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1 Introduction

Let T be a positive constant, J = [0, T ] and R− = (−∞, 0), R+ = (0,∞),
R0 = R \ {0}.

We will consider two types of singular boundary value problems for higher
order differential equations. The first one is the singular Lidstone boundary
value problem (BVP for short)

(−1)nx(2n)(t) = f(t, x(t), . . . , x(2n−2)(t)), (1.1)

x(2j)(0) = x(2j)(T ) = 0, 0 ≤ j ≤ n− 1 (1.2)
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where n ≥ 1 and f satisfies the local Carathéodory conditions on J × D (f ∈
Car(J ×D)) with

D =


R+ × R0 × R− × R0 × · · · × R+︸ ︷︷ ︸

4k−3

if n = 2k − 1

R+ × R0 × R− × R0 × · · · × R−︸ ︷︷ ︸
4k−1

if n = 2k

(for n = 1, 2 and 3, we have D = R+, D = R+ × R0 × R− and D = R+ × R0 ×
R−×R0×R+, respectively). In our considerations the function f(t, x0, . . . , x2n−2)
may be singular at the points xi = 0, 0 ≤ i ≤ 2n − 2, of the phase variables
x0, . . . , x2n−2.

The second one is the singular (n, p) boundary value problem

−x(n)(t) = f(t, x(t), . . . , x(n−1)(t)), (1.3)

x(i)(0) = 0, 0 ≤ i ≤ n− 2, x(p)(T ) = 0, p fixed, 0 ≤ p ≤ n− 1, (1.4)

where n ≥ 2 and f ∈ Car(J ×X) with

X = R+ × Rn−2
0 × R.

In this case the function f(t, x0, . . . , xn−1) may be singular at the points xi = 0,
0 ≤ i ≤ n− 2 of the phase variables x0, . . . , xn−2.

We will prove the existence of solutions to problems (1.1), (1.2) and (1.3), (1.4).

Definition 1.1. A function x ∈ AC2n−1(J) (i.e., x has absolutely continuous
the (2n − 1)st derivative on J) is said to be a solution of BVP (1.1), (1.2) if
(−1)jx(2j)(t) > 0 for t ∈ (0, T ) and 0 ≤ j ≤ n − 1, x satisfies the boundary
conditions (1.2) and (1.1) holds a.e. on J .

Definition 1.2. By a solution of BVP (1.3), (1.4) we understand a function
x ∈ ACn−1(J) which is positive on (0, T ), satisfies conditions (1.4) and for a.e.
t ∈ J fulfils (1.3).

From now on, ‖x‖ = max{|x(t)| : 0 ≤ t ≤ T}, ‖x‖L =
∫ T
0 |x(t)| dt and

‖x‖∞ = ess max{|x(t)| : 0 ≤ t ≤ T} stands for the norm in C0(J), L1(J) and
L∞(J), respectively. For a subset Ω of a Banach space, cl(Ω) and ∂Ω stands for
the closure and the boundary of Ω, respectively. Finally, for any measurable set
M, µ(M) denotes the Lebesgue measure of M.

The fact that a BVP is singular means that the right hand side f of the
differential equation does not fulfil the Carathéodory conditions on the region
where we seek for solutions, i.e. on J × cl(D) if we work with equation (1.1) or
on J × cl(X) if we study equation (1.3). In singular problems the Carathéodory
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conditions can be broken in the time variable t or in the phase variables or in
the both types of variables. The first type of singularities where f need not
be integrable on J for fixed phase variables was studied by many authors. For
BVPs of the n-th order differential equations such problems were considered for
the first time by Kiguradze in [18]. The second type of singularities where f
need not be continuous in its phase variables x0, x1, . . . for fixed t ∈ J was mainly
solved for BVPs of the second order differential equations. One of the first papers
concerning the second order Dirichlet BVP with a singularity at x = 0 of the right
hand side of the differential equation x′′(t) = f(t, x(t)) was written by Taliaferro
in [26], where necessary and sufficient conditions for the existence of a concave
solution x > 0 on (0, 1) were found. Then a lot of papers extending or generalizing
Taliaferro’s result appeared. Let us mention [19] by Lomtatidze and Torres and
[5] by Agarwal and O’Regan dealing with sign-changing right hand sides f of
singular second order equations and proving the existence of a solution which is
nonconcave and positive on (0, 1). The existence of nonconcave and sign-changing
solutions of the above problem was proved by the authors in [25].

Problems (1.1), (1.2) and (1.3), (1.4) have received a lot of attention in the
literature. For n = 1, the Lidstone boundary conditions (1.2) are equal to the
Dirichlet conditions and conditions (1.4) with n = 2 contain the Dirichlet ones
as the special case p = 0. The Lidstone BVP (with a general n) was studied
in the regular case e.g. by Agarwal and Wong [1], [7], [31] and for the singular
(n, p) BVP with a special case of the right hand side f in (1.3) we can refer to
the papers [6], [30] by Agarwal, O’Regan, Lakshmikantham and Wong.

In this paper we extend the citied results on the case of a general Carathéodory
right-hand side f which may depend on higher derivatives up to the order 2n− 2
in (1.1) and the order n− 1 in (1.3). Let us note that conditions (1.2) imply that
odd derivatives of any solution of (1.1), (1.2) are sign-changing functions on J .
Similarly, if x is a solution of (1.3), (1.4) with 0 ≤ p ≤ n − 2, then x(i) changes
its sign inside of J for p+ 1 ≤ i ≤ n− 1.

So, the main common feature of problems (1.1), (1.2) and (1.3), (1.4) is the
fact that some derivatives of solutions go through singularities of f somewhere
inside of J . This is the substantional difference of our problems (1.1), (1.2) and
(1.3), (1.4) from all the problems citied above. As we know, such situation has
not been considered, yet.

The following assumptions 1 will be used in the study of problem (1.1), (1.2) :

(H1) f ∈ Car(J ×D) and there exists ψ ∈ L1(J) such that

0 < ψ(t) ≤ f(t, x0, . . . , x2n−2)

for a.e. t ∈ J and each (x0, . . . , x2n−2) ∈ D;

1 Throughout the paper, we set
∑n−2

i=0 = 0 if n = 1.
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(H2) For a.e. t ∈ J and for each (x0, . . . , x2n−2) ∈ D,

f(t, x0, . . . , x2n−2) ≤ φ(t) +
2n−2∑
j=0

qj(t)ωj(|xj|) +
2n−2∑
j=0

hj(t)|xj|

where φ, hj ∈ L1(J) and qj ∈ L∞(J) are nonnegative, ωj : R+ → R+ are
nonincreasing,

S =
n−1∑
i=0

T 2(n−i)−3

6n−i−1

∫ T

0
t(T − t)h2i(t) dt

+
n−2∑
i=0

T 2(n−i−2)

6n−i−2

∫ T

0
t(T − t)h2i+1(t) dt < 1

(1.5)

and ∫ T

0
ωj(s) ds <∞, ωj(uv) ≤ Λωj(u)ωj(v) (1.6)

for 0 ≤ j ≤ 2n− 2 and u, v ∈ R+ with a positive constant Λ.

In the study of problem (1.3), (1.4) we will work with assumptions:

(H3) f ∈ Car(J ×X) and there exist positive ψ ∈ L1(J) and K ∈ R+ such that

ψ(t) ≤ f(t, x0, . . . , xn−1)

for a.e. t ∈ J and each (x0, . . . , xn−1) ∈ (0, K]× Rn−2
0 × R ⊂ X;

(H4) For a.e. t ∈ J and for each (x0, . . . , xn−1) ∈ X,

0 < f(t, x0, . . . , xn−1) ≤ φ(t) +
n−2∑
i=0

qi(t)ωi(|xi|) +
n−1∑
j=0

hj(t)|xj|,

where φ, hk ∈ L1(J) and qi ∈ L∞(J) are nonnegative, ωi : R+ → R+ are
nonincreasing,

H =
n−1∑
j=0

1

(n− j − 1)!

∫ T

0
hj(s)s

n−j−1ds < 1 (1.7)

and ∫ T

0
ωi(s

n−i−1)ds <∞ (1.8)

for 0 ≤ i ≤ n− 2, 0 ≤ k ≤ n− 1.

Remark 1.3. Since ωj : R+ → R+ in (H2) are nonincreasing, the assumption∫ T
0 ωj(s)ds < ∞ implies that

∫ V
0 ωj(s)ds < ∞ for each V ∈ R+, 0 ≤ j ≤ 2n− 2.

The same is true for integrals in (1.8) and 0 ≤ i ≤ n− 2.
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The paper is organized as follows. Section 2 presents properties of the Green’s
function Gj(t, s) for the problem x(2j) = 0, x(2i)(0) = x(2i)(T ) = 0, 0 ≤ i ≤ j − 1
and of the Green’s function G(t, s) for the problem −x(n) = 0, (1.4), which are
necessary for our next considerations. Section 3 deals with auxiliary regular
BVPs to problems (1.1), (1.2) and (1.3), (1.4). We give a priori bounds for their
solutions and prove their existence by the theory of homotopy and the topological
degree. In addition, we prove that some sets of functions containing solutions of
our auxiliary regular BVPs are uniformly absolutely continuous on J . The main
results about the existence of solutions to BVPs (1.1), (1.2) and (1.3), (1.4) are
given in Section 4. Proofs are based on the Arzelà-Ascoli theorem and the Vitali’s
convergence theorem, see e.g. [8], [21].

2 Green’s functions and a priori estimates

2.1 Problem (1.1), (1.2)

Given j ∈ N. From now on, Gj(t, s) denotes the Green’s function of BVP

x(2j)(t) = 0,

x(2i)(0) = x(2i)(T ) = 0, 0 ≤ i ≤ j − 1.

Then

G1(t, s) =


s

T
(t− T ) for 0 ≤ s ≤ t ≤ T

t

T
(s− T ) for 0 ≤ t < s ≤ T.

(2.1)

The Green’s function Gj(t, s) can be expressed as ([1], [7], [28])

Gj(t, s) =
∫ T

0
G1(t, u)Gj−1(u, s) du, j > 1 (2.2)

and it is known that ([7], [28])

(−1)jGj(t, s) > 0 for (t, s) ∈ (0, T )× (0, T ). (2.3)

Lemma 2.1. For (t, s) ∈ J × J and j ∈ N, we have

(−1)jGj(t, s) ≤
T 2j−3

6j−1
s(T − s). (2.4)
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Proof. For (t, s) ∈ J × J , we see from (2.1) that

|G1(t, s)| ≤
s

T
(T − s) (2.5)

i.e. (2.4) is true for j = 1. Assume that (2.4) holds for j = i (≥ 1). Then it
follows from (2.2)-(2.5) that

|Gi+1(t, s)| =
∫ T

0
|G1(t, u)||Gi(u, s)| du

≤ T 2i−4

6i−1
s(T − s)

∫ T

0
u(T − u) du =

T 2i−1

6i
s(T − s)

for (t, s) ∈ J × J . Thus (2.4) is true for j = i+ 1. 2

Remark 2.2. If T = 1, Lemma 2.1 gives the result proved in [31].

