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1 Introduction

Singular boundary value problems (BVPs) arise in numerous applications in natural sci-
ences and engineering and therefore, since many years, they have been in focus of exten-
sive investigations. An important class of linear singular problems takes the form of the
following BVP:

Y= AT/Iy(t) +f(@®), t€(0,1],  Boy(0)+Biy(1) =4, 1)

where y is a n-dimensional real function, M is a n X n matrix and f is a n-dimensional
function which is at least continuous, f € C[0,1]. We are mainly interested to find under
which circumstances the above problem has a solution y € C[0,1]. By and B; are constant
matrices and it turns out that they are subject to certain restrictions for a problem with a
unique continuous solution. We say that BVP (1) has a time singularity of the first kind at
t=0.

Problems of type (1), where f may depend in addition on the space variable y and may
have a space singularity at y = 0, have been studied in [1-4]. The analytical properties of
(1) have been discussed in [5, 6], where the attention was focused on the existence and
uniqueness of solutions and their smoothness. Especially, the structure of the boundary
conditions which are necessary and sufficient for (1) to have a unique continuous solution
on [0,1] was of special interest. Our aim is to generalize these analytical results to the
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problem

y0 ="+ rcon By By =4, @
where f € C[0,1] but f(¢)/t may not be integrable on [0,1]. While for the BVP (1) and
its applications, comprehensive literature is available, this is not the case for problem (2).
The BVPs of type (2) arise in the modeling of the avalanche run up [7] and occur when the
regular ODE system u/(x) = Mu(x) + g(x), posed on the semi-infinite interval x € [0, 00), is
transformed by x = —Int to a finite domain ¢ € (0, 1]. Moreover, we refer to papers [8—13],
where the solvability of similar linear singular problems is discussed. Interesting results
for linear BVPs with time singularities in weight-spaces have been provided in [14-17].
Although this framework is close to what we are aiming at here, it is not quite complete.
So, in a way our results are closing the existing gaps.

Note that the more general equation

A&y(t) +]¥,

p te(0,T], (3)

y ()=
with a variable coefficient matrix M(t) was investigated in [18], where the existence of a
unique continuous solution y of (3) has been studied. The main results of [18] are formu-
lated in [18, Theorem 1.1] and [18, Theorem 1.2]. In Theorem 1.1, f and M are assumed
to be continuous and all eigenvalues of M(0) to have negative real parts. In Theorem 1.2
smoothness of higher derivatives of y up to order m > 1 has been specified. It turns out
that for M, f € C™ there exists a unique solution y € C” provided that all real parts of the
eigenvalues of M(0) are smaller than m and different from natural numbers.

The current paper completes the results of [18] for the constant matrix M. In contrast
to [18], where only particular solutions without boundary conditions are considered, in
this paper general structure of linear two-point boundary conditions is in focus. Explicit
solution representations and the form of necessary boundary conditions are provided in
Theorems 5, 8, and 11 for the eigenvalues of M with negative real parts, positive real parts,
and the eigenvalues zero, respectively.

To compute the numerical solution of (1) polynomial collocation was proposed in [19,
20]. This was motivated by its advantageous convergence properties for (1), while in the
presence of a singularity other high order methods show order reductions and become
inefficient [21]. Consequently, for singular BVPs [22, 23], we have implemented two open
domain MATLAB codes based on collocation. The code sbvp solves explicit first order
ODE:s [22], while bvpsuite can be applied to arbitrary order problems also in implicit
formulation and to differential algebraic equations [23]. Over recent years, both codes
were applied to simulate singular BVPs important for applications and proved to work de-
pendably and efficiently. This was our motivation to also propose and analyze polynomial
collocation for the approximation of the initial value problems (2).

