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Abstract: The paper discusses the solvability of the singular Dirichlet boundary
value problem

u′′(t) +
a

t
u′(t) −

a

t2
u(t) = f(t, u(t), u′(t)), u(0) = 0, u(T ) = 0.

Here a ∈ (−∞,−1) and f satisfies the local Carathéodory conditions on [0, T ]×D,
where D = (0,∞)×R. It is shown that the cardinality of the set L of all positive
solutions to the problem is a continuum. In addition, the structure and the
properties of the set L are described. Applications and numerical simulations of
the results are presented.
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1 Introduction

We consider the singular Dirichlet boundary value problem

u′′(t) +
a

t
u′(t) −

a

t2
u(t) = f(t, u(t), u′(t)), (1.1a)

u(0) = 0, u(T ) = 0, (1.1b)
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where a ∈ (−∞,−1). Here, f satisfies the local Carathéodory conditions on
[0, T ] ×D, where D = (0,∞) × R.

We recall that a function h : [0, T ] × A → R, A ⊂ R × R, satisfies the local

Carathéodory conditions on [0, T ] ×A, if
(i) h(·, x, y) : [0, T ] → R is measurable for all (x, y) ∈ A,
(ii) h(t, ·, ·) : A → R is continuous for a.e. t ∈ [0, T ],
(iii) for each compact set U ⊂ A there exists a function mU ∈ L1[0, T ] such

that
|h(t, x, y)| ≤ mU(t) for a.e. t ∈ [0, T ] and all (x, y) ∈ U .

For such functions we use the notation h ∈ Car([0, T ] ×A).
We see that (0, y) 6∈ D for each y ∈ R, and hence f(t, x, y) may be singular

(unbounded in our case) at x = 0. Equation (1.1a) has a time singularity at t = 0
due to the structure of the differential operator on its left hand side. This operator
has the equivalent form (t−a(tau)′)′ and, after the substitution v(t) = tau(t) it
takes the form (t−av′(t))′. Therefore, results derived for equation (1.1a) also
apply for the modified equation (t−av′(t))′ = g(t, v(t), v′(t)). Such type of models
arises in the study of phase transitions of Van der Waals fluids [3], [8], [12], [14],
[18], in population genetics, in models for the spatial distribution of the genetic
composition of a population [6], [7], in the homogenenous nucleation theory [1], in
relativistic cosmology in description of particles which can be treated as domains
in the universe [15], and in the nonlinear field theory [9], in particular, when
describing bubbles generated by scalar fields of the Higgs type in the Minkowski
spaces [5].

Problem (1.1), where f has no singularity at x = 0, i.e. f satisfies the local
Carathéodory conditions on [0, T ] ×D, where D = [0,∞) × R, has been investi-
gated in [16]. This paper provides a comprehensive study of the set of all positive
solutions of problem (1.1).

Systems of the form

u′′(t) −
A1

t
u′(t) −

A0

t2
u(t) = f(t, u(t), u′(t)), t ∈ (0, T ], (1.2a)

G(u(0), u′(0), u(1), u′(1)) = 0, u ∈ C1[0, 1], (1.2b)

where, A1 and A0 are real valued n × n matrices, f : (0, 1] × R
n × R

n → R
n and

G : R
n × R

n × R
n × R

n → R
m are smooth functions, m ≤ 2n, have been studied

in [19]. The missing 2n−m conditions have to be formulated in such a way that
the requirement u ∈ C1[0, 1] is satisfied. The main aim in [19] was to investigate
the structure of boundary conditions which yield a well-posed boundary value
problem. Moreover, in linear case, the existence and uniqueness theory was
provided and the smoothness of u was studied. In the nonlinear case, sufficient
conditions for u to be isolated, or locally unique, have been specified.

The approach taken in [19] is based on a technique developed in [10]. In-
stead of investigating directly the second order system (1.2a), its first order
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form obtained after the so called Euler transformation y(t) = (y1(t), y2(t))
T :=

(u(t), tu′(t)T is analyzed,

y′(t) −
M

t
y(t) = F (t, y(t)), t ∈ (0, T ], (1.3)

where

M =

(

0 I
A0 A1 + I

)

, F (t, y(t)) =

(

0

tf(t, y1(t),
y2(t)

t
)

)

.

It turns out that the eigenvalues of M play crucial role in describing the solution
structure and therefore, the structure of boundary conditions necessary for the
solution to be continuous on [0, 1]. This is clear, because the fundamental matrix
solution reads Y (t) = eM ln t.

In case of the homogeneous differential equation (1.1a), we have

y′(t) −
M

t
y(t) = 0, t ∈ (0, T ], M =

(

0 1
a −a + 1

)

, (1.4)

and the eigenvalues of M are λ1 = −a and λ2 = 1. By decoupling (1.4), we
conclude that the general solution of the homogeneous problem (1.1a) is u(t) =
c1t

λ1 + c2t
λ2 = c1t

−a + c2t with arbitrary constants1 c1, c2 ∈ R. Since both
eigenvalues are positive, it follows immediately from [19] that the problem (1.1) is
not well-posed and has infinitely many solutions. By prescribing finial conditions,
u(T ) = 0, u′(T ) = −c, instead of (1.1b), the problem becomes well-posed and can
be solved numerically, cf. Section 6. Since we are interested in positive solutions,
we choose c ≥ 0.

The aim of this paper is to extend results from [16] and [19] to problem (1.1)
having space singularities. We discuss its solvability and describe the structure
of the set L of all its positive solutions. The existence results are proved by the
combination of regularization and sequential techniques with the Leray-Schauder
nonlinear alternative. We also show the interesting result stating that for each
c ≥ 0 there exists a function u ∈ L such that u′(T ) = −c, and hence, the
cardinality of the set L is a continuum. Finally, by means of three nonlinear test
examples, we illustrate the theoretical findings. These examples are solved using
a Matlab code bvpsuite [13] based on collocation.

We start by introducing the necessary notions.

1Note, that we obtain the same solution if in

u
′′(t) +

a

t
u
′(t) −

a

t2
u(t) = 0

the substitution u(t) := t
λ is made. Clearly, in the scalar case, the roots of the so called

characteristic polynomial λ(λ − 1) + aλ − a = 0 coincide with the eigenvalues of M .
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Let us denote by L1[0, T ] the set of functions which are Lebesgue integrable

on [0, T ] equipped with the norm ‖x‖1 =
∫ T

0
|x(t)| dt. Moreover, let us denote

by C[0, T ] and C1[0, T ] the set of functions being continuous on [0, T ], and hav-
ing continuous first derivative on [0, T ], respectively. The norm on C[0, T ] and
C1[0, T ] is defined as ‖x‖∞ = maxt∈[0,T ] |x(t)| and ‖x‖C1 = ‖x‖∞+‖x′‖∞, respec-
tively. Finally, we denote by AC1[0, T ] the set of functions which have absolutely
continuous first derivatives on [0, T ], while AC1

loc(0, T ] is the set of functions
having absolutely continuous derivatives on each compact subinterval of (0, T ].

We say that u : [0, T ] → R is a positive solution of problem (1.1) if u ∈
AC1[0, T ], u > 0 on (0, T ), u satisfies the boundary conditions (1.1b) and (1.1a)
holds for a.e. t ∈ [0, T ].