Lemma 2.3. For (t, s) ∈ J × J and j ∈ N, we have

|Gj(t, s)| ≥
T 2j−5

30j−1
st(T − t)(T − s). (2.6)

Proof. We see that

|G1(t, s)| =


s

T
(T − t) ≥ st(T − t)(T − s)

T 3
for 0 ≤ s ≤ t ≤ T

t

T
(T − s) ≥ st(T − t)(T − s)

T 3
for 0 ≤ t < s ≤ T,

(2.7)

and so (2.6) holds for j = 1. Assume that (2.6) is true for j = i (≥ 1). Then
(2.2), (2.3), (2.6) and (2.7) give

|Gi+1(t, s)| =
∫ T

0
|G1(t, u)||Gi(u, s)| du

≥ T 2i−8

30i−1
st(T − t)(T − s)

∫ T

0
u2(T − u)2 du =

T 2i−3

30i
st(T − t)(T − s)

for (t, s) ∈ J × J and so (2.6) is valid for j = i+ 1. 2

Lemma 2.4. Let x ∈ AC2n−1(J) satisfies (1.2) and (−1)nx(2n)(t) ≥ ψ(t) for a.e.
t ∈ J with ψ given by (H1). Set

Ω =
∫ T

0
s(T − s)ψ(s) ds. (2.8)

Then

(a) (−1)jx(2j)(t) > 0 for t ∈ (0, T ), 0 ≤ j ≤ n− 1,
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(b) (−1)jx(2j+1) is decreasing on J and vanishes at a unique point ξj ∈ (0, T )
for 0 ≤ j ≤ n− 1.

In addition,

|x(2j)(t)| ≥ T 2(n−j)−5

30n−j−1
Ωt(T − t) for t ∈ J, 0 ≤ j ≤ n− 1 (2.9)

and if n > 1 then

|x(2j+1)(t)| ≥ T 2(n−j)−7

30n−j−2
Ω
∣∣∣ ∫ t

ξj

s(T − s) ds
∣∣∣ for t ∈ J, 0 ≤ j ≤ n− 2. 2 (2.10)

Proof. From the equalities

(−1)jx(2j)(t) =
∫ T

0
(−1)n−jGn−j(t, s)(−1)nx(2n)(s) ds, 0 ≤ j ≤ n− 1,

(2.3) and (−1)nx(2n)(t) ≥ ψ(t) > 0 for a.e. t ∈ J we deduce (a). Then
(−1)jx(2j+1) is decreasing on J for 0 ≤ j ≤ n − 2 and (−1)nx(2n) > 0 a.e.
on J implies (−1)n−1x(2n−1) is decreasing on J . Now from (1.2) we deduce that
x(2j+1)(ξj) = 0 for a unique ξj ∈ (0, T ) with 0 ≤ j ≤ n − 1 which finishes the
proof of (b).

Further, from the inequalities

|x(2j)(t)| ≥
∫ T

0
|Gn−j(t, s)|ψ(s) ds, t ∈ J, 0 ≤ j ≤ n− 1

and (2.6) it follows that

|x(2j)(t)| ≥ T 2(n−j)−5

30n−j−1
t(T − t)

∫ T

0
s(T − s)ψ(s) ds

for t ∈ J , 0 ≤ j ≤ n− 1, and so (2.9) holds.
Finally, let 0 ≤ j ≤ n− 2. Then x(2j+1)(t) =

∫ t
ξj
x(2j+2)(s) ds and, by (2.9),

|x(2j+1)(t)| ≥ T 2(n−j)−7

30n−j−2
Ω
∣∣∣ ∫ t

ξj

s(T − s) ds
∣∣∣, t ∈ J

which proves (2.10). 2

2 If some statements depend on j with 0 ≤ j ≤ n − 2, then n > 1 is assumed throughout
the paper.
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2.2 Problem (1.3), (1.4)

Let us consider the equation
−x(n)(t) = 0. (2.11)

Lemma 2.5. The Green’s function of problem (2.11), (1.4) has the form

G(t, s) =
1

(n− 1)!



(
tn−1

(
T − s

T

)n−p−1

− (t− s)n−1

)
for 0 ≤ s ≤ t ≤ T

tn−1
(
T − s

T

)n−p−1

for 0 ≤ t < s ≤ T.

Proof. See e.g. [1]. 2

Lemma 2.6. The Green’s function of problem (2.11), (1.4) fulfils

G(T, s) > 0 for s ∈ (0, T ) and for p > 0, (2.12)

∂iG(t, s)

∂ti
> 0 for (t, s) ∈ (0, T )× (0, T ), 0 ≤ i ≤ min{p, n− 2}. (2.13)

Proof. Condition (2.12) follows from the inequality(
1− s

T

)n−p−1

>
(
1− s

T

)n−1

which is true for s ∈ (0, T ) and for p > 0. Let us suppose 0 ≤ i ≤ min{p, n− 2}
and prove (2.13). We have

∂iG(t, s)

∂ti
=

1

(n− i− 1)!



(
tn−i−1

(
T − s

T

)n−p−1

− (t− s)n−i−1

)
for 0 ≤ s ≤ t ≤ T

tn−i−1
(
T − s

T

)n−p−1

for 0 ≤ t < s ≤ T,

and therefore it is sufficient to show that(
T − s

T

)n−p−1

>
(
t− s

t

)n−i−1

for 0 < s ≤ t < T. (2.14)

Since inequalities(
1− s

T

)n−p−1

>
(
1− s

t

)n−p−1

≥
(
1− s

t

)n−i−1

are valid for 0 < s ≤ t < T , condition (2.14) is true, as well. 2

Lemma 2.7. Let x ∈ AC(n−1)(J) satisfy (1.4) and let

−x(n)(t) > 0 for a.e. t ∈ J. (2.15)
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Then, if p > 0, we have

x(i)(t) > 0 on (0, T ], 0 ≤ i ≤ p− 1, x(p)(t) > 0 on (0, T ). (2.16)

If p = 0, we have
x(t) > 0 for t ∈ (0, T ). (2.17)

Proof. We will consider two cases, namely (i) p = n− 1 and (ii) 0 ≤ p ≤ n− 2.
Case (i). Let p = n− 1. Then, by (1.4) and (2.15), we have

0 < −
∫ T

t
x(n)(s)ds = x(n−1)(t) for t ∈ [0, T ). (2.18)

Thus, integrating (2.18) from 0 to t ∈ (0, T ] and using (1.4), we get step by step

x(i)(t) > 0 for t ∈ (0, T ], 0 ≤ i ≤ n− 2. (2.19)

Inequalities (2.18) and (2.19) give the assertion of Lemma 2.7.
Case (ii). Suppose that 0 ≤ p ≤ n− 2. Then, using the formula

x(t) = −
∫ T

0
G(t, s)x(n)(s)ds, (2.20)

we can see that the assertion of Lemma 2.7 follows from (2.15) and Lemma 2.6.
2

In the study of problems having singularities in zero values of phase variables
it is necessary to find a priori estimates of solutions below. The following three
lemmas give a priori estimates below for functions satisfying conditions (1.4) and
(2.15). We consider the cases p = n− 1, p = 0 and 1 ≤ p ≤ n− 2 separately.

Lemma 2.8. Let p = n− 1 and let x ∈ ACn−1(J) satisfy (1.4), (2.15). Then the
inequalities

x(i)(t) ≥ ‖x‖
T n−1

tn−i−1 for t ∈ J, (2.21)

0 ≤ i ≤ n− 2, are fulfilled.
Proof. Put

p0(t) = ‖x‖
(
t

T

)n−1

for t ∈ J. (2.22)

Then p0(0) = . . . = p
(n−2)
0 (0) = 0, p0(T ) = ‖x‖. According to (2.16) we have

‖x‖ = x(T ). So, if h(t) = x(t) − p0(t) for t ∈ J , then h satisfies the boundary
conditions h(0) = . . . = hn−2(0) = 0, h(T ) = 0 and moreover h(n)(t) = x(n)(t) −
p

(n)
0 (t) = x(n)(t) < 0 for a.e. t ∈ J . Therefore Lemma 2.7 (with h instead of x)

gives h(t) > 0 for t ∈ (0, T ), i.e.

x(t) ≥ p0(t) for t ∈ J. (2.23)
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Further, put

p1(t) = ‖x′‖
(
t

T

)n−2

for t ∈ J. (2.24)

Then p1(0) = . . . = p
(n−3)
1 (0) = 0, p1(T ) = ‖x′‖. Since ‖x′‖ = x′(T ), the

function h = x′− p1 satisfies h(0) = . . . = h(n−3)(0) = 0, h(T ) = 0, and moreover

h(n−1) = x(n) − p
(n−1)
1 = x(n) < 0 a.e. on J . So, by Lemma 2.7, where we use h

and n− 1 instead of x and n, respectively, we have h > 0 on (0, T ), i.e.

x′(t) ≥ p1(t) for t ∈ J. (2.25)

Similarly, for 2 ≤ i ≤ n − 2, we put pi(t) = ‖x(i)‖
(

t
T

)n−i−1
and h(t) = x(i)(t) −

pi(t) for t ∈ J . Using Lemma 2.7 (with h and n − i instead of x and n, resp.),
we get h > 0 on (0, T ) and so

x(i)(t) ≥ pi(t) for t ∈ J, 2 ≤ i ≤ n− 2. (2.26)

Having (2.22) - (2.26) together with the inequalities

‖x(i)‖ ≥ ‖x‖
T i

, 1 ≤ i ≤ n− 2, (2.27)

we obtain (2.21) for 0 ≤ i ≤ n− 2. 2

Lemma 2.9. Let p = 0 and let x ∈ ACn−1(J) satisfy (1.4), (2.15). Then we have
on J for 0 ≤ i ≤ n− 2

x(i)(t) ≥


‖x‖
T n−1

tn−i−1 for 0 ≤ t ≤ ξi+1

‖x‖
T i+1

(ξi − t) for ξi+1 ≤ t ≤ ξi,

x(i)(t) ≤ ‖x‖
T i+1

(ξi − t) for ξi ≤ t ≤ T,

(2.28)

with 
0 < ξn−1 < ξn−2 < . . . < ξ2 < ξ1 < ξ0 = T, where

ξj is a unique zero of x(j) in (0, T ), 1 ≤ j ≤ n− 1.
(2.29)

Proof. In view of (1.4) and (2.17) we have x(0) = x(T ) = 0, x(t) > 0 for
t ∈ (0, T ). Further, there is a unique ξ1 ∈ (0, T ) such that x′(ξ1) = 0. (Otherwise
we get a contradiction to (2.15).) Similarly, in (0, T ) there is a unique ξi < ξi−1

such that x(i)(ξi) = 0, 2 ≤ i ≤ n− 1. According to (2.15) we get

x(i)(t) > 0 on (0, ξi), x
(i)(t) < 0 on (ξi, T ], 1 ≤ i ≤ n− 1. (2.30)
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Therefore

x(i) is concave on [ξi+2, T ] and convex on [0, ξi+2], 0 ≤ i ≤ n− 2, (2.31)

where ξn = 0. Let us prove (2.28) for i = 0. Put

p0(t) = ‖x‖
(
t

ξ1

)n−1

for t ∈ [0, ξ1].