The paper is organized as follows: In Section 2, we collect the preliminary results and in-
troduce the necessary notation. Further notation can be found in Table 10. In Sections 3,
4, and 5, three case studies are carried out, the case of only negative real parts of the
eigenvalues of M, positive real parts of the eigenvalues of M, and zero eigenvalues of M,
respectively. These results are summarized and compared with the case of smooth inho-
mogeneity in Section 6. Finally, the three case studies are used to formulate the respective
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results for the general initial value problems, terminal value problems, and BVPs in Sec-
tion 7. We show convergence orders for the collocation scheme in the context of general
initial value problems in Section 8 and illustrate the theoretical findings by experiments
carried out using the MATLAB code bvpsuite in Section 9. In Section 10, we recapitulate
the most important results of the study.

2 Preliminaries
We are interested in analyzing the BVP

M @
y0="50+L0, tconyecon B+ Bym =4, @)
where M € R"*", By, B; € R"™*", B e R”, and f € C[0,1]. Note that in general m < n be-
cause the requirement y € C[0, 1] results in # — m additional conditions solution y has to
satisfy [5].

Before discussing BVP (4), we first consider the easier problem consisting of the ODE
system

y0="H0L, o, ®

subject to initial/terminal conditions. This means that we deal with the initial value prob-
lem (IVP),

f(@®)

M
y/(t) = Ty(t) + T’ te (07 1])}] € C[O:l]’ BOJ/(O) = :Bt (6)

where By € R”*", 8 € R™, and m < n, or with the terminal value problem (TVP),

=", tconyecon  myw-p ?)

where B; € R™”, 8 € R”, respectively. Particular attention is paid to the structure of ini-
tial/terminal and boundary conditions which are necessary and sufficient for the existence
of a unique continuous solution on the closed interval [0,1]. It turns out that the form of
such conditions depends on the spectral properties of the coefficient matrix M. Therefore,
we distinguish between three cases, where all eigenvalues of M have negative real parts,
positive real parts, or are zero.

In the first step, we construct the general solution of (5). We denote by J € C"*" the
Jordan canonical form of M and let E € C**” be the associated matrix of the gener-
alized eigenvectors of M. Thus, M = EJE~L. Moreover, let us introduce new variables,
v(t) := E71y(¢) and g(¢) := E~}f(¢), then we can decouple the system (5) and obtain

V(t) = %V(t) + ‘? (8)

By the variation of constant, any general solution of the linear equation (8) is a complex-
valued function of the form

Wt) = D(t)d + D(2) fl 015D ds= dd st /1 ‘g s te (0],

N
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where d € C” is an arbitrary vector and

d@)=t —exp ]ln L‘) Z](lnt)/

J=0

is the fundamental solution matrix satisfying

'(t) =

%@(t), d(1)=1, te(0,1];

see [24, Chapter IV]. In the case that the matrix J consists of [ Jordan boxes, /1, /5, ..., J;, the

fundamental solution matrix has the form of the block diagonal matrix, ¢ = diag(#", #2,

., "), where
m 1
]k = ) k = 1) ;lr
1
Ak
and
(ng)? (ng)"*!
1 Int == .. (1241(—1)!2
(In)"k~
0 1 Int o=
=t 1 ,  te(0,1]. (9)
Int
0 0 1

Here Ax = ok + ipr € C is an eigenvalue of M and dim/; + dim/; + --- + dim/; = n. The

general solution of (5) is then given by

y(t) = tMc + lM/ts_M_If(s) ds, te(0,1],
1

where ¢ = Ed € C" and tM = EY/ E~1 € C"™". Also,
(M) =M™, e (0,1,

and

M 1\ MY/ M-I
t :<Z> = (t )=—Mt , te(0,1]. (10)

From the structure of the matrix £ in (9), it is obvious that the solution contribution re-
lated to the kth Jordan box may become unbounded for ¢ = 0. Apparently, the asymptotic
behavior of the solution depends on the sign of the real part ox of the associated eigen-
value M. Therefore, we have to distinguish between three cases, oy < 0, A = 0, and 0% > 0.
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We assume that M has no purely imaginary eigenvalues to exclude solutions of the form
£ = cos(pInt) + isin(pInt).

We complete the preliminaries by two technical remarks, which will be frequently used
in the following analysis.