We work with the following conditions on f in (1.1a).

(H1) f ∈ Car([0, T ] ×D), where D = (0,∞) × R.

(H2) There exists ∆ > 0 such that

∆ ≤ f(t, x, y) for a.e. t ∈ [0, T ] and all (x, y) ∈ D.

(H3) For a.e. t ∈ [0, T ] and all (x, y) ∈ D the estimate

f(t, x, y) ≤ h(t, x, |y|) + g(x),

holds, where h ∈ Car([0, T ]×A), A = [0,∞)× [0,∞) and g ∈ C(0,∞) are
positive, h(t, x, y) is nondecreasing in the variables x, y, g is nonincreasing,
and

lim
x→∞

1

x

∫ T

0

h(t, x, x) dt = 0,

∫ 1

0

g(s2) ds < ∞.

Remark 1.1 Let g satisfy the conditions given in (H3). Then
∫ b

0
g(cs2) ds < ∞

for each b, c ∈ (0,∞), and it follows from the inequality

t(T − t)2 ≥















T

2
t2, t ∈

[

0, T
2

]

,

T

2
(T − t)2, t ∈

[

T
2
, T

]

,

that
∫ T

0

g
(

ct(T − t)2
)

dt < ∞ for each c ∈ (0,∞).
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The paper is organized as follows. Section 2 contains inequalities which we
will require in the next three sections. Section 3 is devoted to the study of limit
properties as t → 0+ of solutions to equations of the following type:

u′′(t) +
t
u′(t) −

a

t2
u(t) = r(t, u(t), u′(t)),

where the function r satisfies the global Carathéodory conditions on [0, T ] ×
R

2. In Section 4, we investigate auxiliary regular problems associated with the
singular problem (1.1). We show their solvability and properties of their solutions.
Existence results for singular problem (1.1) are given in Section 5. Here, in
addition, the properties of the set L of all positive solutions to the problem are
derived together with some applications. Finally, in Section 6, we illustrate the
theoretical findings by means of numerical experiments.

Throughout the paper a ∈ (−∞,−1).

2 Preliminaries

This section contains inequalities required for the proofs in Sections 3 to 5.

Lemma 2.1 Let p ∈ L1[0, T ]. Then the inequalities

∣

∣

∣

∣

t−a−1

∫ T

t

sa+1p(s) ds

∣

∣

∣

∣

≤

∫ T

t

|p(s)| ds, (2.1)

∣

∣

∣

∣

∫ T

t

s−a−2

(
∫ T

s

ξa+1p(ξ) dξ

)

ds

∣

∣

∣

∣

≤
1

|a + 1|

∫ T

t

|p(s)| ds (2.2)

hold for t ∈ [0, T ].

Proof. See [16, Lemma 1]. 2

Lemma 2.2 The inequality

∫ T

t

s−a−2

(
∫ T

s

ξa+1 dξ

)

ds ≥















(T − t)2

2T
, a ∈ [−3,−1),

(T − t)2

2T (a + 2)2
, a ∈ (−∞,−3)

(2.3)

holds for t ∈ [0, T ].
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Proof. Let a ∈ [−2,−1), then

∫ T

t

s−a−2

(
∫ T

s

ξa+1 dξ

)

ds ≥ T a+1

∫ T

t

(T − s)s−a−2 ds

≥
1

T

∫ T

t

(T − s) ds =
(T − t)2

2T
.

In particular,

∫ T

t

s−a−2

(
∫ T

s

ξa+1 dξ

)

ds ≥
(T − t)2

2T
for t ∈ [0, T ] and a ∈ [−2,−1). (2.4)

Let a ∈ (−∞,−2). Then

∫ T

t

s−a−2

(
∫ T

s

ξa+1 dξ

)

ds =
1

|a + 2|

∫ T

t

(

1 −
( s

T

)−a−2
)

ds

=
T

|a + 2|

∫ 1

t/T

(1 − s)−a−2 ds

(2.5)

for t ∈ [0, T ]. Choose p(x) := 1 − xβ − β(1 − x) for x ∈ [0, 1], where β ∈ (0, 1).
Then p(0) = 1 − β > 0, p(1) = 0, and since p′(x) = β

(

1 − xβ−1
)

< 0 for
x ∈ (0, 1), we have p > 0 on [0, 1). Consequently, 1− xβ ≥ β(1− x) for x ∈ [0, 1]
and β ∈ (0, 1]. This gives for β = −a − 2,

1 − x−a−2 ≥ |a + 2|(1 − x) for x ∈ [0, 1] and a ∈ [−3,−2).

Hence, by (2.5), the relation

∫ T

t

s−a−2

(
∫ T

s

ξa+1 dξ

)

ds ≥ T

∫ 1

t/T

(1 − s) ds =
(T − t)2

2T
(2.6)

is satisfied for t ∈ [0, 1] and a ∈ [−3,−2).
In order to verify (2.3) for a ∈ (−∞,−3), let

r(x) := 1 − xγ −
1 − x

γ
for x ∈ [0, 1],

where γ > 1. Then r(0) = 1 − 1
γ

> 0, r(1) = 0, r′(x) = −γxγ−1 + 1
γ
, and

r′′(x) = −γ(γ − 1)xγ−2. Hence, r′′ < 0 on (0, 1], and since r′(0) = 1
γ

> 0 and

r′(1) = −γ + 1
γ

< 0, we conclude that r ≥ 0 on [0, 1]. That is 1 − xγ ≥ 1−x
γ

for

x ∈ [0, 1] and γ > 1. Therefore, for γ = −a − 2,

1 − x−a−2 ≥
1 − x

|a + 2|
for x ∈ [0, 1] and a ∈ (−∞,−3),
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and so, by (2.5),

∫ T

t

s−a−2

(
∫ T

s

ξa+1 dξ

)

ds ≥
T

(a + 2)2

∫ 1

t/T

(1 − s) ds =
(T − t)2

2T (a + 2)2
, (2.7)

for t ∈ [0, T ] and a ∈ (−∞,−3).
Inequality (2.3) now follows from (2.4), (2.6) and (2.7). 2

3 Limit properties of solutions

In this section we consider the differential equation

u′′(t) +
a

t
u′(t) −

a

t2
u(t) = r(t, u(t), u′(t)), t ∈ (0, T ], (3.1)

where r satisfies the global Carathéodory condition on [0, T ] × R
2, that is,

(H4) r(·, x, y) : [0, T ] → R is measurable for all (x, y) ∈ R×R, r(t, ·, ·) : R×R →
R is continuous for a.e. t ∈ [0, T ], and there exists µ ∈ L1[0, T ] such that

|r(t, x, y)| ≤ µ(t) for a.e. t ∈ [0, T ] and all (x, y) ∈ R
2. (3.2)

We now describe the analytical form and the asymptotic behavior for t → 0+ of
functions u satisfying (3.1) a.e. on [0, T ].

Lemma 3.1 Let condition (H4) hold. Let the function u ∈ AC1
loc(0, T ] satisfy

(3.1) for a.e. t ∈ [0, T ]. Then u can be extended on [0, T ] with u ∈ AC1[0, T ] and

the representation

u(t) = c1t + c2t
−a + t

∫ T

t

s−a−2

(
∫ T

s

ξa+1r(ξ, u(ξ), u′(ξ)) dξ

)

ds, (3.3)

where c1, c2 ∈ R, holds for t ∈ [0, T ].

