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Abstract: Positive solutions of the singular (p, n−p) conjugate BVP are studied.
The set of all zeros of their derivatives up to order n− 1 is described. By means
of this, estimates from below of the solutions and the absolute values of their
derivatives up to order n−1 on the considered interval are reached. Such estimates
are necessary for the application of the general existence principle to the BVP
under consideration.
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1 Introduction

Let n, p ∈ N, n > 2, p ≤ n − 1, and T be a positive number. In [?] (for p = 1)
and [?], the authors have considered the singular (p, n − p) conjugate boundary
value problem (BVP)

(−1)px(n)(t) = f(t, x(t), . . . , x(n−1)(t)), (1.1)

x(i)(0) = 0, x(j)(T ) = 0 0 ≤ i ≤ n− p− 1, 0 ≤ j ≤ p− 1, (1.2)

∗Supported by Grant No. 201/04/1077 of the Grant Agency of the Czech Republic and by
the Council of Czech Government J14/98 153100011

1



where f satisfies the local Carathéodory conditions on the set D = [0, T ] ×
((0,∞) × Rn−1

0 ) with R0 = R \ {0} and f is singular at the value 0 of each
its phase variable. They have given conditions on f guaranteeing the existence
of a positive (on (0, T )) solution to BVP (??), (??). The singularities of the
function f in (??) ‘appear’ in any positive solution of BVP (??), (??) and some
its derivatives at the fixed points t = 0, t = T , and all its derivatives up to order
n − 1 ‘pass through’ singularities of f also at inner points of the interval (0, T )
which are not fixed. Therefore for proving the solvability of BVP (??), (??) in the
class of positive functions on (0, T ) it is very important to give a decomposition
analysis of zeros of derivatives up to order n − 1 of positive solutions to BVP
(??), (??). This analysis have been presented for p = 1 in [?] and for p = 2 in
[?] under the assumption that f ≥ c on D with a positive constant c. The aim
of this paper is to complete this analysis for all values of p. We note that the
singular differential equation

(−1)px(n)(t) = φ(t)g(t, x(t)) (1.3)

together with the boundary conditions (??) have been discussed for φ(t)g(t, x) :
(0, 1) × (0,∞) → (0,∞) continuous in [?], [?], [?] and [?] (in [?] and [?] with
φ = 1). But for BVP (??), (??) singularities of g ‘appear’ in its positive solutions
only at the fixed points t = 0 and t = 1.

2 Decomposition analysis of zeros to solutions

of BVP (??), (??)

Let c be a positive constant and let f in (??) satisfy f ≥ c on D. Then the
decomposition analysis of zeros to solutions of BVP (??), (??) and their deriva-
tives up to order n− 1 can be studied by the decomposition analysis of zeros to
solutions of the differential inequality

(−1)px(n)(t) ≥ c (2.1)

satisfying the boundary conditions (??). By a solution of problem (??), (??) we
understand a function x ∈ ACn−1([0, T ]) (functions having absolutely continuous
(n− 1)st derivative on [0, T ]) satisfying (??) for a.e. t ∈ [0, T ] and fulfilling (??).

Having a solution x of problem (??), (??) we are interested in zeros of x(k),
0 ≤ k ≤ n− 1, belonging to (0, T ). Without loss of generality we can suppose

p− 1 ≤ n− p− 1 (2.2)

that is p ≤ n/2, because by replacing t by T−t we can transform the case n/2 < p
to (??).
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For p = 1, 2 we have already studied zeros of x(k) and we have proved the
following results:

Lemma 2.1. Let x be a solution of problem (??), (??) for p = 1. Then x > 0
on (0, T ) and x(k) has just one zero in (0, T ), 1 ≤ k ≤ n− 1.
Proof. Lemma follows from [?], Lemmas 2.7 and 2.9. 2

Lemma 2.2. Let x be a solution of problem (??), (??) for p = 2. Then

(i) x > 0 on (0, T ),

(ii) x(k) has just one zero in (0, T ) for k = 1 and k = n− 1,

(iii) x(k) has just two zeros in (0, T ) for 2 ≤ k ≤ n− 2.

Proof. See [?], Lemmas 2.2. 2

Decomposition analysis of zeros to solutions of BVP (??), (??) with p ≥ 3 is
described in the next theorem.

Theorem2.3. Let x be a solution of problem (??), (??) for p ≥ 3 and let (??)
hold. Then

(i) x > 0 on (0, T ),

(ii) x(k) has just j zeros in (0, T ) for k = j and k = n−j where j = 1, 2, . . . , p−1,

(iii) x(k) has just p zeros in (0, T ) for p ≤ k ≤ n− p.

Proof. The proof is divided into three parts.
I. Lower bounds for zeros. By (??) we see that x′ has at least one zero

t11 ∈ (0, T ). Hence x′(0) = x′(t11) = x′(T ) = 0, which implies that x′′ has at least
two zeros t21, t

2
2 ∈ (0, T ). So, we have x′′(0) = x′′(t21) = x′′(t22) = x′′(T ) = 0. By

induction we conclude that x(j), j = 3, . . . , p− 1, has at least j zeros tj1, . . . , t
j
j ∈

(0, T ) and, due to (??) and (??) x(j)(0) = x(j)(tj1) = . . . = x(j)(tjj) = x(j)(T ) = 0,

j = 3, . . . , p − 1. Therefore x(p) hat at least p zeros in (0, T ). Now we will
distinguish two cases: p < n/2 and p = n/2.