Since the paper is considerably long, we tried to keep the presentation as condensed as

possible and refer the reader to [25] for technical details.
Remark 1 The main focus of our investigations is on correctly posed initial/terminal

conditions which guarantee the existence of continuously differentiable solutions of (5),

y € C'[0,1]. Since logarithm terms occur in the matrix (9), the relation
lim “(nt)*=0, VaeR'VkeN, (11)
t—0*t

is essential when discussing the smoothness of y.

Remark 2 By integrating (10) we obtain
1
M / sMAds=—s™Ml=¢M_1, te(0,1]. (12)
t

Moreover, if M has only eigenvalues with negative real parts, then lim,_, o+ s™ = 0 due to

Remark 1, and therefore
1
/ sMTds = (-m)7L. 13)
0

3 Eigenvalues of M with negative real parts

In this section, we consider system (5), such that all eigenvalues of M have negative real
parts. It turns out that in this case, it is necessary to prescribe initial conditions of a certain
structure to guarantee that the solution is continuous on [0, 1]. Moreover, this continuous
solution of the associated IVP (6) is shown to be unique and its form is provided in The-

orem 5. In the proof of this theorem, we require the following lemmas.

Lemma 3 Let y > 0 and let the n x n matrix ] be of the form
J= o , A=o+ip, (14)
where 0 < 0. For o =0, we assume . =0 and y > 0. Then, fort € (0,1],

_ I - 7(=In)k
/ |S ]|Sy 'ds= ZZ (‘()/ O—)/+1 -k’ (15)

j=0 k=0
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and, in particular,

1 n-1 1
~J|r-1 —
/0 ’s ‘s ds = FZO o o)1

Proof Due to the form of J, the norm of s for s € (0,1] is

n-1
7] = fs

|lns|1 s ! (- 1ns)1

(16)

=0 j=0

~.
~.

By repeated integration by parts, we obtain

ds

/ (_]?ls)jsy—aflds — sre (_ lns)f ¥ Sy—o‘—l (_']ns)j_l
! y—o J! y—o (-1
g 7(—Ins)k
Z k‘()/ O—)/+1 -k
Therefore, due to (11),

t n-1 J
TR (- 1ns)1 £ (=Int)k
J|y-1 _ y o-1
./o 77 ds = / ZO &= Zk < Ky oyt

j=0

Clearly, fort =1,
n-1

1
/ |S ]|SV ldS = Z U)/+1

(v -
which completes the proof. d

Lemma 4 Assume that all eigenvalues of the matrix M have negative real parts. Then

t
lim / 1| ds = 0, (17)

t—0* Jo

Proof Let ¢ = ok + ipx, k = 1,...,1, be eigenvalues of the matrix M and Ji, k =1,...,],
the associated Jordan boxes of M. Then s™ = Es7E~!, where s/ = diag(s™1,s72,...,s7).

Therefore,

t t
lim / |s™™~|ds < |E||E™!] lim / |s7|s " ds
t—0* Jo t—0* Jo

The result follows from (11) and (15) with y = 0. O

Theorem 5 Let us assume that all eigenvalues of M have negative real parts. Then for
every f € C[0,1] system (5) has a unique solution y € C[0,1]. This solution has the form

1
y(2) :/0 S‘M‘If(ts) ds, te]0,1],

Page 6 of 34
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and satisfies the initial condition My(0) = —f(0). This condition is necessary and sufficient
fory to be continuous on [0,1]. Moreover, if f € C"[0,1], r > 0, then y € C"[0,1] satisfies

O] < comst. [P, telo1], (K -MyP©0)=r%0), k=0,..,r

Proof The general solution of system (5) can be split into two parts
t
y(t) = tMe+ tM/ s’M’If(s) ds
1

= tM(C—/ls‘M_{f(s)ds) + tM/OtS‘M‘If(S)ds

0
= yu(t) + y,(t), te(0,1]. (18)

First, we show that y, € C[0,1]. Change of variable, u = s/t, yields

1
Yp(t) :/0 u™MIf(ut)du, te(0,1].

Let us now introduce the functions,

1

Zu(t) ::‘/Is_M_If(st)ds, meN, (19)
1

Zoo(t) :=/ s’M’If(st)ds. (20)
0

Then, by (17),

1 1
/ SMIf(SIf)dS‘ <|fIl lim / ’s’M’1| ds=0.
0 m— 00 0

lim_ |20 () = zim(t)| = lim

m— 00

Clearly z,,(¢) € C[0,1], for m € N, and hence z, is continuous as the uniform limit of
continuous functions. Consequently, y,(¢) € C[0,1].