Proof. Keeping in mind that u is fixed, consider the Euler linear differential
equation

v′′(t) +
a

t
v′(t) −

a

t2
v(t) = r(t, u(t), u′(t)). (3.4)

Each function v ∈ AC1
loc(0, T ] satisfying (3.4) a.e. on [0, T ] has the form

v(t) = c∗1t + c∗2t
−a + t

∫ T

t

s−a−2

(
∫ T

s

ξa+1r(ξ, u(ξ), u′(ξ)) dξ

)

ds,
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where c∗1, c
∗
2 ∈ R. Since, by the assumption u ∈ AC1

loc(0, T ] satisfies (3.4) for a.e.
t ∈ [0, T ], there exists c1, c2 ∈ R such that equality (3.3) holds for t ∈ (0, T ]. In
order to prove that u can be extended on [0, T ] as a function in AC1[0, T ], and
consequently, that (3.3) is satisfied for t ∈ [0, T ], we have to show that

∫ T

0

|u′′(t)| ds < ∞. (3.5)

By (3.3),

a

t
u′(t)−

a

t2
u(t) = −at−a−2

(

c2(a + 1) +

∫ T

t

sa+1r(s, u(s), u′(s)) ds

)

for t ∈ (0, T ],

and then using (3.2) we obtain

∣

∣

∣

a

t
u′(t) −

a

t2
u(t)

∣

∣

∣
≤ |a|t−a−2

(

|c2(a + 1)| +

∫ T

t

sa+1µ(s) ds

)

for t ∈ (0, T ].

(3.6)
Hence, by (2.2),

∫ T

0

|u′′(t)| ds ≤

∫ T

0

∣

∣

∣

a

t
u′(t) −

a

t2
u(t)

∣

∣

∣
dt +

∫ T

0

|r(t, u(t), u′(t))| dt

≤ |a|

(

|c2(a + 1)|

∫ T

0

t−a−2 dt +

∫ T

0

t−a−2

(
∫ T

t

sa+1µ(s) ds

)

dt

)

+

∫ T

0

µ(s) ds

≤ |ac2|T
−a−1 +

(2a + 1)‖µ‖1

a + 1
.

Consequently, (3.5) holds and this completes the proof. 2

The following corollaries extend the statement of Lemma 3.1 for r ∈ Car([0, T ]×
R

2), that is for r satisfying only the local Carathéodory conditions on [0, T ]×R
2.

Corollary 3.2 Let r ∈ Car([0, T ]×R
2) and let u ∈ AC1

loc(0, T ] satisfy (3.1) a.e.

on [0, T ]. Assume also that

L := sup{|u(t)| + |u′(t)| : t ∈ (0, T ]} < ∞

holds. Then, the assertion of Lemma 3.1 is satisfied.

Proof. Let

ρ(z) :=











L, z > L,

z, |z| ≤ L,

−L, z < −L,

8



and let r∗(t, x, y) := r(t, ρ(x), ρ(y)) for a.e. t ∈ [0, T ] and all (x, y) ∈ R×R. Then
r∗ satisfies the global Carathéodory conditions on [0, T ] × R

2 and the equality

u′′(t) +
a

t
u′(t) −

a

t2
u(t) = r∗(t, u(t), u′(t))

holds for a.e. t ∈ [0, T ]. The result now follows from Lemma 3.1, where r is
replaced by r∗ in equation (3.1). 2

Corollary 3.3 Let r ∈ Car([0, T ] × R
2) and let u ∈ AC1[0, T ] be a solution of

equation (3.1). Then there exist c1, c2 ∈ R such that equality (3.3) is satisfied for

t ∈ [0, T ].

Proof. We can apply Corollary 3.2, since u ∈ AC1[0, T ] yields

sup{|u(t)| + |u′(t)| : t ∈ [0, T ]} < ∞.

2

Remark 3.4 Corollary 3.3 shows that each solution u ∈ AC1[0, T ] of equation
(3.1) with r ∈ Car([0, T ] × R

2) has the form given in (3.3), where c1, c2 ∈ R,
and therefore, it satisfies u(0) = 0. Consequently, when discussing solutions
u ∈ AC1[0, T ] of equation (3.1) together with boundary conditions, especially
including the condition u(0) = u0, then, necessarily, u0 = 0.

4 Auxiliary regular problems

Since equation (1.1a) is singular, we use the regularization and sequential tech-
niques for solving problem (1.1). To this end, we define fn : [0, T ] × R

2 → R,
n ∈ N, by the formula

fn(t, x, y) =















f(t, x, y), x ≥
1

n
,

f

(

t,
1

n
, y

)

, x <
1

n
.

Under conditions (H1) − (H3), fn ∈ Car([0, T ] × R
2) and

∆ ≤ fn(t, x, y) for a.e. t ∈ [0, T ] and all (x, y) ∈ R
2, (4.1)

fn(t, x, y) ≤ h(t, 1 + |x|, |y|) + g(|x|)

for a.e. t ∈ [0, T ] and all (x, y) ∈ R0 × R.

}

(4.2)
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Here R0 = R\{0}. Hence,

∆ ≤ λfn(t, x, y) + (1 − λ)∆ ≤ h(t, 1 + |x|, |y|) + g(|x|)

for a.e. t ∈ [0, T ] and all (x, y) ∈ R0 × R, λ ∈ [0, 1].

}

(4.3)

We consider the differential equations

u′′(t) +
a

t
u′(t) −

a

t2
u(t) = fn(t, u(t), u′(t)), n ∈ N, (4.4)

and

u′′(t) +
a

t
u′(t)−

a

t2
u(t) = λfn(t, u(t), u′(t)) + (1− λ)∆, λ ∈ [0, 1], n ∈ N. (4.5)

A function u : [0, T ] → R is called a solution of (4.4) if u ∈ AC1[0, T ] and u
satisfies (4.4) for a.e. t ∈ [0, T ]. Solutions of (4.5) are defined analogously.

Let us now define the boundary value problem (4.6) consisting of the differ-
ential equation specified in (4.4) subject to the boundary condition (1.1b),

u′′(t) +
a

t
u′(t) −

a

t2
u(t) = fn(t, u(t), u′(t)), n ∈ N, (4.6a)

u(0) = 0, u(T ) = 0. (4.6b)

Lemma 4.1 Let condition (H1) hold. Then, all solutions u ∈ AC1[0, T ] of prob-

lem (4.6) form a one-parameter system A, where

A =

{

c2t(t
−a−1 − T−a−1)

+ t

∫ T

t

s−a−2

(
∫ T

s

ξa+1fn(ξ, u(ξ), u′(ξ)) dξ

)

ds : c2 ∈ R

}

.