1. Let p < n/2. Then p ≤ n− p− 1 and, by (??),

x(j)(0) = 0, j = p, . . . , n− p− 1.

Thus x(k) has at least p zeros in (0, T ) for k = p + 1, . . . , n− p.
2. Let p = n/2 (clearly n is even in this case). Then p = n− p and x(n−p) has

at least p zeros in (0, T ).
Hence we have shown that x(n−p) has at least p zeros in (0, T ) in the both

cases. Since for x(n−j), 1 ≤ j ≤ p − 1, we cannot already use (??), we deduce
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that x(n−j) has at least j zeros in (0, T ) for j = 1, . . . , p − 1. Particularly x(n−1)

has at least one zero in (0, T ).
II. Exact number of zeros. By (??), x(n−1) is strictly monotonous and hence it

has just one zero in (0, T ). Therefore, by I, we deduce that x(n−k) has just k zeros
in (0, T ) for 2 ≤ k ≤ p− 1 and x(k) has just p zeros in (0, T ) for p ≤ k ≤ n− p.
Similarly, x(k) has just k zeros in (0, T ) for 1 ≤ k ≤ p − 1 and x has no zero in
(0, T ).

III. Positivity of x. Denote by tk1 the first zero of x(k) in (0, T ), 1 ≤ k ≤ n−1.
Inequality (??) implies that (−1)px(n−1) < 0 on [0, tn−1

1 ) and (−1)px(n−2) > 0 on
[0, tn−2

1 ). Therefore (−1)p+jx(n−j) > 0 on (0, tn−j
1 ) for j = 3, . . . , p. Particularly

we have x(n−p) > 0 on (0, tp1), wherefrom, by virtue of (??), we obtain x(k) > 0 on
(0, tk1), 1 ≤ k ≤ n− p− 1, and consequently x > 0 on (0, T ). 2

Our next theorem provides estimates from below of solutions to problem
(??), (??) and of the absolute value of their derivatives up to order n − 1 on
the interval [0, T ]. These estimations are necessary to apply the general existence
principle of [?] to problem (??), (??) with f in (??) satisfying the inequality f ≥ c
on D.

Theorem2.4. Let x be a solution of problem (??), (??). Then for any i ∈
{1, . . . , n − 1} there are pi + 1 disjoint intervals (ak, ak+1), 0 ≤ k ≤ pi, pi <
(n− 1)p, such that

pi⋃
k=0

[ak, ak+1] = [0, T ] (2.3)

and for each k ∈ {0, . . . , pi} one of the inequalities

|x(n−i)(t)| ≥ c

i!
(t− ak)

i for t ∈ [ak, ak+1] (2.4)

or
|x(n−i)(t)| ≥ c

i!
(ak+1 − t)i for t ∈ [ak, ak+1] (2.5)

is satisfied.
Proof. Let x be a solution of problem (??), (??) and let tji ∈ (0, T ) be zeros of
x(j) described in Lemmas ??, ?? and Theorem ??. Integrating (??) we get

(−1)p+1x(n−1)(t) ≥ c(tn−1
1 − t) for t ∈ [0, tn−1

1 ]

(−1)px(n−1)(t) ≥ c(t− tn−1
1 ) for t ∈ [tn−1

1 , T ].

 (2.6)

Now, integrate the first inequality in (??) from t ∈ [0, tn−2
1 ) to tn−2

1 , we have

(−1)pxn−2(t) ≥ c

2

(
− (tn−1

1 − tn−2
1 )2 + (tn−1

1 − t)2
)
≥ c

2!
(tn−2

1 − t)2.
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Hence,we get in such a way

(−1)px(n−2)(t) ≥ c
2!
(tn−2

1 − t)2 for t ∈ [0, tn−2
1 ]

(−1)p+1x(n−2)(t) ≥ c
2!
(t− tn−1

1 )2 for t ∈ [tn−2
1 , tn−1

1 ]

(−1)p+1x(n−2)(t) ≥ c
2!
(tn−2

2 − t)2 for t ∈ [tn−1
1 , tn−2

2 ]

(−1)px(n−2)(t) ≥ c
2!
(t− tn−2

2 )2 for t ∈ [tn−2
2 , T ].


(2.7)

Choose i ∈ {1, . . . , n−1} and take all different zeros of functions x(n−1), . . . , x(n−i),
which are in (0, T ). By Lemmas ??, ?? and Theorem ??, there is a finite number
pi < (n− 1)p of these zeros. Let us put them in order and denote by a1, . . . , api

.
Set a0 = 0, api+1 = T . In this way we get pi + 1 disjoint intervals (ak, ak+1),
0 ≤ k ≤ pi, satisfying (??).

If i = 1, then for a1 = tn−1
1 , a2 = T , we get by (??) that |x(n−1)(t)| ≥ c(a1− t)

for t ∈ [a0, a1] and |x(n−1)(t)| ≥ c(t− a1) for t ∈ [a1, a2].
If i = 2, we put tn−1

1 = a1, tn−2
1 = a2, tn−2

2 = a3, T = a4, and then (??) gives
(??) or (??).

If i > 2 and we integrate the inequalities in (??) (i− 2)-times, we get that on
each [ak, ak+1], k ∈ {0, . . . , pi} either (??) or (??) has to be fulfilled. 2
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