Then p0(0) = . . . = p
(n−2)
0 (0) = 0, p0(ξ1) = ‖x‖. Since ‖x‖ = x(ξ1), the function

h = x− p0 fulfils boundary conditions h(0) = . . . = h(n−2)(0) = 0, h(ξ1) = 0, and
h(n)(t) < 0 for a.e. t ∈ (0, ξ1). Therefore, by Lemma 2.7 (where we use h and ξ1
instead of x and T , respectively), we deduce that the inequality h > 0 holds on
(0, ξ1), which gives

x(t) ≥ ‖x‖
T n−1

tn−1 for t ∈ [0, ξ1]. (2.32)

By (2.31), x is concave on [ξ1, T ] ⊂ [ξ2, T ]. Thus x(t) ≥ x(ξ1)
T−t
T−ξ1

on [ξ1, T ], and
so

x(t) ≥ ‖x‖
T

(T − t) for t ∈ [ξ1, T ]. (2.33)

Estimates (2.32) and (2.33) lead to (2.28) for i = 0.
For 1 ≤ i ≤ n− 2, we put on [0, ξi+1]

pi(t) = x(i)(ξi+1)

(
t

ξi+1

)n−i−1

and h(t) = x(i)(t)− pi(t).

Since

x(i)(ξi+1) ≥
‖x‖
T i

, 1 ≤ i ≤ n− 2, (2.34)

we get as before

x(i)(t) ≥ ‖x‖
T n−1

tn−i−1 for t ∈ [0, ξi+1]. (2.35)

Further, using (2.31), we see that x(i) is concave on [ξi+1, T ] ⊂ [ξi+2, T ]. Thus we
get the following two inequalities

x(i)(t) ≥ x(i)(ξi+1)
ξi − t

ξi − ξi+1

≥ 0 for t ∈ [ξi+1, ξi],

x(i)(t) ≤ x(i)(ξi+1)
ξi − t

ξi − ξi+1

≤ 0 for t ∈ [ξi, T ].

(2.36)

According to (2.34) the above inequalities yield

|x(i)(t)| ≥ ‖x‖
T i+1

|ξi − t| for t ∈ [ξi+1, T ]. (2.37)
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Estimates (2.36) and (2.37) imply (2.28) for 1 ≤ i ≤ n− 2. 2

Lemma 2.10. Let 1 ≤ p ≤ n − 2 and let x ∈ ACn−1(J) satisfy (1.4), (2.15).
Then, for 0 ≤ i ≤ p − 1, inequality (2.21) is true and for p ≤ i ≤ n − 2,
conditions (2.28) are valid on J, with 0 < ξn−1 < ξn−2 < . . . < ξp+1 < ξp = T ,
where ξj is a unique zero of x(j) in (0, T ), p+ 1 ≤ j ≤ n− 1.
Proof. For 0 ≤ i ≤ p − 1 we use arguments of the proof of Lemma 2.8 and for
p ≤ i ≤ n− 2 we argue as in the proof of Lemma 2.9. 2

Lemma 2.11. Let ψ ∈ L1(J) be positive. Then there is a positive constant
c = c(ψ) such that for each function x ∈ ACn−1(J) satisfying (1.4) and

ψ(t) ≤ −x(n)(t) for a.e. t ∈ J, (2.38)

the estimate
‖x‖ ≥ c (2.39)

holds.
Proof. Let G be the Green’s function of problem (2.11), (1.4). There are two
cases to consider, namely (i) 1 ≤ p ≤ n− 1 and (ii) p = 0.

Case (i). Let us suppose 1 ≤ p ≤ n− 1 and define a function

Φ(t, s) =
G(t, s)

tn−1
for (t, s) ∈ (0, T ]× (0, T ].

In view of Lemma 2.6, Φ is continuous and positive on (0, T ] × (0, T ). Further,
for any s ∈ (0, T ) we have

∂n−1G(t, s)

∂tn−1

∣∣∣
(t,s)=(0,s)

=
(
T − s

T

)n−p−1

> 0.

Choose an arbitrary s ∈ (0, T ). Then

lim
t→0+

Φ(t, s) =
1

(n− 1)!

∂n−1G(t, s)

∂tn−1

∣∣∣
(t,s)=(0,s)

> 0,

which means that for any s ∈ (0, T ) we can extend Φ(·, s) at t = 0 as a contin-
uous and positive function on J . Thus the function F (t) =

∫ T
0 Φ(t, s)ψ(s)ds is

continuous and positive on J , as well. Therefore we can find d > 0 such that
F (t) ≥ d on J . So,

x(t) = −
∫ T

0
G(t, s)x(n)(s)ds ≥

∫ T

0
G(t, s)ψ(s)ds

= tn−1
∫ T

0
Φ(t, s)ψ(s)ds = tn−1F (t) ≥ tn−1d for t ∈ J.

This implies ‖x‖ = x(T ) ≥ T n−1d = c.
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Case (ii). Let p = 0. Define a function

Φ(t, s) =
G(t, s)

tn−1(T − t)
for (t, s) ∈ (0, T )× (0, T ).

In view of Lemma 2.6, Φ is continuous and positive on (0, T ) × (0, T ). For any
s ∈ (0, T ) we get

lim
t→0+

Φ(t, s) =
1

T (n− 1)!

∂n−1G(t, s)

∂tn−1

∣∣∣
(t,s)=(0,s)

=
1

T (n− 1)!

(
T − s

T

)n−1

> 0,

and

lim
t→T−

Φ(t, s) =
−1

T n−1

∂G(t, s)

∂t

∣∣∣
(t,s)=(T,s)

=
−1

T (n− 2)!

[(
1− s

T

)n−1

−
(
1− s

T

)n−2
]
> 0,

which means that for any s ∈ (0, T ) we can extend Φ(·, s) on J as a continuous
and positive function. Further we can argue as in Case (i).

2

3 Auxiliary regular BVPs

3.1 Problem (1.1), (1.2)

For each m ∈ N, define χm, ϕm, τm ∈ C0(R), Rm ⊂ R and fm ∈ Car(J × R2n−1)
by the formulas

χm(u) =

 u for u ≥ 1
m

1
m

for u < 1
m
,

ϕm(u) =

 −
1
m

for u > − 1
m

u for u ≤ − 1
m
,

τm =

 χm if n = 2k − 1

ϕm if n = 2k,

Rm = (−∞,− 1

m
) ∪ (

1

m
,∞)

and
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fm(t, x0, x1, x2, x3, . . . , x2n−2) =

f(t, χm(x0), x1, ϕm(x2), x3, . . . , τm(x2n−2))

for (t, x0, x1, x2, x3, . . . , x2n−2) ∈ J × R× Rm × R× Rm × · · · × R

m

2
[fm(t, x0,

1

m
,x2, x3, . . . , x2n−2)(x1 +

1

m
)

−fm(t, x0,−
1

m
,x2, x3, . . . , x2n−2)(x1 −

1

m
)]

for (t, x0, x1, x2, x3, . . . , x2n−2) ∈ J × R× [− 1
m
, 1

m
]× R× Rm × · · · × R

m

2
[fm(t, x0, x1, x2,

1

m
, . . . , x2n−2)(x3 +

1

m
)

−fm(t, x0, x1, x2,−
1

m
, . . . , x2n−2)(x3 −

1

m
)]

for (t, x0, x1, x2, x3, . . . , x2n−2) ∈ J × R3 × [− 1
m
, 1

m
]× · · · × R

...

m

2
[fm(t, x0, x1, x2, . . . ,

1

m
,x2n−2)(x2n−3 +

1

m
)

−fm(t, x0, x1, x2, . . . ,−
1

m
,x2n−2)(x2n−3 −

1

m
)]

for (t, x0, x1, x2, . . . , x2n−3, x2n−2) ∈ J × R2n−3 × [− 1
m
, 1

m
]× R.

Then
0 < ψ(t) ≤ fm(t, x0, . . . , x2n−2)

≤ φ(t) +
2n−2∑
j=0

qj(t)ωj(
1

m
) +

2n−2∑
j=0

hj(t)(
1

m
+ |xj|)

for a.e. t ∈ J and each (x0, . . . , x2n−2) ∈ R2n−1

(3.1)

and
0 < ψ(t) ≤ fm(t, x0, . . . , x2n−2)

≤ φ(t) +
2n−2∑
j=0

qj(t)ωj(|xj|) +
2n−2∑
j=0

hj(t)(1 + |xj|)

for a.e. t ∈ J and each (x0, . . . , x2n−2) ∈ R2n−1
0

(3.2)

provided f satisfies assumptions (H1) and (H2).

Consider auxiliary regular differential equations

(−1)nx(2n)(t) = fm(t, x(t), . . . , x(2n−2)(t)) (3.3)
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and
(−1)nx(2n)(t) = λfm(t, x(t), . . . , x(2n−2)(t)), λ ∈ [0, 1] (3.4)

depending on the parameter m ∈ N.