Proof. Let u ∈ AC1[0, T ] be a solution of problem (4.6). Since u is a solution of
(4.6a), the equality

u(t) = c1t + c2t
−a + t

∫ T

t

s−a−2

(
∫ T

s

ξa+1fn(ξ, u(ξ), u′(ξ)) dξ

)

ds (4.7)

holds for t ∈ [0, T ] by Corollary 3.3, where c1, c2 ∈ R. Then u(0) = 0 and the
condition u(T ) = 0 yields c1 = −c2T

−a−1. Hence, by (4.7), u ∈ A.
Let u ∈ A, that is,

u(t) = c2t(t
−a−1 − T−a−1) + t

∫ T

t

s−a−2

(
∫ T

s

ξa+1fn(ξ, u(ξ), u′(ξ)) dξ

)

ds (4.8)
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for t ∈ [0, T ], where c2 ∈ R. Then u satisfies condition (4.6b) and

u′(t) = −c2(at−a−1 + T−a−1)

+

∫ T

t

s−a−2

(
∫ T

s

ξa+1fn(ξ, u(ξ), u′(ξ)) dξ

)

ds

− t−a−1

∫ T

t

sa+1fn(s, u(s), u′(s)) ds, t ∈ [0, T ],

(4.9)

u′′(t) = a(a + 1)c2t
−a−2 + at−a−2

∫ T

t

sa+1fn(s, u(s), u′(s)) ds

+fn(t, u(t), u′(t)), for a.e. t ∈ [0, T ].

(4.10)

By (H1), fn(t, u(t), u′(t)) ∈ L1[0, T ] and consequently, (2.2) implies

t−a−2

∫ T

t

sa+1fn(s, u(s), u′(s)) ds ∈ L1[0, T ].

As a result, u ∈ AC1[0, T ]. Using (4.8), (4.9) and (4.10), we can verify that u
satisfies (4.6a) for a.e. t ∈ [0, T ]. 2

In the following lemma, we discuss solutions u of the boundary value problem:

u′′(t) +
a

t
u′(t) −

a

t2
u(t) = fn(t, u(t), u′(t)), n ∈ N, (4.11a)

u(0) = 0, u(T ) = 0, u′(T ) = −c, c ≥ 0. (4.11b)

In this problem u satisfies, besides the Dirichlet conditions (4.6b), the additional
condition

u′(T ) = −c, (4.12)

for a fixed c ≥ 0. Note that condition (4.12) together with (4.9) yields

c2 =
c

a + 1
T a+1 ≤ 0 (4.13)

in (4.8).

Lemma 4.2 Let (H1) hold. Then a function u ∈ AC1[0, T ] is a solution of

problem (4.11) if and only if u is a solution of the integral equation

u(t) = t
cT a+1

|a + 1|
(T−a−1 − t−a−1)

+ t

∫ T

t

s−a−2

(
∫ T

s

ξa+1fn(ξ, u(ξ), u′(ξ)) dξ

)

ds

(4.14)

in the set C1[0, T ].
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Proof. (⇒) Let us first assume that u ∈ AC1[0, T ] is a solution of problem
(4.11). Then u ∈ A, that is u satisfies (4.8), with c2 given by (4.13). As a result,
u is a solution of (4.14) in C1[0, T ].

(⇐) Let now u ∈ C1[0, T ] be a solution of (4.14). Then u satisfies (4.8), (4.9)
and (4.10) with c2 given by (4.13). Therefore, u satisfies boundary conditions
(4.11b). The same reasoning as in the proof of Lemma 4.1 implies that u ∈
AC1[0, T ] and u satisfies equation (4.11a) for a.e. t ∈ [0, T ]. 2

Let

M =















∆

2T
, a ∈ [−3,−1),

∆

2T (a + 2)2
, a ∈ (−∞,−3),

(4.15)

with ∆ specified in condition (H2).
Consider a fixed c ≥ 0. We now derive bounds for solutions of the boundary

value problem

u′′(t) +
a

t
u′(t) −

a

t2
u(t) = λfn(t, u(t), u′(t)) + (1 − λ)∆, λ ∈ [0, 1],(4.16a)

u(0) = 0, u(T ) = 0, u′(T ) = −λc. (4.16b)

Note, that this time u satisfies additionally, besides the Dirichlet conditions
(4.6b), the following condition

u′(T ) = −λc, λ ∈ [0, 1]. (4.17)

Lemma 4.3 Let conditions (H1)− (H3) hold. Then, there exists a positive con-

stant S independent of n and λ such that for all solutions u of problems (4.16)
the estimates

u(t) ≥ Mt(T − t)2, t ∈ [0, t], (4.18)

‖u‖∞ < ST, ‖u′‖∞ < S, (4.19)

hold.

Proof. Let u be a solution of problem (4.16) for some n ∈ N and λ ∈ [0, 1].
Applying Lemma 4.2 to this problem we obtain the equality

u(t) = λt
cT a+1

|a + 1|
(T−a−1 − t−a−1)

+ t

∫ T

t

s−a−2

(
∫ T

s

ξa+1[λfn(ξ, u(ξ), u′(ξ)) + (1 − λ)∆] dξ

)

ds

(4.20)
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for t ∈ [0, T ]. Since c ≥ 0, λ ≥ 0, we have due to (2.3), (4.1) and (4.15),

u(t) ≥ ∆t

∫ T

t

s−a−2

(
∫ T

s

ξa+1 dξ

)

ds ≥ Mt(T − t)2 for t ∈ [0, T ],

and so (4.18) is true. Furthermore, u > 0 on (0, T ) and g(u(t)) ≤ g (Mt(T − t)2)
for t ∈ (0, T ) since g is nonincreasing on (0,∞) by (H3). Hence,

‖g(u(t))‖1 ≤
∥

∥g
(

Mt(T − t)2
)∥

∥

1
=: W1, (4.21)

where W1 < ∞ by Remark 1.1. Note that the value of W1 neither depends on
the choice of solution u to problem (4.16) nor on n and λ. Since

u′(t) =
λcT a+1

|a + 1|
(T−a−1 + at−a−1)

+

∫ T

t

s−a−2

(
∫ T

s

ξa+1[λfn(ξ, u(ξ), u′(ξ)) + (1 − λ)∆] dξ

)

ds

− t−a−1

∫ T

t

sa+1[λfn(s, u(s), u′(s)) + (1 − λ)∆] ds, t ∈ [0, T ],

(4.22)
it follows from (2.1), (2.2), (4.3) and (4.21) that the relation

|u′(t)| ≤ c

(

1

|a + 1|
+ 1

)

+

∫ T

t

s−a−2

(
∫ T

s

ξa+1[h(ξ, 1 + u(ξ), |u′(ξ)|) + g(u(ξ))] dξ

)

ds

+ t−a−1

∫ T

t

sa+1[h(s, 1 + u(s), |u′(s)|) + g(u(s))] ds

≤

(

1

|a + 1|
+ 1

)(
∫ T

0

h(s, 1 + u(s), |u′(s)|) ds + W1 + c

)

≤

(

1

|a + 1|
+ 1

)(
∫ T

0

h(s, 1 + ‖u‖∞, ‖u′‖∞) ds + W

)

is satisfied for t ∈ [0, T ] and W := W1 + c.
In particular,

‖u′‖∞ ≤

(

1

|a + 1|
+ 1

)(
∫ T

0

h(s, 1 + ‖u‖∞, ‖u′‖∞) ds + W

)

.

Since u(t) =
∫ t

0
u′(s) ds, we have

‖u‖∞ ≤ T‖u′‖∞, (4.23)

13



and therefore

‖u′‖∞ ≤

(

1

|a + 1|
+ 1

) (
∫ T

0

h(s, 1 + T‖u′‖∞, ‖u′‖∞) dt + W

)

. (4.24)

By (H3), limx→∞
1
x

∫ T

0
h(t, 1+Tx, x) dt = 0, and consequently, there exists S > 0

such that
(

1

|a + 1|
+ 1

)(
∫ T

0

h(s, 1 + Tx, x) dt + W

)

< x for all x ≥ S.