Since all real parts of eigenvalues are negative, y;, is not continuous at £ = 0 and it is
obvious that y € C[0,1] if and only if

1
Ci=c— / sMIf(s)ds = 0.
0

Thus the unique continuous solution satisfying (5) has the form

1
y(t) :/ sMIf(st)ds, te(0,1], (21)
0
and the estimate
’y(t)| <const.|f||, te[0,1],

holds due to Lemma 4. This solution is uniquely determined by ¢ = 0 and there are no
additional conditions to be imposed. Note that ¢ = 0 is equivalent to the condition My(0) =
—£(0) which follows from (13) and (21).
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We now examine the smoothness of y. Let f € C'[0,1]. For the first derivative y’, we have
from (21)

1
Y= /0 SMas)ds, |y o) <

due to Lemma 3. Clearly, if f € C"[0,1], then

1
(r)(t) :/ S(r—l)I—Mf(r)(tS) ds, |y (t)| < const. Hf 1]
0

and by (13) the results follow. |

Theorem 5 shows that if all eigenvalues of M have negative real parts, then there exists a
unique continuous solution y of IVP (6) for By = M, 8 = —f(0), and m = n. Clearly, By has
to be nonsingular. Note that for this spectrum of M a terminal problem (7) cannot be set
up in a reasonable way.

4 Eigenvalues of Ml with positive real parts
In this section we deal with system (5) whose matrix M has eigenvalues with positive real
parts. It turns out that in this case there exists a unique continuous solution of problem
(7). Its smoothness depends not only on the smoothness of f but also on the size of real
parts of the eigenvalues of M. Before stating the main result of this section formulated in
Theorem 8, we show the following two lemmas.

Lemma 6 Let y > 0 and let the n x n matrix ] be of the form (14), where o > 0. Then for
t € [0,1] the function

o-[1(2)

satisfies the following inequalities:

s¥7lds,

() wu(t) <comstt’, y<o, (22)

n-1 i
—Int j+1

(i) u(t) < comst.t’ Z %, y=o0, (23)
j=0 ’
i —Inty

(iii)  u(t) < const.t° Z y>o. (24)
j=0

Proof We discuss separately the cases y <o, ¥y =0, and y > 0. Note that according to (11)

and (16)
s - : \S pn J!

[

holds.



http://www.boundaryvalueproblems.com/content/2014/1/183

Burkotova et al. Boundary Value Problems 2014, 2014:183
http://www.boundaryvalueproblems.com/content/2014/1/183

(i) First, let y < o. Then there exists a constant & > 0 such that o = y + 2¢. The term

£\ &S (~In(h)y
() 25~

1
o T

is bounded on [0,1] due to (11) and hence

1)

(ii) For y = o the function u can be estimated by

1)

1
¥V ds < const.t”*® f sV ds = const.t” .
t

n-1
Int lt+1
s"’ldsit‘fz( 1 )// “Lds < const.t® Z( nty

j=0
(iii) Finally, for y > o, we have
VeV “L<mgy 1 ) ! lnt)1
f - ) |s" " ds <t Z - / s ds < const.t’
¢ I\s P ! ¢ pn

O

Lemma?7 Lety > 0 and let all eigenvalues of M have positive real parts. Then the function

- [

is bounded on [0,1] and lim;_, o+ u(t) = 0 for y > 0.

s¥tds, tel0,1],

Proof Let all eigenvalues of M have positive real parts. Then

o[ e 1)

Estimates (22) to (24) and property (11) imply u(t) < const.t® for ¢t € [0,1], where o¢ =
min{y, %} > 0. This means that « is bounded in [0,1]. If y > 0, then o( > 0 and the result
follows. O

s "'ds < |E||E s ds.