Proposition 3.1. Let m ∈ N. If there exists a positive constant K such that

‖x(j)‖ ≤ K, 0 ≤ j ≤ 2n− 2 (3.5)

for any solution x of BVPs (3.4), (1.2) with λ ∈ [0, 1], then BVP (3.3), (1.2) has
a solution x satisfying (3.5).
Proof. Solving BVP (3.4), (1.2) is equivalent to finding x ∈ C2n−2(J) to

x(t) = (−1)nλ
∫ T

0
Gn(t, s)fm(s, x(s), . . . , x(2n−2)(s)) ds. (3.6)

It is easy to see that S : C2n−2(J) → C2n−2(J),

(Sx)(t) = (−1)n
∫ T

0
Gn(t, s)fm(s, x(s), . . . , x(2n−2)(s)) ds

is a completely continuous operator. Since we can rewrite (3.6) as

x = λSx, λ ∈ [0, 1] (3.7)

and, by our assumption, (3.5) holds for any solution x of (3.7), there exists a
solution x of the operator equation x = Sx by [17]. Of course, x is a solution of
BVP (3.3), (1.2) satisfying (3.5). 2

Lemma 3.2. Let assumptions (H1) and (H2) be satisfied. Then for for each
m ∈ N there exists a solution of BVP (3.3), (1.2).
Proof. Fix m ∈ N. By Proposition 3.1, it is sufficient to show that there exists
a positive constant K such that (3.5) is satisfied for any solution x of BVPs
(3.4), (1.2) with λ ∈ [0, 1]. We see that x = 0 is the unique solution of BVP
(3.4), (1.2) with λ = 0. Let λ ∈ (0, 1] and x be a solution of BVP (3.4), (1.2). By
(3.1) and (2.4), for t ∈ J and 0 ≤ j ≤ n− 1 we have

|x(2j)(t)| = λ
∫ T

0
|Gn−j(t, s)|fm(s, x(s), . . . , x(2n−2)(s)) ds

≤ T 2(n−j)−3

6n−j−1

∫ T

0
s(T − s)

(
φ(s) +

2n−2∑
i=0

qi(s)ωi(
1

m
) +

2n−2∑
i=0

hi(s)(
1

m
+ |x(i)(s)|)

)
ds

≤ T 2(n−j)−3

6n−j−1

(
M +

2n−2∑
i=0

Hi‖x(i)‖
)

where

Hi =
∫ T

0
s(T − s)hi(s) ds, 0 ≤ i ≤ 2n− 2 (3.8)
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and

M =
∫ T

0
s(T − s)φ(s) ds+

2n−2∑
i=0

‖qi‖∞ωi(
1

m
)
∫ T

0
s(T − s) ds+

1

m

2n−2∑
i=0

Hi.

By (1.2), x(2j+1)(ξj) = 0 for some ξj ∈ (0, T ), 0 ≤ j ≤ n−1, and so the equalities
x(2j+1)(t) =

∫ t
ξj
x(2j+2)(s) ds for t ∈ J , 0 ≤ j ≤ n− 2, imply

|x(2j+1)(t)| ≤ T 2(n−j−2)

6n−j−2

(
M +

2n−2∑
i=0

Hi‖x(i)‖
)
.

We have proved that

‖x(2j)‖ ≤ T 2(n−j)−3

6n−j−1

(
M +

2n−2∑
i=0

Hi‖x(i)‖
)
, 0 ≤ j ≤ n− 1, (3.9)

‖x(2j+1)‖ ≤ T 2(n−j−2)

6n−j−2

(
M +

2n−2∑
i=0

Hi‖x(i)‖
)
, 0 ≤ j ≤ n− 2. (3.10)

Assume that
∑2n−2

i=0 Hi > 0 and set A =
∑2n−2

i=0 Hi‖x(i)‖. Then (3.9) and (3.10)
yield A ≤ S(M +A), where S < 1 is defined by (1.5). Then A ≤ SM

1−S
and so (see

(3.9) and (3.10))

‖x(2j)‖ ≤ T 2(n−j)−3M

6n−j−1(1− S)
, 0 ≤ j ≤ n− 1,

‖x(2j+1)‖ ≤ T 2(n−j−2)M

6n−j−2(1− S)
, 0 ≤ j ≤ n− 2.

From (3.9) and (3.10) we see that the last two inequalities hold also in the case
of
∑2n−2

i=0 Hi = 0 where S = 0. Consequently, there exists a positive constant K
for which (3.5) holds. 2

Lemma 3.3. Let assumptions (H1) and (H2) be satisfied. Then there exists a
positive constant V such that

‖x(j)‖ ≤ V, 0 ≤ j ≤ 2n− 2 (3.11)

for any solution x of BVP (3.3), (1.2) with m ∈ N.
Proof. Let m ∈ N and x be a solution of BVP (3.3), (1.2). Then inequalities
(2.9) and (2.10) hold with Ω defined by (2.8) and where ξj ∈ (0, T ) is a zero of
x(2j+1), 0 ≤ j ≤ n− 2. Set

µj =
∫ T

0
s(T − s)ω2j(s(T − s)) ds, 0 ≤ j ≤ n− 1.
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From (2.9), (2.10) and the properties of ωj we conclude for 0 ≤ j ≤ n− 1 that∫ T

0
s(T − s)ω2j(|x(2j)(s)|) ds ≤

∫ T

0
s(T − s)ω2j

(T 2(n−j)−5

30n−j−1
Ωs(T − s)

)
ds

≤ Λω2j

(T 2(n−j)−5

30n−j−1
Ω
)
µj

and for 0 ≤ j ≤ n− 2 that∫ T

0
s(T − s)ω2j+1(|x(2j+1)(s)|) ds

≤
∫ T

0
s(T − s)ω2j+1

(T 2(n−j)−7

30n−j−2
Ω
∣∣∣ ∫ s

ξj

u(T − u) du
∣∣∣) ds

≤ 2Λω2j+1

(T 2(n−j)−7

30n−j−2
Ω
) ∫ T3

6

0
ω2j+1(u) du

since ∫ T

0
s(T − s)ω2j+1

(∣∣∣ ∫ s

ξj

u(T − u) du
∣∣∣) ds

=
∫ ξj

0
s(T − s)ω2j+1

( ∫ ξj

s
u(T − u) du

)
ds

+
∫ T

ξj

s(T − s)ω2j+1

( ∫ s

ξj

u(T − u) du
)
ds

=
∫ ∫ ξj

0
u(T−u) du

0
ω2j+1(s) ds+

∫ ∫ T

ξj
u(T−u) du

0
ω2j+1(s) ds

≤ 2
∫ ∫ T

0
u(T−u) du

0
ω2j+1(s) ds = 2

∫ T3

6

0
ω2j+1(u) du.

Consequently, by (2.4) and (3.2),

|x(2j)(t)| =
∫ T

0
|Gn−j(t, s)|fm(s, x(s), . . . , x(2n−2)(s)) ds

≤ T 2(n−j)−3

6n−j−1

∫ T

0
s(T − s)

(
φ(s) +

2n−2∑
i=0

qi(s)ωi(|x(i)(s)|)

+
2n−2∑
i=0

hi(s)(1 + |x(i)(s)|)}
)
ds

≤ T 2(n−j)−3

6n−j−1

(
W +

2n−2∑
i=0

Hi‖x(i)‖
)

for t ∈ J and 0 ≤ j ≤ n− 1, where Hi is given by (3.8) and

W =
∫ T

0
s(T − s)φ(s) ds+ Λ

n−1∑
i=0

‖q2i‖∞ω2i

(T 2(n−i)−5

30n−i−1
Ω
)
µi

+2Λ
n−2∑
i=0

‖q2i+1‖∞ω2i+1

(T 2(n−i)−7

30n−i−2
Ω
) ∫ T3

6

0
ω2i+1(u) du+

2n−2∑
j=0

Hj
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is independent of m ∈ N. Therefore

|x(2j+1)(t)| =
∣∣∣ ∫ t

ξj

x(2j+2)(s) ds
∣∣∣ ≤ T 2(n−j−2)

6n−j−2

(
W +

2n−2∑
i=0

Hi‖x(i)‖
)

for t ∈ J and 0 ≤ j ≤ n− 2. Hence

‖x(2j)‖ ≤ T 2(n−j)−3

6n−j−1

(
W +

2n−2∑
i=0

Hi‖x(i)‖
)
, 0 ≤ j ≤ n− 1,

‖x(2j+1)‖ ≤ T 2(n−j−2)

6n−j−2

(
W +

2n−2∑
i=0

Hi‖x(i)‖
)
, 0 ≤ j ≤ n− 2.

Now applying the same procedure as in the proof of Lemma 3.2, we get

‖x(2j)‖ ≤ T 2(n−j)−3W

6n−j−1(1− S)
0 ≤ j ≤ n− 1, (3.12)

‖x(2j+1)‖ ≤ T 2(n−j−2)W

6n−j−2(1− S)
0 ≤ j ≤ n− 2 (3.13)

where S < 1 is given in (H2). From (3.12) and (3.13) we see that there exists a
positive constant V independent of m such that (3.11) is true. 2

Lemma 3.4. Let assumptions (H1) and (H2) be satisfied. Let {xm} be a sequence
of solutions to BVPs (3.3), (1.2) with m ∈ N and ξm,j be a (unique) zero of x(2j+1)

m

in (0, T ), 0 ≤ j ≤ n− 2. Then there exist 0 < α < β < T independent of m such
that

α ≤ ξm,j ≤ β for m ∈ N, 0 ≤ j ≤ n− 2. (3.14)

Proof. If not, there exist a subsequence {mk} of N and τ ∈ {0, 1, . . . , n−2} such
that either limk→∞ ξmk,τ = 0 or limk→∞ ξmk,τ = T . Suppose limk→∞ ξmk,τ = 0.
By Lemma 2.4,

(−1)τx(2τ)
mk

(t) ≥ T 2(n−τ)−5

30n−τ−1
Ωt(T − t), t ∈ J,

and so

(−1)τx(2τ+1)
mk

(0) = (−1)τ lim
t→0+

x(2τ)
mk

(t)

t
≥ lim

t→0+

T 2(n−τ)−5

30n−τ−1
Ω(T − t) =

T 2(n−τ−2)

30n−τ−1
Ω.

Therefore

T 2(n−τ−2)

30n−τ−1
Ω ≤ (−1)τx(2τ+1)

mk
(0)

= (−1)τ (x(2τ+1)
mk

(0)− x(2τ+1)
mk

(ξmk,τ )) = (−1)τ+1x(2τ+2)
mk

(νk)ξmk,τ
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where νk ∈ (0, ξmk,τ ). Hence limk→∞ |x(2τ+2)
mk

(νk)| = ∞, contrary to ‖x(2τ+2)
mk

‖ ≤ V
for k ∈ N by (3.11). The case where limk→∞ ξmk,τ = T can be treated analogously.

2

Lemma 3.5. Let assumptions (H1) and (H2) be satisfied. Then there exists a
positive constant V∗ such that

‖x(2n−1)‖ ≤ V∗ (3.15)

for any solution x of BVP (3.3), (1.2) with m ∈ N.
Proof. Let m ∈ N and x be a solution of BVP (3.3), (1.2). Let ξj be a (unique)
zero of x(2j+1) in (0, T ), 0 ≤ j ≤ n − 1 (see Lemma 2.4). By Lemma 3.4, there
exist 0 < α < β < T independent of m such that

α ≤ ξj ≤ β, 0 ≤ j ≤ n− 2. (3.16)

By (3.2),

|x(2n−1)(t)| =
∣∣∣ ∫ t

ξn−1

fm(s, x(s), . . . , x(2n−2)(s)) ds
∣∣∣

≤
∫ T

0

(
φ(t) +

2n−2∑
i=0

qi(t)ωi(|x(i)(t)|) +
2n−2∑
i=0

hi(t)(1 + |x(i)(t)|
)
dt.

