Zeros of derivatives of solutions to singular $(p, n-p)$ conjugate BVPs *

Irena Rachůnková and Svatoslav Staněk
Department of Mathematical Analysis, Faculty of Science, Palacký University, Tomkova 40, 77900 Olomouc, Czech Republic e-mail: rachunko@inf.upol.cz stanek@inf.upol.cz

Abstract

Positive solutions of the singular $(p, n-p)$ conjugate BVP are studied. The set of all zeros of their derivatives up to order $n-1$ is described. By means of this, estimates from below of the solutions and the absolute values of their derivatives up to order $n-1$ on the considered interval are reached. Such estimates are necessary for the application of the general existence principle to the BVP under consideration.

Key words: Singular conjugate BVP, positive solutions, zeros of derivatives, estimates from below.

2000 Mathematics Subject Classification: 34B15, 34B16, 34B18.

1 Introduction

Let $n, p \in \mathbb{N}, n>2, p \leq n-1$, and T be a positive number. In [?] (for $p=1$) and [?], the authors have considered the singular $(p, n-p)$ conjugate boundary value problem (BVP)

$$
\begin{gather*}
(-1)^{p} x^{(n)}(t)=f\left(t, x(t), \ldots, x^{(n-1)}(t)\right), \tag{1.1}\\
x^{(i)}(0)=0, \quad x^{(j)}(T)=0 \quad 0 \leq i \leq n-p-1,0 \leq j \leq p-1, \tag{1.2}
\end{gather*}
$$

[^0]where f satisfies the local Carathéodory conditions on the set $\mathcal{D}=[0, T] \times$ $\left((0, \infty) \times \mathbb{R}_{0}^{n-1}\right)$ with $\mathbb{R}_{0}=\mathbb{R} \backslash\{0\}$ and f is singular at the value 0 of each its phase variable. They have given conditions on f guaranteeing the existence of a positive (on $(0, T)$) solution to BVP (??), (??). The singularities of the function f in (??) 'appear' in any positive solution of $\operatorname{BVP}(? ?),(? ?)$ and some its derivatives at the fixed points $t=0, t=T$, and all its derivatives up to order $n-1$ 'pass through' singularities of f also at inner points of the interval $(0, T)$ which are not fixed. Therefore for proving the solvability of BVP (??), (??) in the class of positive functions on $(0, T)$ it is very important to give a decomposition analysis of zeros of derivatives up to order $n-1$ of positive solutions to BVP (??), (??). This analysis have been presented for $p=1$ in [?] and for $p=2$ in [?] under the assumption that $f \geq c$ on \mathcal{D} with a positive constant c. The aim of this paper is to complete this analysis for all values of p. We note that the singular differential equation
\[

$$
\begin{equation*}
(-1)^{p} x^{(n)}(t)=\phi(t) g(t, x(t)) \tag{1.3}
\end{equation*}
$$

\]

together with the boundary conditions (??) have been discussed for $\phi(t) g(t, x)$: $(0,1) \times(0, \infty) \rightarrow(0, \infty)$ continuous in [?], [?], [?] and [?] (in [?] and [?] with $\phi=1$). But for BVP (??), (??) singularities of g 'appear' in its positive solutions only at the fixed points $t=0$ and $t=1$.

2 Decomposition analysis of zeros to solutions of BVP (??), (??)

Let c be a positive constant and let f in (??) satisfy $f \geq c$ on \mathcal{D}. Then the decomposition analysis of zeros to solutions of BVP (??), (??) and their derivatives up to order $n-1$ can be studied by the decomposition analysis of zeros to solutions of the differential inequality

$$
\begin{equation*}
(-1)^{p} x^{(n)}(t) \geq c \tag{2.1}
\end{equation*}
$$

satisfying the boundary conditions (??). By a solution of problem (??), (??) we understand a function $x \in A C^{n-1}([0, T])$ (functions having absolutely continuous $(n-1)^{\text {st }}$ derivative on $\left.[0, T]\right)$ satisfying (??) for a.e. $t \in[0, T]$ and fulfilling (??).