Theorem 8 Let us assume that all eigenvalues of M have positive real parts. Then for every
f € CY0,1] and every constant vector c, there exists a unique solution y € C[0,1] of (5). This
solution has the form

J6) = tMc: M flt sMIf(s)ds, te(0,1], (25)
—M-Y£(0), t=0.
If the matrix By € R"™" in (7) is nonsingular, then for any € R" there exists a unique
solution of TVP (7). This solution is given by (25) with ¢ = B]'B.
Let f € C™2%[0,1]. Then the following statements hold:
(i) ye C'[0,1]NC™3(0,1] for 0 <r<o, <r+1,

Page 9 of 34
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(i) y € C™*1[0,1]1 N C™3(0,1] for o, > r +1.
Moreover, higher derivatives of y satisfy for t € [0,1]

(@) 1y ()| < const.(t 1 + | In()|"mx"1) + |fDO) for k = 0,1,...,7,

(i) |y®(8)] < comst.(t7 (1 + | In(e)|"m=1) + |fO|) for k= 0,1,...,r +1,
where o, is the smallest positive real part of the eigenvalues of M and ny.x is the dimension
of the largest Jordan box in .

Proof The general solution of (5) can be written in the following form:

t o trg Mf(S)

y(t) = tMc + tM/1 sMIf(s)ds = Mc + ‘/1 (;) ~ ds =:y,(t) + y,(2). (26)
Since all eigenvalues have positive real parts, it follows from (11) that y,(¢) = t*c is contin-
uous on [0,1].

Now, we show that lim,_.¢ y,(¢) exists and therefore y € C[0,1]. Using the integration
formula (12) we obtain

/1 t(E)Mf ©) g5 = M1 (™ ~ 1)1 (0),

S

s
and hence
-M7f(0) = /}t(E)M@ ds - M71MF(0).
Therefore
t M t M
/1 (g) @ds"(‘M)flf(o) =/1 (f) wdS+M’lth(o). (27)

Since f € C[0,1], there exists M, € (0, c0) such that

f(s)-f(0)

N

‘ <M,, se€]l0,1]. (28)

Equation (27) together with (28) yield

t M S 1 M
) "ol <o [|()
1 S N ¢ S

Since all eigenvalues of M have positive real parts, (11) implies

ds + |(—M)_1th(O)|.

Jlim | (M) (0)] = 0.

Moreover, by Lemma 7 with y =1

t M
/ (t) T s oyt =0
1

N

lim

t—0%

follows. Thus, lim,_, ¢+ y,,(¢) = (~M)7}f(0) and y € C[0,1].
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It is clear from (26) that the solution y of (5) becomes unique if we specify the constant
vector ¢ € R”. Note that at ¢ = 0, y(0) satisfies # linearly independent conditions My(0) =
—£(0) for any ¢ € R”. Therefore, we have to specify c via the terminal conditions given in
(7). Let B € R” and let B; € R"*” be nonsingular, then it follows from By y(1) = Byc = $ that
the unique solution of TVP (7) is given by (26), where ¢ = B{' 8.

We now provide the estimate for y. To this aim, we utilize Lemma 7 with y = 0 and the

inequality
|tM| = |Et]E_1| < const.|t]| < const.t’* (1 + |1n(t)|"max_l). (29)

Hence, according to (26)

@] = |68 B[ +

[

< const.t” (1 + |ln(t)}nm“_1) |Bi'B| + const.|f]l.

In order to discuss the smoothness of y, we first study the general solution of the homo-
geneous problem yy,. Since o, is positive, there always exists a constant / € Ny = N U {0}

such that 0 < /<o, <[+ 1. Then we have

¥, = (M) = MM,

¥ = (M) =M -1y (M= k=DD)M e, k=1,...,1,
and it is easily seen that y, € C'[0,1] N C>(0,1]. The estimates for higher derivatives of yj,
follow from (29).