(3.17)

Using the properties od ωi given in (H2), (2.9) and the inequality

t(T − t) ≥


T
2
t for 0 ≤ t ≤ T

2

T
2
(T − t) for T

2
< t ≤ T,

we get ∫ T

0
ω2i(|x(2i)(t)|) dt

≤
∫ T

2

0
ω2i

( T 2(n−i−2)

2 · 30n−i−1
Ωt
)
dt+

∫ T

T
2

ω2i

( T 2(n−i−2)

2 · 30n−i−1
Ω(T − t)

)
dt

≤ Λω2i

( T 2(n−i−2)

2 · 30n−i−1
Ω
)[ ∫ T

2

0
ω2i(t) dt+

∫ T

T
2

ω2i(T − t) dt
]

= 2Λω2i

( T 2(n−i−2)

2 · 30n−i−1
Ω
) ∫ T

2

0
ω2i(t) dt

(3.18)

for 0 ≤ i ≤ n− 1. Next we claim that

∣∣∣ ∫ t

ξj

s(T − s) ds
∣∣∣ ≥ α(T − β)

2
|t− ξj| for t ∈ J, 0 ≤ j ≤ n− 2. (3.19)
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Indeed, since ξj satisfies (3.16), we have

∫ ξj

t
s(T − s) ds ≥ (T − β)

∫ ξj

t
s ds =

T − β

2
(ξ2

j − t2)

=
T − β

2
(ξj + t)(ξj − t) ≥ α(T − β)

2
(ξj − t)

for t ∈ [0, ξj] and∫ t

ξj

s(T − s) ds ≥ α
∫ t

ξj

(T − s) ds =
α

2
((T − ξj)

2 − (T − t)2)

=
α

2
(2T − ξj − t)(t− ξj) ≥

α(T − β)

2
(t− ξj)

for t ∈ (ξj, T ]. Consequently, using (2.10) and (3.19) we obtain∫ T

0
ω2i+1(|x(2i+1)(t)|) dt

≤
∫ T

0
ω2i+1

(T 2(n−i)−7

30n−i−2
Ω
∣∣∣ ∫ t

ξi

s(T − s) ds
∣∣∣) dt

≤
∫ T

0
ω2i+1

(α(T − β)T 2(n−i)−7

2 · 30n−i−2
Ω|t− ξi|

)
dt

≤ Λω2i+1

(α(T − β)T 2(n−i)−7

2 · 30n−i−2
Ω
) ∫ T

0
ω2i+1(|t− ξi|) dt

< 2Λω2i+1

(α(T − β)T 2(n−i)−7

2 · 30n−i−2
Ω
) ∫ T

0
ω2i+1(t) dt.

(3.20)

Applying (3.11), (3.17), (3.18) and (3.20) yields

|x(2n−1)(t)| ≤ ‖φ‖L + 2Λ
n−1∑
i=0

‖q2i‖∞ω2i

( T 2(n−i−2)

2 · 30n−i−1
Ω
) ∫ T

2

0
ω2i(t) dt

+2Λ
n−2∑
i=0

‖q2i+1‖∞ω2i+1

(α(T − β)T 2(n−i)−7

2 · 30n−i−2
Ω
) ∫ T

0
ω2i+1(t) dt

+(1 + V )
2n−2∑
i=0

‖hi‖L = V∗

for t ∈ J . Here V∗ is a positive constant independent of m. 2

Lemma 3.6. Let assumptions (H1) and (H2) be satisfied. Let {xm} be a sequence
of solutions to BVPs (3.3), (1.2), m ∈ N. Then the sequence

{fm(t, xm(t), . . . , x(2n−2)
m (t))} ⊂ L1(J)
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is uniformly absolutely continuous on J , that is for each ε > 0 there exists δ > 0
such that ∫

M
fm(t, xm(t), . . . , x(2n−2)

m (t)) dt < ε

for any measurable M⊂ J , µ(M) < δ.
Proof. With respect to (3.2) and properties of measurable sets, it is sufficient to
verify that to every ε > 0 there exists δ > 0 such that for any at most countable
set {(aj, bj)}j∈J of mutually disjoint intervals (aj, bj) ⊂ J with

∑
j∈J(bj−aj) < δ,

we have for each m ∈ N
∑
j∈J

∫ bj

aj

[
φ(t) +

2n−2∑
i=0

qi(t)ωi(|x(i)
m (t)|) +

2n−2∑
i=0

hi(t)(1 + |x(i)
m (t)|)

]
dt < ε. (3.21)

By Lemmas 2.4, 3.3 and 3.4, we know that there exist V > 0 and 0 < α < β < T
such that

|x(2j)
m (t)| ≥ T 2(n−j)−5

30n−j−1
Ωt(T − t), t ∈ J, 0 ≤ j ≤ n− 1, m ∈ N,

|x(2j+1)
m (t)| ≥ T 2(n−j)−7

30n−j−2
Ω
∣∣∣ ∫ t

ξm,j

s(T − s) ds
∣∣∣, t ∈ J, 0 ≤ j ≤ n− 2, m ∈ N

where ξm,j ∈ (0, T ) is a (unique) zero of x(2j+1)
m in J ,

α ≤ ξm,j ≤ β, m ∈ N, 0 ≤ j ≤ n− 2

and
‖x(j)

m ‖ ≤ V, m ∈ N, 0 ≤ j ≤ 2n− 2.

In addition, by (3.19),∣∣∣ ∫ t

ξm,j

s(T − s) ds
∣∣∣ ≥ α(T − β)

2
|t− ξm,j|, m ∈ N, 0 ≤ j ≤ n− 2.

Hence, for 0 ≤ t1 < t2 ≤ T , we have

n−1∑
i=0

∫ t2

t1
q2i(t)ω2i(|x(2i)

m (t)|) dt ≤ Λ
n−1∑
i=0

‖q2i‖∞ω2i

(T 2(n−i)−5

30n−i−1
Ω
) ∫ t2

t1
ω2i(t(T − t)) dt,

2n−2∑
i=0

∫ t2

t1
hi(t)(1 + |x(i)

m (t)|) dt ≤ (1 + V )
2n−2∑
i=0

∫ t2

t1
hi(t) dt,

and, for 0 ≤ i ≤ n− 2, we have∫ t2

t1
q2i+1(t)ω2i+1(|x(2i+1)

m (t)|) dt

≤ ‖q2i+1‖∞
∫ t2

t1
ω2i+1

(α(T − β)T 2(n−i)−7

2 · 30n−i−2
Ω|t− ξm,i|

)
dt

≤ Λ‖q2i+1‖∞ω2i+1

(α(T − β)T 2(n−i)−7

2 · 30n−i−2
Ω
) ∫ t2

t1
ω2i+1(|t− ξm,i|) dt.
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Obviously,∫ t2

t1
ω2i+1(|t− ξm,i|) dt =



∫ t2−ξm,i

t1−ξm,i

ω2i+1(t) dt if ξm,i ≤ t1∫ ξm,i−t1

0
ω2i+1(t) dt+

∫ t2−ξm,i

0
ω2i+1(t) dt if t1 < ξm,i < t2∫ ξm,i−t1

ξm,i−t2
ω2i+1(t) dt if t2 ≤ ξm,i.

(3.22)

Let now {(aj, bj)}j∈J be at most countable set of mutually disjoint intervals
(aj, bj) ⊂ J . Set

J1
m,i = {j : j ∈ J, ξm,i ≤ aj}, J2

m,i = {j : j ∈ J, ξm,i ≥ bj}

for m ∈ N and 0 ≤ i ≤ n− 2. Then, by (3.22),

∑
j∈J

∫ bj

aj

ω2i+1(|t−ξm,i|) dt =
∑

j∈J1
m,i

∫ bj−ξm,i

aj−ξm,i

ω2i+1(t) dt+
∑

j∈J2
m,i

∫ ξm,i−aj

ξm,i−bj

ω2i+1(t) dt+E

where

E =


0 if J = J1

m,i ∪ J2
m,i∫ ξm,i−aτ

0
ω2i+1(t) dt+

∫ bτ−ξm,i

0
ω2i+1(t) dt if aτ < ξm,i < bτ , τ ∈ J.

Set
M1

m,i = N 1
m,i ∪

⋃
j∈J1

m,i

(aj − ξm,i, bj − ξm,i),

M2
m,i = N 2

m,i ∪
⋃

j∈J2
m,i

(ξm,i − bj, ξm,i − aj)

for m ∈ N and 0 ≤ i ≤ n− 2 where

N 1
m,i =

 ∅ if J = J1
m,i ∪ J2

m,i

(0, bτ − ξm,i) if aτ < ξm,i < bτ , τ ∈ J,

N 2
m,i =

 ∅ if J = J1
m,i ∪ J2

m,i

(0, ξm,i − aτ ) if aτ < ξm,i < bτ , τ ∈ J.

Then Mk
m,i ⊂ J are measurable, µ(Mk

m,i) ≤
∑

j∈J(bj − aj), 1 ≤ k ≤ 2, and

∑
j∈J

∫ bj

aj

ω2i+1(|t− ξm,i|) dt ≤
∫
M1

m,i

ω2i+1(t) dt+
∫
M2

m,i

ω2i+1(t) dt.
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Setting
Φ = max{1 + V, P,Q}

where

P = Λ max
{
‖q2i‖∞ω2i

(T 2(n−i)−5

30n−i−1
Ω
)

: 0 ≤ i ≤ n− 1
}
,

Q = Λ max
{
‖q2i+1‖∞ω2i+1

(α(T − β)T 2(n−i)−7

2 · 30n−i−2
Ω
)

: 0 ≤ i ≤ n− 2
}

we get

∑
j∈J

∫ bj

aj

[
φ(t) +

2n−2∑
i=0

qi(t)ωi(|x(i)
m (t)|) +

2n−2∑
i=0

hi(t)(1 + |x(i)
m (t)|)

]
dt

≤
∑
j∈J

[ ∫ bj

aj

φ(t) dt+ Φ
( n−1∑

i=0

∫ bj

aj

ω2i(t(T − t)) dt+
2n−2∑
i=0

∫ bj

aj

hi(t) dt
)]

+Φ
n−2∑
i=0

( ∫
M1

m,i

ω2i+1(t) dt+
∫
M2

m,i

ω2i+1(t) dt
)
.