Now we conclude from the last relation and from (4.24) that ‖u′‖∞ < S, and
therefore, by (4.23), ‖u‖∞ < ST . Hence (4.19) holds and this completes the
proof. 2

We are now in the position to show the existence of a solution of problem
(4.11). This result is proved by the following nonlinear alternative of Leray-
Schauder type which follows, for example, from [2, Theorem 5.1].

Lemma 4.4 Let X be a Banach space, Ω an open bounded subset of X and

p ∈ Ω. Assume that F : Ω → X is a compact operator. Then, either

(i) F has a fixed point in Ω, or

(ii) There exists a u ∈ ∂Ω and λ ∈ (0, 1) such that u = λFu + (1 − λ)p.

Theorem 4.5 Let (H1)−(H3) hold. Let S be the positive constant from Lemma 4.3.
Then problems (4.11) are solvable. If u is a solution of (4.11) for some n ∈ N,

then u satisfies (4.18) and (4.19) with the positive constant M given in (4.15).

Proof. Let
Ω := {x ∈ C1[0, T ] : ‖x‖∞ < ST, ‖x′‖∞ < S}.

Then Ω is an open bounded subset of the Banach space C1[0, T ]. Choose n ∈ N

and consider an operator K : [0, 1] × Ω → C1[0, T ],

K(λ, x) = λFx + (1 − λ)p, (4.25)

where

(Fx)(t) = t
cT a+1

|a + 1|
(T−a−1 − t−a−1)

+ t

∫ T

t

s−a−2

(
∫ T

s

ξa+1fn(ξ, x(ξ), x′(ξ)) dξ

)

ds,

p = t∆

∫ T

t

s−a−2

(
∫ T

s

ξa+1 dξ

)

ds.
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By Lemma 4.2, any fixed point of the operator K(1, ·) = F is a solution of
problem (4.11). Hence, to show the result we need to prove that K(1, ·) has a
fixed point. Applying Lemma 4.4 for X = C1[0, T ], we have to show that

(i) K(1, ·) : Ω → C1[0, T ] is a compact operator, and
(ii) K(λ, x) 6= x for each λ ∈ (0, 1) and x ∈ ∂Ω.

We begin by proving the continuity of K(1, ·). To this end let {xm} ⊂ Ω be a
convergent sequence and let limm→∞ xm = x. Let

rm(t) := fn(t, xm(t), x′
m(t)) − fn(t, x(t), x′(t)) for a.e. t ∈ [0, T ].

Then (2.1) and (2.2) yield

|K(1, xm)(t) −K(1, x)(t)| =

∣

∣

∣

∣

t

∫ T

t

s−a−2

(
∫ T

s

ξa+1rm(ξ) dξ

)

ds

∣

∣

∣

∣

≤
T‖rm‖1

|a + 1|
,

|K(1, xm)′(t) −K(1, x)′(t)| =

∣

∣

∣

∣

∫ T

t

s−a−2

(
∫ T

s

ξa+1rm(ξ) dξ

)

ds

−t−a−1

∫ T

t

sa+1rm(s) ds

∣

∣

∣

∣

≤

(

1

|a + 1|
+ 1

)

‖rm‖1,

for t ∈ [0, T ] and m ∈ N. Here, K(1, x)′ = d
dt
K(1, x). In particular,

‖K(1, xm) −K(1, x)‖∞ ≤
T‖rm‖1

|a + 1|
,

‖K(1, xm)′ −K(1, x)′‖∞ ≤

(

1

|a + 1|
+ 1

)

‖rm‖1,

for m ∈ N. If we show that limm→∞ ‖rm‖1 = 0, then the above inequalities
guarantee that K(1, ·) is a continuous operator. From

lim
m→∞

fn(t, xm(t), x′
m(t)) = fn(t, x(t), x′(t)) for a.e. t ∈ [0, T ],

and from the fact that fn ∈ Car([0, T ]×R
2) and {xm} is bounded in C1[0, T ], it

follows that

|fn(t, xm(t), x′
m(t)| ≤ ρ(t) for a.e. t ∈ [0, T ] and all m ∈ N,

where ρ ∈ L1[0, T ]. Finally, limm→∞ ‖rm‖1 = 0 follows by the Lebesgue domi-
nated convergence theorem.

Now, we show that the set K(1, Ω) is relatively compact in C1[0, T ]. From
fn ∈ Car([0, T ] × R

2) we conclude that

∆ ≤ fn(t, x(t), x′(t)) ≤ µ(t) for a.e. t ∈ [0, T ] and all x ∈ Ω, (4.26)
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where µ ∈ L1[0, T ]. Then, by (2.1), (2.2) , (4.25) and (4.26),

0 ≤ K(1, x)(t) ≤
cT

|a + 1|
+ t

∫ T

t

s−a−2

(
∫ T

s

ξa+1µ(ξ) dξ

)

ds ≤
T

|a + 1|
(c + ‖µ‖1),

|K(1, x)′(t)| ≤

∣

∣

∣

∣

cT a+1

|a + 1|
(T−a−1 + at−a−1)

∣

∣

∣

∣

+

∫ T

t

s−a−2

(
∫ T

s

ξa+1µ(ξ) dξ

)

ds + t−a−1

∫ T

t

sa+1µ(s) ds

≤

(

1

|a + 1|
+ 1

)

(c + ‖µ‖1)

for t ∈ [0, T ] and x ∈ Ω. Therefore, the set K(1, Ω) is bounded in C1[0, T ].
We now show that the set {K(1, x)′: x ∈ Ω} is equicontinuous on [0, T ]. For

a.e. t ∈ [0, T ] and all x ∈ Ω we have, by (4.26),

|K(1, x)′′(t)| =

∣

∣

∣

∣

acT a+1t−a−2 + at−a−2

∫ T

t

sa+1fn(s, x(s), x′(s)) ds

+ fn(t, x(t), x′(t))

∣

∣

∣

∣

∣

≤ |a|cT a+1t−a−2 + |a|t−a−2

∫ T

t

sa+1µ(s) ds + µ(t).

Hence, by (2.1),

∫ T

0

|K(1, x)′′(t)|dt ≤

∣

∣

∣

∣

a

a + 1

∣

∣

∣

∣

c +

∣

∣

∣

∣

a

a + 1

∣

∣

∣

∣

‖µ‖1 + ‖µ‖1

for all x ∈ Ω, which guarantees the equicontinuity of the set {K(1, x)′: x ∈ Ω}
on [0, T ]. Therefore, the set K(1, Ω) is relatively compact in C1[0, T ] by the
Arzelà-Ascoli theorem and consequently, K(1, ·) is a compact operator and (i)
follows.

It remains to prove (ii), that is, K(λ, x) 6= x for each λ ∈ (0, 1) and x ∈ ∂Ω.
Let u be a fixed point of K(λ, ·) for some λ ∈ (0, 1). Then equalities (4.20) and
(4.22) hold for t ∈ [0, T ]. We see that u satisfies (4.16b) and, as in the proof
of Lemma 4.1, we conclude that u is a solution of equation (4.16a). Therefore,
Lemma 4.3 guarantees that K(λ, x) 6= x for λ ∈ (0, 1) and x ∈ ∂Ω. By Lemma 4.4,
problem (4.11) has a solution u ∈ Ω. Lemma 4.3 guarantees that u satisfies (4.18)
and (4.19). 2

The following result provides an important property of solutions of problem
(4.11) which will be used in the proof of Theorem 5.1 in Section 5.

