 0 such that |vn(η)| ≤ β0 and |vn(T − η)| ≤ β0. From (4.6) we have

[φ(u′n(t))]′ sign(φ(u′n(t))− φ(d)) ≥ h∗(t)|φ(u′n(t))− φ(d)|+ g∗(t)

for all n ∈ N and a.e. t ∈ [ 1
n , η] and from (4.7)

−[φ(u′n(t))]′ sign(φ(u′n(t))− φ(d)) ≥ h∗(t)|φ(u′n(t))− φ(d)|+ g∗(t)

for all n ∈ N and a.e. t ∈ [T − η, T − 1
n ]. Then

v′n(t) sign vn(t) ≥ h∗(t)|vn(t)|+ g∗(t) for a.e. t ∈ [
1
n
, η].
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and
−v′n(t) sign vn(t) ≥ h∗(t)|vn(t)|+ g∗(t) for a.e. t ∈ [T − η, T − 1

n
].

Further, v′n(t) = 0 for a.e. t ∈ (0, 1
n) and a.e. t ∈ (T − 1

n , T ). According to Lemmas 2.4
and 2.5, {vn} is equicontinuous in 0 and T and limn→∞ vn(0) = 0 and limn→∞ vn(T ) = 0. It
means that also {φ(u′n)} and {u′n} are equicontinuous in 0 and T . The equicontinuity in 0 means
that for an arbitrary ε > 0 there exists δ > 0 such that for each t ∈ [0, δ) and all n ∈ N
the inequality |u′n(t)− u′n(0)| < ε is valid. Moreover, by Lemmas 2.4 and 2.5, limn→∞ u′n(0) = d
and limn→∞ u′n(T ) = d. According to the first limit we can find n0 ∈ N such that for each n ≥ n0

the inequality |u′n(0) − d| < ε holds. From locally uniform convergence of {u′nl
} on (0, T ) there

exists nt ∈ N, nt ≥ n0, such that |u′(t)− u′nt
(t)| < ε. Therefore we have

∀ε > 0 ∃δ > 0 ∀t ∈ (0, δ) : |u′(t)− d| ≤ |u′(t)− u′nt
(t)|+ |u′nt

(t)− u′nt
(0)|+ |u′nt

(0)− d| < 3ε,

which yields limt→0+ u
′(t) = d. The property limt→T− u

′(t) = d can be proved similarly. Hence
u′(0) = u′(T ) and u is a solution of the periodic problem (1.1), (1.2).

�

Corollary 4.2 Let all assumptions of Theorem 4.1 be fulfiled and let C = 0, d 6= 0. Then
problem (1.1), (1.2) has a sign-changing solution.

Example 4.3 (Existence of a periodic sign changing solution)
Let p > 1 and φp(y) = |y|p−2y for y ∈ R. Consider the equation

(φp(u′))′ = q(t)(uk − rk) + cφp(u′)u′ + (
1
tα
− 1

(T − t)β
)(φp(u′)− φp(d)), (4.10)

where r, c, d ∈ R, k ∈ N is odd, α, β ∈ (1,∞), q ∈ L1[0, T ] is nonnegative. Choose an arbitrary
C ∈ R and show that all the conditions of Theorem 4.1 are satisfied. Let r1, r2 ∈ R. Then

f(t, ri + td, d) = q(t)((ri + td)k − rk) + cφp(d)d for a.e. t ∈ [0, T ].

Since q is nonnegative on [0, T], we can find a large positive r2 and a negative r1 with large
absolute value such that (4.1) holds. Denote

q1(t) = q(t) max{|xk − rk| : r1 + td ≤ x ≤ r2 + td} for a.e. t ∈ [0, T ],

q2(t) =


(T − t)−β for a.e. t ∈ [0, a),
(T − t)−β + t−α for a.e. t ∈ [a, b],
t−α for a.e. t ∈ (b, T ].

Then for a.e. t ∈ [0, b], each x ∈ [r1 + td, r2 + td] and each y ∈ R, |φp(y)| > |φp(d)| we have

f(t, x, y) sign y = f(t, x, y) sign(φp(y)− φp(d)) > −q1(t)−

−|c||φp(y)− φp(d)||y| − |c||φp(d)||y| −
1

(T − t)β
|φp(y)− φp(d)| >

> −(|φp(y)− φp(d)|+ 1)((|c|+ 1)(|φp(d)|+ 1))(|q1(t)|+ |q2(t)|+ |y|).

Therefore, if we put

ω(s) = (1 + s)c0, c0 = (|c|+ 1)(|φp(d)|+ 1), g(t) = |q1(t)|+ |q2(t)|,

we get (4.2). Similarly we can derive (4.3). Let us put

h∗(t) =

{
t−α for a.e. t ∈ (0, η),
(T − t)−β for a.e. t ∈ (T − η, T ),
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h∗ ∈ L1[η, T − η]. For a.e. t ∈ (0, η), each x ∈ [r1 + td, r2 + td] and each y ∈ [−%0, %0] we get

f(t, x, y) sign(y − d) = f(t, x, y) sign(φp(y)− φp(d)) > −q1(t)− |c|φp(%0)%0

−q2(t)(φp(%0) + |φp(d)|) +
1
tα
|φp(y)− φp(d)| = g∗(t) + h∗(t)|φp(y)− φp(d)|,

where g∗ ∈ L1[0, T ], which means that (4.6) is satisfied. Identically we can derive (4.7). Therefore,
by Theorem 4.1, problem (4.10), (1.2) has a solution u. Moreover u(0) = u(T ) = C and u′(0) =
u′(T ) = d. If we choose C = 0 and d 6= 0, we get by Corollary 4.2 that u changes its sign on
(0, T ).
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