By (H2), φ, hi, ωi ∈ L1(J) for 0 ≤ i ≤ 2n − 2 and ωi are nonincreasing on
R+. Consequently, for each ε > 0 there exists δ > 0 such that for any at
most countable set {(aj, bj)}j∈J of mutually disjoint intervals (aj, bj) ⊂ J with∑

j∈J(bj − aj) < δ, (3.21) holds. This completes the proof. 2

3.2 Problem (1.3), (1.4)

We would argue similarly as in Section 3.1 but we would like to show the reader
a different approach to this type of singular BVPs which seems to be more com-
fortable for problem (1.3), (1.4). Therefore, first we prove some a priori estimates
above, then we discuss the uniform absolute continuity of certain function sets
and at the end of this section we prove the existence principle for auxiliary regular
BVPs corresponding to problem (1.3), (1.4).

Lemma 3.7. Let K > 0, ψ ∈ L1(J) be positive, h∗, hj ∈ L1(J), qi ∈ L∞(J)
be nonnegative, ωi : R+ → R+ be nonincreasing,

∫ T
0 ωi(s

n−i−1)ds < ∞, 0 ≤ i ≤
n− 2, 0 ≤ j ≤ n− 1. Then there exist constants r∗ > 0 and α ∈ (0, K] such that
for each function x ∈ ACn−1(J) satisfying (1.4),

ψ(t) ≤ −x(n)(t) for a.e. t ∈ J provided ‖x‖ ≤ K, (3.23)

and

0 < −x(n)(t) ≤ h∗(t) +
n−1∑
j=0

hj(t)|x(j)(t)|

+
n−2∑
i=0

qi(t)ωi(|x(i)(t)|), for a.e. t ∈ J,
(3.24)
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the estimates
‖x(n−1)‖ < r∗, ‖x‖ ≥ α (3.25)

are valid.
Proof. Consider a function x ∈ ACn−1(J) satisfying (1.4), (3.23) and (3.24).
Let ‖x‖ ≤ K. Then, by (3.23) and Lemma 2.11, there is a positive constant
c = c(ψ) such that ‖x‖ ≥ c. Otherwise ‖x‖ > K. If we put α = min{c,K}, then
the second inequality in (3.25) is satisfied.

Let us prove the first estimate in (3.25). Put ‖x(n−1)‖ = ρ. Then −ρ ≤
x(n−1)(t) ≤ ρ on J and if we integrate this inequality from 0 to t ∈ (0, T ] and use
(1.4), we get step by step

|x(i)(t)| ≤ ρ
tn−i−1

(n− i− 1)!
for t ∈ J, 0 ≤ i ≤ n− 1. (3.26)

Lemmas 2.9 and 2.10 guarantee the existence of the unique zero ξn−1 of x(n−1)

with ξn−1 ∈ (0, T ) for 0 ≤ p ≤ n− 2 and ξn−1 = T for p = n− 1. Integrate (3.24)
from t to ξn−1. Then

0 < x(n−1)(t) ≤
∫ ξn−1

t
h∗(s)ds+

n−1∑
i=0

∫ ξn−1

t
hi(s)|x(i)(s)|ds

+
n−2∑
i=0

∫ ξn−1

t
qi(s)ωi(|x(i)(s)|)ds for t ∈ [0, ξn−1).

If p < n− 1 and thus ξn−1 < T , we integrate (3.24) from ξn−1 to t and get

0 < −x(n−1)(t) ≤
∫ t

ξn−1

h∗(s)ds+
n−1∑
i=0

∫ t

ξn−1

hi(s)|x(i)(s)|ds

+
n−2∑
i=0

∫ t

ξn−1

qi(s)ωi(|x(i)(s)|)ds for t ∈ (ξn−1, T ].

Hence, the inequality (see (3.26) )

|x(n−1)(t)| ≤
∣∣∣ ∫ ξn−1

t
h∗(s)ds

∣∣∣+ ρ
n−1∑
i=0

∣∣∣ ∫ ξn−1

t
hi(s)

sn−i−1

(n− i− 1)!
ds
∣∣∣

+
n−2∑
i=0

∣∣∣ ∫ ξn−1

t
qi(s)ωi(|x(i)(s)|)ds

∣∣∣
is true for t ∈ J . Therefore we have

ρ

(
1−

n−1∑
i=0

1

(n− i− 1)!

∫ T

0
hi(s)s

n−i−1ds

)

≤ ‖h∗‖L +
n−2∑
i=0

‖qi‖∞
∫ T

0
ωi(|x(i)(s)|)ds.

(3.27)

24



It remains to estimate the integrals∫ T

0
ωi(|x(i)(s)|)ds, 0 ≤ i ≤ n− 2.

We will consider three cases.
Case (i). Let p = n− 1. Then, by Lemma 2.8, for 0 ≤ i ≤ n− 2

ωi(|x(i)(s)|) ≤ ωi

(
‖x‖
T n−1

sn−i−1

)
for s ∈ (0, T ].

Thus

ωi(|x(i)(s)|) ≤ ωi((cis)
n−i−1), 0 ≤ i ≤ n− 2, for s ∈ (0, T ], (3.28)

where cn−i−1
i = αT 1−n. Inequality (3.28) implies∫ T

0
ωi(|x(i)(s)|)ds ≤ 1

ci

∫ ciT

0
ωi(t

n−i−1)dt = Bi

and so we have for 0 ≤ i ≤ n− 2∫ T

0
ωi(|x(i)(s)|)ds ≤ Bi. (3.29)

Case (ii). Let p = 0. Then, by Lemma 2.9, for 0 ≤ i ≤ n− 2

ωi(|x(i)(s)|) ≤

 ωi((cis)
n−i−1) if 0 ≤ s ≤ ξi+1

ωi(ki|ξi − s|) if ξi+1 ≤ s ≤ T,
(3.30)

where
cn−i−1
i = αT 1−n, ki = αT−i−1, (3.31)

and ξi, ξi+1 fulfil (2.29). Therefore∫ T

0
ωi(|x(i)(s)|)ds ≤

∫ ξi+1

0
ωi((cis)

n−i−1)ds+
∫ ξi

ξi+1

ωi(ki(ξi − s))ds

+
∫ T

ξi

ωi(ki(s−ξi))ds ≤ Bi +
1

ki

∫ ki(ξi−ξi+1)

0
ωi(t)dt+

1

ki

∫ ki(T−ξi)

0
ωi(t)dt ≤ Bi +Ci,

with

Ci =
2

ki

∫ kiT

0
ωi(t)dt.

Therefore, we have for 0 ≤ i ≤ n− 2∫ T

0
ωi(|x(i)(s)|)ds ≤ Bi + Ci. (3.32)
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Case (iii). Let 1 ≤ p ≤ n − 2. Then, for 0 ≤ i ≤ p − 1, we have estimate
(3.29) and, for p ≤ i ≤ n− 2, estimate (3.32) holds, where ξj, p+ 1 ≤ j ≤ n+ 1
are from Lemma 2.10.

In view of (1.7), (3.27), (3.29) and (3.32) we deduce that in all these three
cases

ρ(1−H) ≤ ‖h∗‖L +
n−2∑
i=0

‖qi‖∞(Bi + Ci) = D.

So, if we put r∗ = 1 +D(1−H)−1, we get the first inequality in (3.25). 2

Now we will consider the uniform absolute continuity of the following function
sets. Let us choose α > 0 and define

B = {x ∈ ACn−1(J) : ‖x‖ ≥ α, x fulfils (1.4) and (2.15)}. (3.33)

Lemma 3.8. Suppose that ωi : R+ → R+ are nonincreasing,
∫ T
0 ωi(s

n−i−1)ds <
∞, 0 ≤ i ≤ n− 2. Let us put

A = {ωi(|x(i)|) : x ∈ B, 0 ≤ i ≤ n− 2}. (3.34)

Then the functions of A are uniformly absolutely continuous on J, that is for
each ε > 0 there exists δ > 0 such that∫

M
ωi(|x(i)(s)|)ds < ε

for each x ∈ B, 0 ≤ i ≤ n− 2 and for any M⊂ J , µ(M) < δ.
Proof. It is sufficient to prove that for each ε > 0 there is δ > 0 such that for
any system {(τj, tj)}∞1 of mutually disjoint intervals (τj, tj) ⊂ J the condition

∞∑
j=1

(tj − τj) < δ =⇒
∞∑

j=1

∫ tj

τj

ωi(|x(i)(s)|)ds < ε (3.35)

is valid for x ∈ B and 0 ≤ i ≤ n− 2. We will distinguish three cases, which will
be denoted by (i), (ii) and (iii).

Case (i). Let p = n− 1. Choose i ∈ {0, 1, . . . , n− 2} and put c = ci, where ci
is given by (3.31). Then, in view of (3.28), for each τj, tj ∈ J , τj < tj∫ tj

τj

ωi(|x(i)(s)|)ds ≤
∫ tj

τj

ωi((cs)
n−i−1)ds =

1

c

∫ ctj

cτj

ωi(t
n−i−1)dt

=
1

c

∫ ctj

cτj

γi(t)dt,

with γi(t) = ωi(t
n−i−1) for t ∈ R+. Thus∫ tj

τj

ωi(|x(i)(s)|)ds ≤ 1

c
(Γi(ctj)− Γi(cτj)) , (3.36)
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with Γi(t) =
∫ t
0 γi(s)ds. According to Remark 1.3 we can see that Γi is absolutely

continuous on [0, A] for an arbitrary A ∈ R+.
Let us choose an ε > 0 and put ε1 = cε. Then there is a δ1 > 0 such that for

any system {(aj, bj)}∞1 of mutually disjoint intervals in [0, cT ] the condition

∞∑
j=1

(bj − aj) < δ1 =⇒
∞∑

j=1

(Γi(bj)− Γi(aj)) < ε1 (3.37)

is true. Put δ = δ1
c

and suppose
∑∞

j=1(tj − τj) < δ. Then
∑∞

j=1(ctj − cτj) < δ1,
(cτj, ctj) ⊂ [0, cT ], j ∈ N, which implies by (3.37)

∞∑
j=1

(Γi(ctj)− Γi(cτj)) < ε1,

wherefrom, by (3.36), we get

∞∑
j=1

∫ tj

τj

ωi(|x(i)(s)|)ds < ε.

Case (ii). Let p = 0. Then, by Lemma 2.9, for 0 ≤ i ≤ n− 2 the inequalities
(3.30) are satisfied, where ci and ki are given by (3.31) and ξi, ξi+1 fulfil (2.29).
Let us choose an arbitrary i ∈ {0, 1, . . . , n− 2} and put c = ci and k = ki. Now,
for a j ∈ N, we will discuss five possible locations of τj, tj with respect to ξi, ξi+1.