Having a solution x of problem (??), (??) we are interested in zeros of $x^{(k)}$, $0 \leq k \leq n-1$, belonging to $(0, T)$. Without loss of generality we can suppose

$$
\begin{equation*}
p-1 \leq n-p-1 \tag{2.2}
\end{equation*}
$$

that is $p \leq n / 2$, because by replacing t by $T-t$ we can transform the case $n / 2<p$ to (??).

For $p=1,2$ we have already studied zeros of $x^{(k)}$ and we have proved the following results:

Lemma 2.1. Let x be a solution of problem (??), (??) for $p=1$. Then $x>0$ on $(0, T)$ and $x^{(k)}$ has just one zero in $(0, T), 1 \leq k \leq n-1$.
Proof. Lemma follows from [?], Lemmas 2.7 and 2.9.
Lemma 2.2. Let x be a solution of problem (??), (??) for $p=2$. Then
(i) $x>0$ on $(0, T)$,
(ii) $x^{(k)}$ has just one zero in $(0, T)$ for $k=1$ and $k=n-1$,
(iii) $x^{(k)}$ has just two zeros in $(0, T)$ for $2 \leq k \leq n-2$.

Proof. See [?], Lemmas 2.2.
Decomposition analysis of zeros to solutions of BVP (??), (??) with $p \geq 3$ is described in the next theorem.

Theorem 2.3. Let x be a solution of problem (??), (??) for $p \geq 3$ and let (??) hold. Then
(i) $x>0$ on $(0, T)$,
(ii) $x^{(k)}$ has just j zeros in $(0, T)$ for $k=j$ and $k=n-j$ where $j=1,2, \ldots, p-1$,
(iii) $x^{(k)}$ has just p zeros in $(0, T)$ for $p \leq k \leq n-p$.

Proof. The proof is divided into three parts.
I. Lower bounds for zeros. By (??) we see that x^{\prime} has at least one zero $t_{1}^{1} \in(0, T)$. Hence $x^{\prime}(0)=x^{\prime}\left(t_{1}^{1}\right)=x^{\prime}(T)=0$, which implies that $x^{\prime \prime}$ has at least two zeros $t_{1}^{2}, t_{2}^{2} \in(0, T)$. So, we have $x^{\prime \prime}(0)=x^{\prime \prime}\left(t_{1}^{2}\right)=x^{\prime \prime}\left(t_{2}^{2}\right)=x^{\prime \prime}(T)=0$. By induction we conclude that $x^{(j)}, j=3, \ldots, p-1$, has at least j zeros $t_{1}^{j}, \ldots, t_{j}^{j} \in$ $(0, T)$ and, due to (??) and (??) $x^{(j)}(0)=x^{(j)}\left(t_{1}^{j}\right)=\ldots=x^{(j)}\left(t_{j}^{j}\right)=x^{(j)}(T)=0$, $j=3, \ldots, p-1$. Therefore $x^{(p)}$ hat at least p zeros in $(0, T)$. Now we will distinguish two cases: $p<n / 2$ and $p=n / 2$.

1. Let $p<n / 2$. Then $p \leq n-p-1$ and, by (??),

$$
x^{(j)}(0)=0, \quad j=p, \ldots, n-p-1 .
$$

Thus $x^{(k)}$ has at least p zeros in $(0, T)$ for $k=p+1, \ldots, n-p$.
2. Let $p=n / 2$ (clearly n is even in this case). Then $p=n-p$ and $x^{(n-p)}$ has at least p zeros in $(0, T)$.