We now turn to the smoothness of the particular solution of the inhomogeneous prob-

lem y,. We integrate by parts

Yp(t) = tM/ts_M’If(s) ds
1
:fM((—M)_lt_ f(t)—(—M)_llf(l)—(—M)_I/[S_Mf'(S) dS>
1

= (M)1<th(1) —f(t)+tM/1 st/(s)ds).

Note that t* and M are commutative if £ and M are commutative, since M =
(Mt=M)71, The latter property will be shown in Lemma 18.

We differentiate the above equation and obtain

) = () (Mt””f(l) e [ M) ds + tMth’(t))

= M) + M /ts_Mf’(s) ds.
1
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Let f € C?[0,1] and o, > 1, then we argue as at the beginning of the proof (in context of
yand o, > 0) and conclude that y, € C[0,1]. Moreover, the following estimate holds:

[()e

< [f(l)|const.t"*‘1 (1 + |1n(t)|nm“_1) + Hf’”t_lconst.t

’y}(f)\ =< [f(l)’const.t"*’l(l ¥ ‘m(t)’”max*l) . |Lf/”f1

< const.(t (1 + |ln(t)|nm“71) + |

), te[0,1].

Similarly, if f € C"*%[0,1] and o, > r + 1, then y, € C"*1[0,1] and the following estimate
holds:

’yl(y”l)(tﬂ < const.(t"*"‘1 (1 + ‘ln(t)‘nmaxfl) + Hf(”l)

), telo,1].

It follows from (5) that if f € C"*2[0,1], then y, € C"*3(0,1]. Consequently, we have y, €
C'[0,11NC"™*3(0,1] forr < o, <r+1landy, € C"*'[0,1]NC"*3(0,1] for o, > r +1. The above

smoothness results and estimates for y, and y;, complete the proof. d

We recapitulate the case when all eigenvalues of M have positive real parts: For any
f € C0,1] and any vector B € R" there exists a unique continuous solution y of TVP (7)
ifand only if the matrix B; € R"*" is nonsingular. Each continuous solution y of (5) satisfies
the initial condition My(0) = —f(0) independently on ¢ € R" from (26). Consequently, in

this case there exists no IVP with a unique solution.

Remark 9 A continuous solution to (5) exists also in the case when f is not continuously
differentiable in [0,1]. However, in this case, we need some more structure in f close to
the singularity. Let us assume that f(¢) = O(¢t*h(t)) as t — 0, for some constant « > 0 and
a function 4 € C[0, 8;], 81 > 0. Then the solution of (5) is still continuous on [0, 1]. For the
proof see [25].

5 Eigenvalues A =0
Finally, we consider the case when all eigenvalues of the matrix M are zero. We begin with

the scalar equation (5) which for M = A = 0 immediately reduces to

f@
y(t) = 7 (30)
and show that additional structure in the function f is necessary to guarantee that the
solution y is continuous on [0, 1]. To see this, assume that f is a constant function, f(¢) = 1.

Then any solution y of (30) has the following form:

t

1

(&) =y(1) + f -ds=yQ1) +Int, t€(0,1]
1 S

and, clearly, y is not continuous at ¢t = 0. Motivated by the scalar case, we require the

inhomogeneity f to satisfy additional conditions providing the continuity of the associated

solution. Before formulating the main result of this section we show the following lemma.
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Lemma 10 Let us assume that all eigenvalues of the matrix M are zero. Then for o > 0

¢
lim / |S’M|s"“1 ds=0. (31)
t—0* Jo

Proof Let Ji, k =1,...,1, be the Jordan boxes of M. Then we can write s = Es7E™!, s7/ =
diag(s™1,...,57!), and thus

t t
lim / |S’M{s""1 ds < |E||E’1|/ {s’]|s""1 ds.
0 0

t—0%
Applying (15) and (11) we obtain (31). O

To obtain results for zero eigenvalues a projection matrix R onto the eigenspace of M
and the matrix R consisting of the linearly independent columns of R are required. For
respective notation, see Table 10.