(a) Suppose
0 ≤ τj < tj ≤ ξi+1. (3.38)

Then the estimate (3.36) is true.
(b) Let

ξi+1 ≤ τj < tj ≤ ξi. (3.39)

Then, by (3.30), we have

∫ tj

τj

ωi(|x(i)(s)|)ds ≤
∫ tj

τj

ωi(k(ξi − s))ds =
1

k

∫ k(ξi−τj)

k(ξi−tj)
ωi(t)dt,

which yields the estimate∫ tj

τj

ωi(|x(i)(s)|)ds ≤ 1

k
(Ωi(k(ξi − τj))− Ωi(k(ξi − tj))) , (3.40)

where Ωi(t) =
∫ t
0 ωi(s)ds and, by Remark 1.3, Ωi is absolutely continuous on [0, A]

for an arbitrary A ∈ R+.
(c) Let us suppose

ξi ≤ τj < tj ≤ T. (3.41)
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(Note that (3.41) can occur only if i > 0, because ξ0 = T .) Then, by (3.30), we
get as above∫ tj

τj

ωi(|x(i)(s)|)ds ≤ 1

k
(Ωi(k(tj − ξi))− Ωi(k(τj − ξi))) . (3.42)

(d) Let us suppose
0 < τj ≤ ξi+1 < tj < ξi. (3.43)

Then, by (3.36), (3.38), (3.39) and (3.40),∫ tj

τj

ωi(|x(i)(s)|)ds ≤ 1

c
(Γi(cξi+1)− Γi(cτj))

+
1

k
(Ωi(k(ξi − ξi+1))− Ωi(k(ξi − tj))) .

(3.44)

(e) Finally, suppose
ξi+1 < τj ≤ ξi < tj < T. (3.45)

(Note that (3.45) can occur if i > 0, only.) Then, by (3.39) - (3.42),∫ tj

τj

ωi(|x(i)(s)|)ds ≤ 1

k
(Ωi(k(ξi − τj))− Ωi(0))

+
1

k
(Ωi(k(tj − ξi))− Ωi(0)) .

(3.46)

Choose an ε > 0 and put ε1 = ε
(

1
c

+ 2
k

)−1
. Then we can find δ1 > 0 such that

for any system of mutually disjoint intervals {(aj, bj)}∞1 in [0, T max{c, k}], the
condition

∞∑
j=1

(bj − aj) < δ1 =⇒



∞∑
j=1

(Γi(bj)− Γi(aj)) < ε1

∞∑
j=1

(Ωi(bj)− Ωi(aj)) < ε1

(3.47)

is valid. Put δ = δ1
c+k

and take a system {(τj, tj)}∞j=1 ⊂ J such that
∑∞

1 (tj−τj) <
δ. Then ∞∑

j=1

c(tj − τj) < δ1 and
∞∑

j=1

k||ξi − τj| − |ξi − tj|| < δ1.

So, by (3.36), (3.40), (3.42), (3.44) and (3.46), we compute that

∞∑
j=1

∫ tj

τj

ωi(|x(i)(s)|)ds ≤ 1

c

∞∑
j=1

(Γi(ctj)− Γi(cτj))

+
2

k

∞∑
j=1

|Ωi(k|ξi − τj|)− Ωi(k|ξi − tj|)| <
(

1

c
+

2

k

)
ε1 = ε.

Case (iii). Let 1 ≤ p ≤ n− 2. Then for 0 ≤ i ≤ p− 1 we argue as in Case (i)
and for p ≤ i ≤ n− 2 we follow Case (ii). 2
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Now we present an existence principle for (n, p) BVPs which are regular.
Particularly, we consider the equations

−x(n)(t) = h(t, x(t), . . . , x(n−1)(t)) (3.48)

and
−x(n)(t) = λh(t, x(t), . . . , x(n−1)(t)), λ ∈ [0, 1]. (3.49)

Lemma 3.9. Let h ∈ Car(J × Rn) and let there exist r > 0 such that for any
λ ∈ (0, 1) and any solution x of problem (3.49), (1.4) the estimate

‖x(n−1)‖ 6= r (3.50)

is true. Then problem (3.48), (1.4) has a solution.
Proof. Let the operator S : Cn−1(J) → Cn−1(J) be defined by the formula

(Sx)(t) =
∫ T

0
G(t, s)h(s, x(s) . . . , x(n−1)(s))ds

where G is the Green’s function of problem (2.11), (1.4). Then S is a com-
pletely continuous operator and we see that a function x is a solution of problem
(3.49), (1.4) for some λ ∈ (0, 1) if and only if x is a solution of the operator
equation

x = λSx. (3.51)

Set
Ω = {y ∈ Cn−1(J) : ‖y(n−i−1)‖ < rT i for 0 ≤ i ≤ n− 1}.

Then Ω is an open bounded set in Cn−1(J). Let x be a solution of (3.49), (1.4)
for some λ ∈ (0, 1). Then x fulfils (3.50). If ‖x(n−1)‖ < r, then from x(i)(0) =
0, 0 ≤ i ≤ n− 2 (which follows from (1.4)) we deduce

‖x(n−i−1)‖ < rT i, 0 ≤ i ≤ n− 1

and so x ∈ Ω. If ‖x(n−1)‖ > r, then x 6∈ cl(Ω). So, we have proved that for any
λ ∈ (0, 1) each solution x of (3.49), (1.4) does not belong to ∂Ω. Further, for
λ = 0 problem (3.49), (1.4) has only the trivial solution which cannot belong to
∂Ω, as well. For λ = 1 we have two possibilities:
(i) The operator S has fixed points on ∂Ω.
(ii) The operator S has no fixed points on ∂Ω. Then the operator I − λS is a
compact homotopy on cl(Ω)× [0, 1] and

1 = deg(I,Ω) = deg(I − S,Ω), (3.52)

where deg denotes the Leray-Schauder topological degree and I : Cn−1(J) →
Cn−1(J) stands for the identity operator Ix = x. By (3.52), S has a fixed point
in Ω.

Since fixed points of S are solutions of (3.48), (1.4), Lemma 3.9 is proved. 2
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4 Main results

Theorem4.1. Let assumptions (H1) and (H2) be satisfied. Then there exists a
solution of BVP (1.1), (1.2).
Proof. For each m ∈ N, there exists a solution xm of BVP (3.3), (1.2) by
Lemma 3.2. Consider the sequence {xm}. Lemmas 3.3 and 3.5 show that {xm}
is bounded in C2n−1(J) and, by Lemma 2.4,

(−1)jx(2j)
m (t) ≥ T 2(n−j)−5

30n−j−1
Ωt(T − t) for t ∈ J, 0 ≤ j ≤ n− 1 (4.1)

where Ω is given by (2.8). The Arzelà-Ascoli theorem guarantees the existence
of a subsequence {xmk

} converging in C2n−2(J), limk→∞ xmk
= x. Then x ∈

C2n−2(J), (4.1) gives (−1)jx(2j)(t) ≥ T 2(n−j)−5

30n−j−1
Ωt(T − t) > 0 for t ∈ (0, T ),

0 ≤ j ≤ n− 1 and x satisfies the boundary conditions (1.2). Then x(2j+1)(ξj) = 0
for a (unique) ξj ∈ (0, T ), 0 ≤ j ≤ n − 2. Now, fmk

∈ Car(J × R2n−1), and
from their construction it follows that there exists U ⊂ J , µ(U) = 0, such that
fmk

(t, ·, . . . , ·) are continuous on R2n−1 for each t ∈ J \ U which implies that

lim
k→∞

fmk
(t, xmk

(t), . . . , x(2n−2)
mk

(t)) = f(t, x(t), . . . , x(2n−2)(t))

for J \ (U ∪ {0, T, ξ0, . . . , ξn−2}). By Lemma 3.6, {fmk
(t, xmk

(t), . . . , x(2n−2)
mk

(t))}
is uniformly absolutely continuous on J . Hence f(t, x(t), . . . , x(2n−2)(t)) ∈ L1(J)
and

lim
k→∞

∫ t

0
fmk

(s, xmk
(s), . . . , x(2n−2)

mk
(s)) dt =

∫ t

0
f(t, x(t), . . . , x(2n−2)(t)) dt

for t ∈ J by the Vitali’s theorem. Since {x(2n−1)
mk

(0)} is bounded, we can assume

that it is convergent, say limk→∞ x
(2n−1)
mk

(0) = C. Then taking the limit as k →∞
in the equalities

x(2n−2)
mk

(t) = x(2n−1)
mk

(0)t+ (−1)n
∫ t

0

∫ s

0
fmk

(u, xmk
(u), . . . , x(2n−2)

mk
(u)) du ds, t ∈ J

we get

x(2n−2)(t) = Ct+ (−1)n
∫ t

0

∫ s

0
f(u, x(u), . . . , x(2n−2)(u)) du ds, t ∈ J.

Then x ∈ AC2n−1(J) and

(−1)nx(2n)(t) = f(t, x(t), . . . , x(2n−2)(t)) for a.e. t ∈ J.

Therefore x is a solution of BVP (1.1), (1.2). 2

Theorem4.2. Let assumptions (H3) and (H4) be satisfied. Then there exists a
solution of BVP (1.3), (1.4).
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Proof. Put h∗ = h0+φ+
∑n−2

i=0 qiωi(1) and, by Lemma 3.7, find positive constants
r∗, α satisfying (3.25). Further, put ρ0 = 1 + r∗T n−1 +K, where K is a constant
from (H3), ρi = 1 + r∗T n−i−1, 1 ≤ i ≤ n− 1,

σi(x) =

{
x for |x| ≤ ρi

ρisignx for |x| > ρi
, 0 ≤ i ≤ n− 1

and, for 0 < c < ρ0,

σ∗0(c, x) =


c for x < c
x for c ≤ x ≤ ρ0

ρ0 for ρ0 < x.

Choose m ∈ N and define an auxiliary function hm by the following recurrent
formulas for a.e. t ∈ J and for (x0, . . . , xn−1) ∈ X:

hm,0(t, x0, . . . , xn−1) = f(t, x0, . . . , xn−1),

hm,i(t, x0, . . . , xn−1)

=



hm,i−1(t, x0 . . . , xn−1) if |xi| ≥ 1
m

m

2
[hm,i−1(t, x0, . . . , xi−1,

1

m
,xi+1, . . . , xn−1)(xi +

1

m
)

−hm,i−1(t, x0, . . . , xi−1,−
1

m
,xi+1, . . . , xn−1)(xi −

1

m
)] if |xi| <

1

m
,

and 1 ≤ i ≤ n− 2,

hm(t, x0, . . . , xn−1) = hm,n−2(t, x0, . . . , xn−1).