Lemma 4.6 Let (H1)− (H3) hold. Let un be a solution of problem (4.11). Then,

the sequence {u′
n} is equicontinuous on [0, T ].
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Proof. By Theorem 4.5,

un(t) ≥ Mt(T − t)2 for t ∈ [0, T ] and n ∈ N, (4.27)

and
‖un‖∞ < ST, ‖u′

n‖∞ < S for n ∈ N, (4.28)

where S is a positive constant and M is given in (4.15). Since un is a fixed point
of K(1, ·), cf. (4.25), the equality

u′′
n(t) = acT a+1t−a−2 + at−a−2

∫ T

t

sa+1fn(s, un(s), u′
n(s)) ds + fn(t, un(t), u′

n(t))

holds for a.e. t ∈ [0, T ] and all n ∈ N. Owing to (4.1), (4.2), (4.27) and (4.28) we
have

∆ ≤ fn(t, un(t), u′
n(t)) ≤ h(t, 1 + ST, S) + ρ(t) for a.e. t ∈ [0, T ] and all n ∈ N,

where ρ(t) = g (Mt(T − t)2) for t ∈ (0, T ). Let us choose χ(t) := h(t, 1+ST, S)+
̺(t) for a.e. t ∈ [0, T ]. By (H3) and Remark 1.1, χ is positive and χ ∈ L1[0, T ].
Hence,

|u′′
n(t)| ≤ |a|cT a+1t−a−2 + |a|t−a−2

∫ T

t

sa+1χ(s) ds + χ(t)

for a.e. t ∈ [0, T ] and all n ∈ N. Consequently, by (2.2), the inequality

∫ T

0

|u′′
n(t)| ds ≤

∣

∣

∣

∣

a

a + 1

∣

∣

∣

∣

c +

∣

∣

∣

∣

a

a + 1

∣

∣

∣

∣

‖χ‖1 + ‖χ‖1

holds for all n ∈ N, which means that that the sequence {u′
n} is equicontinuous

on [0, T ]. 2

5 Analytical properties of solutions to problem

(1.1)

In this section, we denote by L the set of all positive solutions of the singular
Dirichlet problem (1.1). For c ≥ 0, we denote by Sc the set of all positive solutions
of problem (1.1) satisfying condition (4.12). Our aim is to describe the structure
of L. In particular, we show that L is a one parameter set.
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Theorem 5.1 Let (H1)−(H3) hold. Then, for each c ≥ 0, the set Sc is nonempty

and

L =
⋃

0≤c

Sc.

Hence the cardinality of the set L is a continuum. Moreover,

u(t) ≥ Mt(T − t)2, t ∈ [0, T ], (5.1)

with M given in (4.15), holds for each u ∈ L.

Proof. Let us fix c ≥ 0. Theorem 4.5 guarantees that the regular problem (4.11)
has a solution un satisfying inequalities (4.27) and (4.28), where S is a positive
constant and M is given in (4.15). Furthermore, {u′

n} is equicontinuous on [0, T ]
by Lemma 4.6. Consequently, by Arzelà-Ascoli theorem, there is a subsequence
{uℓn

} of {un} converging in C1[0, T ]. Denote limn→∞ uℓn
=: u. Then u satisfies

the boundary conditions (4.11b) and taking the limit n → ∞ in (4.27) and (4.28),
with un replaced by uℓn

, we obtain

‖u‖∞ ≤ ST, ‖u′‖∞ ≤ S and u(t) ≥ Mt(T − t)2 for t ∈ [0, T ].

Hence u > 0 on (0, T ) and

lim
n→∞

fℓn

(

t, uℓn
(t), u′

ℓn
(t)

)

= f(t, u(t), u′(t)) for a.e. t ∈ [0, T ].

By (H3) and Remark 1.1,
∣

∣fℓn

(

t, uℓn
(t), u′

ℓn
(t)

)∣

∣ ≤ h(t, 1 + ST, S) + g
(

Mt(T − t)2
)

∈ L1[0, T ].

Therefore, f(t, u(t), u′(t)) ∈ L1[0, T ] and

lim
n→∞

∥

∥fℓn

(

t, uℓn
(t), u′

ℓn
(t)

)

− f(t, u(t), u′(t))
∥

∥

1
= 0 (5.2)

by the Lebesgue dominated convergence theorem. It follows from the inequality
(2.2), that it holds

∣

∣

∣

∣

t

∫ T

t

s−a−2

(
∫ T

s

ξa+1
[

fℓn

(

ξ, uℓn
(ξ), u′

ℓn
(ξ)

)

− f(ξ, u(ξ), u′(ξ))
]

dξ

)

ds

∣

∣

∣

∣

≤
T

|a + 1|

∥

∥fℓn

(

t, uℓn
(t), u′

ℓn
(t)

)

− f(t, u(t), u′(t))
∥

∥

1
.

Now, from (5.2) we conclude that

lim
n→∞

∫ T

t

s−a−2

(
∫ T

s

ξa+1fℓn

(

ξ, uℓn
(ξ), u′

ℓn
(ξ)

)

dξ

)

ds

=

∫ T

t

s−a−2

(
∫ T

s

ξa+1f(ξ, u(ξ), u′(ξ) dξ

)

ds
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is satisfied for t ∈ [0, T ]. Letting n → ∞ in

uℓn
(t) = t

cT a+1

|a + 1|
(T−a−1−t−a−1)+t

∫ T

t

s−a−2

(
∫ T

s

ξa+1fℓn

(

ξ, uℓn
(ξ), u′

ℓn
(ξ)

)

dξ

)

ds

yields

u(t) = t
cT a+1

|a + 1|
(T−a−1 − t−a−1) + t

∫ T

t

s−a−2

(
∫ T

s

ξa+1f(ξ, u(ξ), u′(ξ) dξ

)

ds

(5.3)
for t ∈ [0, T ]. A direct computation shows that u is a solution of (1.1a). This
means that u is a positive solution of problem (1.1) and (4.12), that is u ∈ Sc.
Consequently Sc 6= ∅. Since for each positive solution u of problem (1.1) there
exists c = c(u) ≥ 0 such that u′(T ) = −c, we see that L =

⋃

0≤c Sc is the set of
all positive solutions of problem (1.1). 2

For K ≥ 0, let us denote

LK :=
⋃

0≤c≤K

Sc.

Then we have the following theorem.

Theorem 5.2 Let (H1) − (H3) hold. Then, for each K ≥ 0, the set LK is

compact in C1[0, T ].

Proof. Let us choose K ≥ 0. Then inequality (5.1) with M given in (4.15) holds
for each u ∈ LK . Consider an arbitrary u ∈ LK . Then (5.3) is satisfied for some
c = c(u) ∈ [0, K] and t ∈ [0, T ]. Therefore,

u′(t) =
cT a+1

|a + 1|
(T−a−1 + at−a−1)

+

∫ T

t

s−a−2

(
∫ T

s

ξa+1f(ξ, u(ξ), u′(ξ)) dξ

)

ds

− t−a−1

∫ T

t

sa+1f(s, u(s), u′(s)) ds, t ∈ [0, T ].