Hence we have shown that $x^{(n-p)}$ has at least p zeros in $(0, T)$ in the both cases. Since for $x^{(n-j)}, 1 \leq j \leq p-1$, we cannot already use (??), we deduce
that $x^{(n-j)}$ has at least j zeros in $(0, T)$ for $j=1, \ldots, p-1$. Particularly $x^{(n-1)}$ has at least one zero in $(0, T)$.
II. Exact number of zeros. By (??), $x^{(n-1)}$ is strictly monotonous and hence it has just one zero in $(0, T)$. Therefore, by I, we deduce that $x^{(n-k)}$ has just k zeros in $(0, T)$ for $2 \leq k \leq p-1$ and $x^{(k)}$ has just p zeros in $(0, T)$ for $p \leq k \leq n-p$. Similarly, $x^{(k)}$ has just k zeros in $(0, T)$ for $1 \leq k \leq p-1$ and x has no zero in $(0, T)$.
III. Positivity of x. Denote by t_{1}^{k} the first zero of $x^{(k)}$ in $(0, T), 1 \leq k \leq n-1$. Inequality (??) implies that $(-1)^{p} x^{(n-1)}<0$ on $\left[0, t_{1}^{n-1}\right)$ and $(-1)^{p} x^{(n-2)}>0$ on $\left[0, t_{1}^{n-2}\right)$. Therefore $(-1)^{p+j} x^{(n-j)}>0$ on $\left(0, t_{1}^{n-j}\right)$ for $j=3, \ldots, p$. Particularly we have $x^{(n-p)}>0$ on $\left(0, t_{1}^{p}\right)$, wherefrom, by virtue of (??), we obtain $x^{(k)}>0$ on $\left(0, t_{1}^{k}\right), 1 \leq k \leq n-p-1$, and consequently $x>0$ on $(0, T)$.

Our next theorem provides estimates from below of solutions to problem (??), (??) and of the absolute value of their derivatives up to order $n-1$ on the interval $[0, T]$. These estimations are necessary to apply the general existence principle of [?] to problem (??), (??) with f in (??) satisfying the inequality $f \geq c$ on \mathcal{D}.

Theorem 2.4. Let x be a solution of problem (??), (??). Then for any $i \in$ $\{1, \ldots, n-1\}$ there are $p_{i}+1$ disjoint intervals $\left(a_{k}, a_{k+1}\right), 0 \leq k \leq p_{i}, p_{i}<$ ($n-1$) p, such that

$$
\begin{equation*}
\bigcup_{k=0}^{p_{i}}\left[a_{k}, a_{k+1}\right]=[0, T] \tag{2.3}
\end{equation*}
$$

and for each $k \in\left\{0, \ldots, p_{i}\right\}$ one of the inequalities

$$
\begin{equation*}
\left|x^{(n-i)}(t)\right| \geq \frac{c}{i!}\left(t-a_{k}\right)^{i} \quad \text { for } t \in\left[a_{k}, a_{k+1}\right] \tag{2.4}
\end{equation*}
$$

or

$$
\begin{equation*}
\left|x^{(n-i)}(t)\right| \geq \frac{c}{i!}\left(a_{k+1}-t\right)^{i} \quad \text { for } t \in\left[a_{k}, a_{k+1}\right] \tag{2.5}
\end{equation*}
$$

is satisfied.
Proof. Let x be a solution of problem (??), (??) and let $t_{i}^{j} \in(0, T)$ be zeros of $x^{(j)}$ described in Lemmas ??, ?? and Theorem ??. Integrating (??) we get

$$
\left.\begin{array}{ll}
(-1)^{p+1} x^{(n-1)}(t) \geq c\left(t_{1}^{n-1}-t\right) & \text { for } t \in\left[0, t_{1}^{n-1}\right] \tag{2.6}\\
(-1)^{p} x^{(n-1)}(t) \geq c\left(t-t_{1}^{n-1}\right) & \text { for } t \in\left[t_{1}^{n-1}, T\right] .
\end{array}\right\}
$$

Now, integrate the first inequality in (??) from $t \in\left[0, t_{1}^{n-2}\right.$) to t_{1}^{n-2}, we have

$$
(-1)^{p} x^{n-2}(t) \geq \frac{c}{2}\left(-\left(t_{1}^{n-1}-t_{1}^{n-2}\right)^{2}+\left(t_{1}^{n-1}-t\right)^{2}\right) \geq \frac{c}{2!}\left(t_{1}^{n-2}-t\right)^{2}
$$