Now, for a.e. t ∈ J and for (x0, . . . , xn−1) ∈ Rn put

fm(t, x0, . . . , xn−1) = hm(t, σ∗0(
1

m
,x0), σ1(x1), . . . , σn−1(xn−1)). (4.2)

Then, by (H3) and (H4), fm ∈ Car(J × Rn) and for m ≥ m0 ≥ 1
K

ψ(t) ≤ fm(t, x0, . . . , xn−1)

for a.e. t ∈ J, each (x0, . . . , xn−1) ∈ Rn, x0 ≤ K,
(4.3)

0 < fm(t, x0, . . . , xn−1) ≤ h∗(t) +
n−1∑
i=0

hi(t)|xi|+
n−2∑
i=0

qi(t)ωi(|xi|),

for a.e. t ∈ J and each (x0, . . . , xn−1) ∈ Rn.

(4.4)

Inequality (4.4) follows from the fact that |σi(xi)| ≤ |xi|, 1 ≤ i ≤ n − 1,
|σ∗0( 1

m
, x0)| ≤ 1 + |x0|, σ∗0( 1

m
, x0) ≥ σ0(x0), ωi(|σi(xi)|) ≤ ωi(|xi|) + ωi(1), 0 ≤

i ≤ n− 2.
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Consider the auxiliary equations

−x(n)(t) = fm(t, x(t), . . . , x(n−1)(t)) (4.5)

and
−x(n)(t) = λfm(t, x(t), . . . , x(n−1)(t)), λ ∈ [0, 1], (4.6)

and prove that (4.5), (1.4) has a solution for each m ∈ N. Fix m ∈ N and put

gm(t) = sup{|f(t, x0, . . . , xn−1) :
1

m
≤ |xi| ≤ ρi, 0 ≤ i ≤ n− 2, |xn−1| ≤ ρn−1}.

Then gm ∈ L1(J) and |λfm(t, x0, . . . , xn−1)| ≤ gm(t) for a.e. t ∈ J and all
λ ∈ (0, 1), (x0, . . . , xn−1) ∈ Rn. Therefore, for any λ ∈ (0, 1) and any solution x of
(4.6), (1.4), the estimate ‖x(n−1)‖ ≤ ‖gm‖L holds. Thus, if we choose r > ‖gm‖L,
we get (3.50). So, Lemma 3.9 guarantees that problem (4.5), (1.4) has a solution
xm. In such a way we get a sequence {xm} of solutions of (4.5), (1.4), m ∈ N. In
view of (4.3) and (4.4) and by Lemma 3.7, we get (for m ∈ N,m ≥ m0, )

‖x(n−1)
m ‖ < r∗ and ‖xm‖ ≥ α, (4.7)

where r∗ and α are positive constants. Conditions (1.4) and (4.7) yield

‖x(n−i−1)
m ‖ < r∗T i, 0 ≤ i ≤ n− 1. (4.8)

Further, by (4.4), we have for t, τ ∈ J , τ < t

|x(n−1)
m (t)− x(n−1)

m (τ)| ≤
∫ t

τ
h(s)ds+

n−2∑
i=0

‖qi‖∞
∫ t

τ
ωi(|x(i)

m (s)|)ds, (4.9)

where

h(t) = h∗(t) +
n−1∑
i=0

ρihi(t), h ∈ L1(J).

According to (1.4), (4.4) and (4.7), we can use Lemma 3.8 and obtain that the
sequence {ωi(|x(i)

m |)}∞m0
is uniformly absolutely continuous on J for 0 ≤ i ≤

n−2. This, by (4.9), implies that the sequence {x(n−1)
m }∞m0

is equicontinuous on J .
Further, by (4.8), we see that the sequence {xm}∞m0

is bounded in Cn−1(J). Thus,
by the Arzelà-Ascoli theorem, we can choose subsequence, which is denoted {xk}
and which converges in Cn−1(J) to a function x ∈ Cn−1(J). Clearly x satisfies
(1.4).

Let p = 0 and 0 ≤ i ≤ n− 2. Then, in view of Lemma 2.9 and by (1.4), (4.4)
and (4.7), we have

x(0) = x(T ) = 0 (4.10)
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and

x
(i)
k (t) ≥


α

T n−1
tn−i−1 for 0 ≤ t ≤ ξi+1,k

α

T i+1
(ξi,k − t) for ξi+1,k ≤ t ≤ ξi,k

x
(i)
k (t) ≤ α

T i+1
(ξi,k − t) for ξi,k ≤ t ≤ T.

(4.11)

Here ξ0,k = T , ξj,k is a (unique) zero of x
(j)
k in (0, T ), 1 ≤ j ≤ n− 1, k ∈ N and

0 < ξn−1,k < ξn−2,k < . . . < ξ2,k < ξ1,k < ξ0,k = T. (4.12)

Letting k →∞ we can choose subsequences which we denote {ξj,l}∞l=1 such that

ξj = lim
l→∞

ξj,l, 0 ≤ j ≤ n− 1.

This limitting proces in (4.11) yields

x(i)(t) ≥


α

T n−1
tn−i−1 for 0 ≤ t ≤ ξi+1

α

T i+1
(ξi − t) for ξi+1 ≤ t ≤ ξi,

x(i)(t) ≤ α

T i+1
(ξi − t) for ξi ≤ t ≤ T.

(4.13)

Now, let us show that estimates (4.13) imply that x > 0 in (0, T ) and that x(i)

has just one zero ξi in (0, T ) for 1 ≤ i ≤ n− 2. It suffices to prove that

0 < ξn−1 < ξn−2 < . . . < ξ2 < ξ1 < ξ0 = T. (4.14)

According to (4.12) we get (4.14) with nonstrict inequalities. Let us prove that
these inequalities must be strict. Suppose the contrary. First, let ξ1 = ξ0. Then
(4.13) gives x(T ) ≥ α > 0, which contradicts (4.10). Now, let 0 = ξn−1. In view
of (4.13) we can see that the inequality ξn−1 < ξn−2 implies

x(n−2)(0) ≥ αξn−2

T n−1
> 0 (4.15)

which contradicts (1.4), while the equality ξn−1 = ξn−2 leads to

x(n−2)(t) ≤ −αt
T n−2

< 0 for t ∈ (0, T ]. (4.16)

Integrating (4.16) and using (1.4) repeatedly we obtain x(t) < 0 for t ∈ (0, T ],
which contradicts (4.10). Finally, let ξi+1 = ξi, 1 ≤ i ≤ n− 3. Then (4.13) yields

x(i)(ξi) ≥
α

T n−1
ξn−i−1
i > 0 and x(i)(ξi) ≤ 0,
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a contradiction. Hence (4.14) is proved.
If p > 0 we can use Lemma 2.8 or Lemma 2.10 and by similar arguments get

that x(i) has just one zero ξi in (0, T ) for p+ 1 ≤ i ≤ n− 2 and x(i) > 0 in (0, T ),
0 ≤ i ≤ p.

Finally, let us show that x ∈ ACn−1(J) and that x fulfils (1.3) a.e. on J .
Consider the sequence of equalities

x
(n−1)
l (t) = x

(n−1)
l (0) +

∫ t

0
fl(s, xl(s), . . . , x

(n−1)
l (s))ds for t ∈ J. (4.17)

Denote the set of all t ∈ J such that f(t, ·, . . . , ·) : X → R is not continuous by
U . Then µ(U) = 0 and

lim
l→∞

fl(t, xl(t), . . . , x
(n−1)
l (t)) = f(t, x(t), . . . , x(n−1)(t))

for all t ∈ J \ (U ∪ {0, T, ξp+1, . . . , ξn−2}), 0 ≤ p ≤ n− 3 and for all t ∈ J \ (U ∪
{0, T}), n − 2 ≤ p ≤ n − 1. Using (4.4) and the uniform absolute continuity of

{ωi(|x(i)
l |} on J , 0 ≤ i ≤ n − 2, we can deduce that {fl(t, xl(t) . . . , x

(n−1)
l (t))}

is also uniformly absolutely continuous on J . Therefore we can use the Vitali’s
theorem by which f(t, x(t), . . . , x(n−1)(t)) ∈ L1(J) and letting l → ∞ in (4.17)
we have that

x(n−1)(t) = x(n−1)(0) +
∫ t

0
f(s, x(s), . . . , x(n−1)(s))ds for t ∈ J

is valid, i.e. x ∈ ACn−1(J) and x satisfies (1.3) a.e. on J . 2

For the continuous function f in equations (1.1) and (1.3) we get immedi-
ately from Theorems 4.1 and 4.2 and our previous considerations the following
corollaries.

Corollary 4.3. Let f ∈ C0(J × D) satisfy assumptions (H1) and (H2). Then
there exists a solution x of BVP (1.1), (1.2) such that x ∈ AC2n−1(J) ∩ C2n(J \
{0, T, ξ0, . . . , ξn−2}) and (1.1) holds for each t ∈ J \ {0, T, ξ0, . . . , ξn−2} where
ξj ∈ (0, T ) is a unique zero of x(2j+1) in J , 0 ≤ j ≤ n− 2.

Corollary 4.4. Let f ∈ C0(J × X) satisfy assumptions (H3) and (H4). Then
BVP (1.3), (1.4) has a solution x such that x ∈ ACn−1(J) ∩ Cn(J \ {0, T}) and
(1.3) holds for each t ∈ J \{0, T} provided n−2 ≤ p ≤ n−1 and x ∈ ACn−1(J)∩
Cn(J \{0, T, ξp+1, . . . , ξn−2}) and (1.3) holds for each t ∈ J \{0, T, ξp+1, . . . , ξn−2}
provided 0 ≤ p ≤ n−3 where ξj is a unique zero of x(j) in (0, T ), p+1 ≤ j ≤ n−2.

Remark 4.5. The assertion of Theorem 4.1 remains also valid if the growth
condition on f in (H2) has the form

f(t, x0, . . . , x2n−2) ≤ φ(t) +
2n−2∑
j=0

qj(t)ωj(|xj|) +
2n−2∑
j=0

hj(t)|xj|αj
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with αj ∈ (0, 1), 0 ≤ j ≤ 2n − 2, and (1.5) is omitted. Similarly, if the growth
conditions on f in (H4) has the form

0 < f(t, x0, . . . , xn−1) ≤ φ(t) +
n−2∑
i=0

qi(t)ωi(|xi|) +
n−1∑
j=0

hj(t)|xj|αj ,

with αj ∈ (0, 1), 0 ≤ j ≤ n − 1, and (1.7) is omitted, the assertion of Theorem
4.2 keeps its validity, as well.
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