Theorem 11 Let all eigenvalues of the matrix M be zero and m = dimX(()e). Moreover, let us
assume that there exist a constant a > 0 and a function h € C[0,6], § > 0 such that

f(&) = O(¢*h(r)) fort—o. (32)

Then for any By € R™" such that the matrix BoR € R"™*™ is nonsingular and for any
f €C[0,1] and B € R™, there exists a unique solution y € C[0,1] of IVP (6). This solution
has the form

1
y(t) = f?(Bof?)_lﬂ + / s_Ms_lf(st) ds, te(0,1],
0

and satisfies the initial condition My(0) = 0, which is necessary and sufficient fory € C[0,1].
Moreover,

y(®)| < [RBoR)™B| + const.(If Il + t* | hlls), te[0,1],

andifoa > r+1,f € C'[0,1],and h € C'[0, 8], then y € C™*[0,1] and the following estimates
hold for any k =0,...,r +1:

k-1
Y9 < const. (=) W9, tel0,9),

" (33)

—

0
9] < comst. 3 (@) 0+ () 15
j=0

), tels 1l

~

Proof We split the general solution of (5) into two parts y(t) = y,(¢) + y,(¢) as defined in
(18). To prove that y, € C[0,1], we again use the functions z,, with m € N and z,, specified
in (19) and (20). Due to (15), (31), and (32), we obtain

1
lim |2oo(£) = 2 (2)| < |14]l52* lim/ |s™™|s* " ds = 0. (34)
m—> 00 m— 00 0

Page 13 of 34
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Therefore, y, = zo, € C[0,1] and y,(0) = 0 since f(0) = 0 due to (32).

We now examine the continuity of

0
yu(t) = tM<c + / sMs7f(s) ds) =My,
1

¢f. (18). The fundamental solution matrix is given by t* = E¥/E-1, where # has the form
Y = diag(t",...,¢") and

E= (v, i1, B g, BB Y, D),
where for k =1,...,/, v; are the eigenvectors of M, h;:), et h;:’"il) are the associated prin-
cipal vectors, and n; are the dimensions of the Jordan boxes Ji. Clearly, because of the
logarithmic terms occurring in #, see (9), y;, is not continuous at ¢ = 0 in general. Only
when the contributions including the logarithmic terms vanish, y; becomes continuous
on [0,1]. It is clear from (9) that the only bounded contributions to y;, are linear combina-
tions of the eigenvectors of M. Consequently, any linear combination of principal vectors
has to vanish. This is the case when n; =0, Vi # 1,n; + 1,n; + ny + 1,..., Ziﬂ ni +1 and
arbitrary n; forall i=1,m + L, m +nmy +1,..., 25@1 ny + 1. Thus, yj, is continuous on [0,1]
if and only if it is a constant linear combination of the eigenvectors of M. In other words,

by setting y,(£) := n, we have
y() e C[0,1] & My(0)=Mn=0 < neKerM.

Consequently, My(0) = 0 is necessary and sufficient for the solution

1
y(t) =n +/ sMIf(ts)ds, te[0,1] (35)
0

to be continuous on [0,1].

Note that the regularity requirement My(0) = 0 contains n —/ linearly independent con-
ditions and can be equivalently expressed by Hy(0) = 0, y(0) = Ry(0) or y(0) € Ker M. The
remaining / free constants have to be uniquely specified by appropriately prescribed ini-
tial conditions. Let us consider the initial conditions specified in (6), where By, € R"*"
and B € R™. Since y,(0) = 0 and y,(0) = 1, the initial condition Byy(0) = 8 is equivalent
to Bon = B. Due to the fact that n € ImR, there exists a unique /-dimensional vector d,
[= dimX(()e), such that n = Rd, where R is the n x [ matrix containing the linearly indepen-
dent columns of R. Clearly, the problem is uniquely solvable if and only if m = = dimX((f)

and the m x m matrix ByR is nonsingular. Hence,
Byn=p < BoRd=f = d=(BoR)' = n=RBR)B,

and the solution y has the form

1
y(t) = R(BoR)'B +/ sMsTUf(st)ds, te[0,1].
0
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This solution is bounded by
P> Hy-1
(0] < [RBoR)™B| + const.(¢“|Inlls + IIf1]), ¢ €0,1],

due to (15) and

+

s
/ sMs7Af (ts) ds‘
0

1
|yp(t)| = ‘./5 sMs7Uf (ts) ds

s
< const.|f| + const.t"‘llhllgf !s_Mis"“l ds, te€][0,1]
0

< const.(|[f|| + t"‘||h||5), t €[0,1].