Hence, we get in such a way

$$
\left.\begin{array}{ll}
(-1)^{p} x^{(n-2)}(t) \geq \frac{c}{2!}\left(t_{1}^{n-2}-t\right)^{2} & \text { for } t \in\left[0, t_{1}^{n-2}\right] \\
(-1)^{p+1} x^{(n-2)}(t) \geq \frac{c}{2!}\left(t-t_{1}^{n-1}\right)^{2} & \text { for } t \in\left[t_{1}^{n-2}, t_{1}^{n-1}\right] \tag{2.7}\\
(-1)^{p+1} x^{(n-2)}(t) \geq \frac{c}{2!}\left(t_{2}^{n-2}-t\right)^{2} & \text { for } t \in\left[t_{1}^{n-1}, t_{2}^{n-2}\right] \\
(-1)^{p} x^{(n-2)}(t) \geq \frac{c}{2!}\left(t-t_{2}^{n-2}\right)^{2} & \text { for } t \in\left[t_{2}^{n-2}, T\right] .
\end{array}\right\}
$$

Choose $i \in\{1, \ldots, n-1\}$ and take all different zeros of functions $x^{(n-1)}, \ldots, x^{(n-i)}$, which are in $(0, T)$. By Lemmas ??, ?? and Theorem ??, there is a finite number $p_{i}<(n-1) p$ of these zeros. Let us put them in order and denote by $a_{1}, \ldots, a_{p_{i}}$. Set $a_{0}=0, a_{p_{i}+1}=T$. In this way we get $p_{i}+1$ disjoint intervals $\left(a_{k}, a_{k+1}\right)$, $0 \leq k \leq p_{i}$, satisfying (??).

If $i=1$, then for $a_{1}=t_{1}^{n-1}, a_{2}=T$, we get by (??) that $\left|x^{(n-1)}(t)\right| \geq c\left(a_{1}-t\right)$ for $t \in\left[a_{0}, a_{1}\right]$ and $\left|x^{(n-1)}(t)\right| \geq c\left(t-a_{1}\right)$ for $t \in\left[a_{1}, a_{2}\right]$.

If $i=2$, we put $t_{1}^{n-1}=a_{1}, t_{1}^{n-2}=a_{2}, t_{2}^{n-2}=a_{3}, T=a_{4}$, and then (??) gives (??) or (??).

If $i>2$ and we integrate the inequalities in (??) $(i-2)$-times, we get that on each $\left[a_{k}, a_{k+1}\right], k \in\left\{0, \ldots, p_{i}\right\}$ either (??) or (??) has to be fulfilled.

References

[1] R.P. Agarwal and D. O'Regan, Positive solutions for ($p, n-p$) conjugate boundary value problems, J. Differential Equations 150(1998), 462-473.
[2] R.P. Agarwal and D. O'Regan, Multiplicity results for singular conjugate, focal, and (n, p) problems. J. Differential Equations 170(2001), 142-156.
[3] R.P. Agarwal, D. O'Regan, I. Rachůnková and S. Staněk, Two-point higher order BVPs with singularities in phase variables, Comp. Math. Appl. (in press).
[4] P.W. Eloe and J. Henderson, Singular nonlinear ($n-1,1$) conjugate boundary value problems, Georgian Math. J. 4(1997), 401-412.
[5] P.W. Eloe and J. Henderson, Singular nonlinear ($k, n-k$) conjugate boundary value problems, J. Differential Equations 133(1997), 136-151.
[6] I. Rachůnková and S. Staněk, General existence principle for singular BVPs and its applications, Georgian Math. J. (accepted for publication).

[^0]: *Supported by Grant No. 201/04/1077 of the Grant Agency of the Czech Republic and by the Council of Czech Government J14/98 153100011