It follows from (2.1) and (2.2),

|u′(t)| ≤ K

(

1

|a + 1|
+ 1

)

+

(

1

|a + 1|
+ 1

)
∫ T

t

f(s, u(s), u′(s)) ds, t ∈ [0, T ].

Hence, by (H3) and ‖u‖∞ ≤ T‖u′‖∞, since u(t) =
∫ t

0
u′(s) ds, we have

|u′(t)| ≤

(

1

|a + 1|
+ 1

) (

K +

∫ T

t

(h(s, u(s), |u′(s)|) + g(u(s))) ds

)

≤

(

1

|a + 1|
+ 1

) (

K +

∫ T

0

h(s, T‖u′‖∞, ‖u′‖∞) ds + W

)

, t ∈ [0, T ].
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Note that by Remark 1.1,

∫ T

0

g(u(t)) dt ≤

∫ T

0

g(Mt(T − t)2)dt =: W < ∞. (5.4)

In particular,

1 ≤
1

‖u′‖∞

(

1

|a + 1|
+ 1

) (

K +

∫ T

0

h(s, T‖u′‖∞, ‖u′‖∞) ds + W

)

. (5.5)

Due to (H3),

lim
w→∞

1

w

∫ T

0

h(ξ, Tw,w)dξ = 0,

and so

lim
w→∞

1

w

(

1

|a + 1|
+ 1

)(

K +

∫ T

0

h(s, Tw,w) ds + W

)

= 0,

which implies that there exists ̺∗ > 0 such that

1

w

(

1

|a + 1|
+ 1

) (

K +

∫ T

0

h(s, Tw,w) ds + W

)

< 1

for each w ≥ ̺∗. This together with (5.5) results in

‖u′‖∞ < ̺∗, ‖u‖∞ < ̺∗T

for each u ∈ LK and therefore, LK is bounded in C1[0, T ].
We now verify that the set {u′ : u ∈ LK} is equicontinuous on [0, T ]. For any

u ∈ LK we have

u′′(t) = acT a+1t−a−2 + at−a−2

∫ T

t

sa+1f(s, u(s), u′(s) ds

+ f(t, u(t), u′(t)) for a.e. t ∈ [0, T ] and c = c(u) ∈ [0, K].

Therefore,

|u′′(t)| ≤ |a|KT a+1t−a−2 + |a|t−a−2

∫ T

t

sa+1m(s) ds + m(t)

for a.e. t ∈ [0, T ], where m(t) = h(t, T̺∗, ̺∗)+g(Mt(T − t)2). Since, cf. (5.4) and
(H3),

∫ T

0

m(t) dt ≤

∫ T

0

h(t, T̺∗, ̺∗) dt + W < ∞,
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we see that m ∈ L1[0, T ]. Therefore, by (2.2),

t−a−2

(
∫ T

t

sa+1m(s) ds

)

∈ L1[0, T ].

Consequently, there exists a majorant function p∗ ∈ L1[0, T ] satisfying

|u′′(t)| ≤ p∗(t) for a.e. t ∈ [0, T ] and all u ∈ LK .

As a result the set {u′ : u ∈ LK} is equicontinuous on [0, T ].
In order to complete the proof, we need to show that the set LK is closed in

C1[0, T ]. To this end, we consider a sequence {un} ⊂ LK converging in C1[0, T ]
to a function u ∈ C1[0, T ]. Therefore, there exists a sequence {cn} ⊂ [0, K] such
that, due to (5.3),

un(t) = t
cnT

a+1

|a + 1|
(T−a−1 − t−a−1)

+ t

∫ T

t

s−a−2

(
∫ T

s

ξa+1f(ξ, un(ξ), u′
n(ξ) dξ

)

ds for t ∈ [0, T ] and n ∈ N.

Since u′
n(T ) = −cn, we see that {cn} is convergent. Let us define limn→∞ cn =:

c ∈ [0, K] and let n → ∞ in the above equality for un(t). Then, by the Lebesgue
dominated convergence theorem, arguing as in the proof of Theorem 5.1, we
obtain

u(t) = t
cT a+1

|a + 1|
(T−a−1 − t−a−1)

+t

∫ T

t

s−a−2

(
∫ T

s

ξa+1f(ξ, u(ξ), u′(ξ) dξ

)

ds for t ∈ [0, T ].

(5.6)

Therefore u satisfies (1.1) and (4.12) and hence u ∈ Sc ⊂ LK . 2

Remark 5.3 It follows from the proof of Theorem 5.2 that for each fixed c ≥ 0
the set Sc is compact in C1[0, T ].

Remark 5.4 Consider a sequence {un} ⊂ L. Since L = ∪0≤cSc, we see that
un ∈ Scn

for some cn ≥ 0 and u′
n(T ) = −cn, n ∈ N. We now can show that

lim
n→∞

‖un‖C1 = ∞ ⇐⇒ lim
n→∞

cn = ∞ (5.7)

holds. First, assume that
lim

n→∞
‖un‖C1 = ∞, (5.8)
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and further, assume in a contrary, that there exist K > 0 and a subsequence
{cmn

} ⊂ {cn} such that
cmn

≤ K for n ∈ N.

Since LK = ∪0≤c≤KSc, we have {umn
} ⊂ LK . By Theorem 5.2, LK is compact

in C1[0, T ] which implies that the sequence {umn
} is bounded in C1[0, T ], which

contradicts (5.8).
If we assume that limn→∞ cn = ∞, then (5.8) immediately follows, because

‖un‖C1 ≥ ‖u′
n‖∞ ≥ cn, n ∈ N.

Remark 5.5 It follows from (5.7) that the set L is unbounded in C1[0, T ]. In
particular, if u ∈ L, then u ∈ Sc for some c ≥ 0 and, keeping in mind that f is
positive, we get by (5.6),

u

(

T

2

)

≥
Tc

2|a + 1|

(

1 −
1

2−a−1

)

.

That is ‖u‖∞ ≥ cL, where

L =
T

2|a + 1|

(

1 −
1

2−a−1

)

> 0. (5.9)

Hence,
sup{‖u‖∞ : u ∈ L} ≥ sup{cL : c ∈ [0,∞)} = ∞,

and Theorem 5.2 implies the following results concerning minimal values of func-
tionals defined on the set L of all positive solutions to problem (1.1).

Let M be the set of continuous functionals Φ : C1[0, T ] → [0,∞), which are
coercive on L, that is,

lim
x∈L, ‖x‖

C1→∞
Φ(x) = ∞. (5.10)

Theorem 5.6 Let (H1)− (H3) hold and let Φ ∈ M. Then there exists a positive

solution u∗ of problem (1.1) such that

min{Φ(x) : x ∈ L} = Φ(u∗). (5.11)

Proof. Choose u0 ∈ S0 and A := Φ(u0). By (5.10), there exists B > 0 such that

x ∈ L, ‖x‖C1 > B ⇒ Φ(x) > A. (5.12)
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Let K := B/(L + 1), with L > 0 from (5.9). According to Theorem 5.2, LK is
compact in C1[0, T ] and consequently, the continuity of Φ implies the existence
of u∗ ∈ LK such that

min{Φ(x) : x ∈ LK} = Φ(u∗) ≤ A. (5.13)

Now, assume that c > K. Then, for each x ∈ Sc, we have ‖x′‖∞ ≥ |x′(T )| = c
and, by Remark 5.5, ‖x‖∞ ≥ cL. Therefore,

‖x‖C1 ≥ c(L + 1) > K(L + 1) = B.