In order to derive the following form of the first derivative, we substitute the solution given
by (35) into (5) and use the property Mn = 0, then

1
¥ (t) = AT/[/‘O sMf(st) ds +'@, te(0,1].

If @ > 1, then the first derivative is bounded by

t1h(8)]

M 1
’y/(t)| < const.%t“ / sMs* 1 p(st) ds| + const.
0

< const.t® Y| h|ls, te€]0,8),
| M|
+—

8 1
Iy (@) < COVlst.@ta /0 sMs* I p(st)ds f5 s‘Ms‘f(st)ds‘ + @

< const.t* || h||s + const.tV||f, tel[s1].

Analogously, for f € C'[0,1], h € C"[0,68], @ > r + 1, we have the following bounds for the

higher derivatives:
r
|y(r+1) | < const. Z(ta—l)(r—k) ” h(k) |

k=0

] = omst. (6 PO+ ()PP, ee s
k=0

s t€[0,9),

The above estimates imply y € C™*1[0,1]. g

Remark 12 Note that a purely polynomial inhomogeneity of the form

T

f@) = (..,
where ¢; € N, fori=1,...,n, yields y € C*[0,1]. For the proof see [25].

In Theorem 11, we described the unique solvability of IVP (6) in case when all eigen-
values of M are zero. The dimension of the corresponding eigenspace X(()e) was m < n and
it turned out that the following regularity requirement My(0) = 0 has to be satisfied. If
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m = n, then M = 0 and the regularity condition holds. In this case we can also investigate
the unique solvability of TVP (7). We address this question in the next lemma.

Lemma 13 Counsider system (5) with the matrix M = 0. Let f € C[0,1] and assume that
(32) is satisfied. Then, for any vector B € R" and a nonsingular matrix B, € R**", there

exists a unique solution of (7),

W) =Blp+ f @ ds,

bounded by
ly(@®)| < |B'B| + const.(IIf Il + e[| lls).

Moreover, if f € C"[0,1], h € C'[0,8], and a > r + 1, then y € C™1[0,1] and the estimates
(33) hold.

Proof For M = 0 the system (5) reduces to y'(t) = f(¢)/t, and its solution is y(¢) = y(1) +
flt f(s)/sds. To show that y € C[0,1], we follow the arguments given in the proof of Theo-
rem 11. The terminal condition B;y(1) = 8 yields y(1) = B! 8. Moreover,

. 2 fls) fs)
|y(t)| < |Bll,8|+/1 Tds+/5 Tds

L
< |B{'B| + IfI|In(8)] + const.||h||5/8 s*lds

< |Bi'B| + const.(If Il + lIAls).
Estimates for the higher derivatives of y follow in an analogous manner. O

6 Differences between linear systems with smooth and unsmooth
inhomogeneity

Before discussing the case of an arbitrary spectrum of M which enables to consider more

general IVPs, TVPs, and BVPs, we summarize here the results from the previous sections

and point out the differences when compared to the framework given in [5, 26], where

linear systems with smooth inhomogeneity,

, M
y(t) = Ty(t) +f(@t), te(0,1], (36)
were studied.
6.1 Eigenvalues with negative real parts
Let us consider the ODE system (36) and assume that all eigenvalues of M have negative

real parts. Then, according to [5, 26], y € C[0,1] if and only if y(0) = 0. Therefore, the
following IVP has a unique solution:

YO="50+f0, ¥0)=0.
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Moreover, y € C™*'[0,1] if f € C"[0,1],