This together with (5.12) yields Φ(x) > A. Consequently, Φ(x) > A for each
x ∈ L \ LK and (5.11) follows from (5.13). 2

We now present applications of Theorem 5.6. Assume (H1) − (H3) to hold.
Choose α ∈ (0,∞) and consider functionals Φ1, Φ2 : C1[0, T ] → [0,∞) given by

Φ1(x) =

∫ T

0

|x(t)|αdt, Φ2(x) =

∫ T

0

√

1 + x′2(t)dt. (5.14)

Then, Φ1, Φ2 are continuous on C1[0, T ].
Let us now show that Φ1 and Φ2 satisfy (5.10), where L is the set of all

positive solutions of problem (1.1). Choose an arbitrary sequence {un} ⊂ L such
that limn→∞ ‖un‖C1 = ∞. For cn = −u′

n(T ), n ∈ N, we obtain using (5.7),
limn→∞ cn = ∞. Since un(t) =

∫ t

0
u′

n(s)ds, it follows from Remark 5.5 that

cnL ≤ ‖un‖∞ ≤

∫ T

0

|u′
n(t)|dt ≤ Φ2(un), n ∈ N.

Consequently, Φ2 is coercive on L.
Furthermore, from (5.6) and the positivity of f , we have

un(t) ≥ cnϕ(t), t ∈ [0, T ],

where

ϕ(t) := t
T a+1

|a + 1|
(T−a−1 − t−a−1) > 0, t ∈ (0, T ).

According to (5.14),

Φ1(un) =

∫ T

0

|un(t)|αdt ≥ cα
n

∫ T

0

ϕα(t)dt = cα
nM0, n ∈ N,

where M0 :=
∫ T

0
ϕα(t)dt > 0. Hence, we have shown that limn→∞ Φ1(un) = ∞

and therefore, Φ1 is coercive on L.
Consequently, Theorem 5.6 is applicable to both, Φ1 and Φ2. We can easily

see a geometrical meaning of this result. For example, dealing with Φ2, we get
that among all positive solutions of (1.1) there exists a solution having a graph
with the shortest lenght. Note, that values of Φ1 with α = 1 are discussed in
Example 3.
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6 Numerical simulations

For the numerical simulation, we use an alternative formulation of problem (1.1),

u′′(t) +
a

t
u′(t) −

a

t2
u(t) = f(t, u(t), u′(t)), t ∈ [0, 1], (6.1a)

u(1) = 0, u′(1) = −c, (6.1b)

where c ≥ 0. According to [19], the above boundary value problem (6.1) is
well-posed and therefore it is suitable for the numerical treatment. For all
examples, the calculations have been carried for the values of a = −2 and
c = 0, 0.1, 0.2, 0.3, 0.5, 1, 2, 5, 10, 100.

6.1 Matlab Code bvpsuite

To illustrate the analytical results discussed in the previous section, we solved
numerically Examples (6.2), (6.4) and (6.5) using a MATLAB

TM

software pack-
age bvpsuite designed to solve boundary value problems in ordinary differential
equations and differential algebraic equations. The solver routine is based on a
class of collocation methods whose orders may vary from 2 to 8. Collocation has
been investigated in context of singular differential equations of first and second
order in [11] and [20], respectively. This method could be shown to be robust
with respect to singularities in time and for retains its high convergence order in
case that the analytical solution is appropriately smooth. The code also provides
an asymptotically correct estimate for the global error of the numerical approxi-
mation. To enhance the efficiency of the method, a mesh adaptation strategy is
implemented, which attempts to choose grids related to the solution behavior, in
such a way that the tolerance is satisfied with the least possible effort. Error esti-
mate procedure and the mesh adaptation work dependably provided that the solu-
tion of the problem and its global error are appropriately smooth2. The code and
the manual can be downloaded from http://www.math.tuwien.ac.at/∼ewa.
For further information see [13]. This software is useful for the approximation of
numerous singular boundary value problems important for applications, see e.g.
[4], [9], [12], [17].

6.2 Example 1

We first investigate the following problem:

u′′(t) +
a

t
u′(t) −

a

t2
u(t) = u(t)

2

3 + t + 1, t ∈ [0, 1], (6.2a)

u(1) = 0, u′(1) = −c, (6.2b)

2The required smoothness of higher derivatives is related to the order of the used collocation
method.
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where a = −2. In Figures 1 and 2, solutions to problem (6.2) for different values
of c are shown.
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Figure 1: Problem (6.2): Parameter a = −2.
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Figure 2: Problem (6.2): Parameter a = −2.
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For a given c ≥ 0 denote by uc a solution of problem (6.2). We can see in Figures
1 and 2 that graphs of solutions uc are ordered, that is

c1 < c2 =⇒ uc1(t) < uc2(t), t ∈ (0, 1). (6.3)

This corresponds to the theory in Section 4 of [16], where the special case of
problem (1.1) with f ∈ Car([0, T ]× [0,∞)) and f(t, u) increasing in u, has been
investigated.

6.3 Example 2

Here, we study the influence of u′ in f(t, u, u′) = u
2

3 + u′ 2
3 + t + 1. The boundary

value problem has now the form

u′′(t) +
a

t
u′(t) −

a

t2
u(t) = u(t)

2

3 + u′(t)
2

3 + t + 1, t ∈ [0, 1], (6.4a)

u(1) = 0, u′(1) = −c, (6.4b)

where a = −2. Note that since u′(t) may become negative, we replace u′(t)
2

3 by

u′(t) |u′(t)|−
1

3 in numerical simulations.
The solutions of the boundary value problem (6.4) for different values of c,

can be found in Figures 3 and 4.
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Figure 3: Problem (6.4): Parameter a = −2.
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Figure 4: Problem (6.4): Parameter a = −2.

Figure 3 shows ordered graphs of solutions uc of problem (6.4) with c changing
from 0 to 1 but Figure 4 demonstrates that, for c having values from 1 to 100,
the graphs of solutions uc do not keep order (6.3).

The solutions of problem (6.4) for a = −3 and a = −10 show similar behavior
as for a = −2 and hence, they are not displayed here. All results for the above
class have been obtained using the same starting guess: the numerical solution
for c = 0 obtained with the piecewise hat function as an initial profile, see Figure
5.
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Figure 5: Starting guess for c 6= 0 has been obtained by solving the problem for
c = 0 and the initial profile shown above.

6.4 Example 3

In order to discuss the influence of a possible space singularity in f , we put
f(t, u) = u− 1

3 + t + 1 and look at the following problem:

u′′(t) +
a

t
u′(t) −

a

t2
u(t) = u(t)−

1

3 + t + 1, t ∈ [0, 1], (6.5a)

u(1) = 0, u′(1) = −c, (6.5b)

where a = −2. The solutions to the above boundary value problem can be found
in Figures 6 and 7.
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Figure 6: Problem (6.5): Parameter a = −2.
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Figure 7: Problem (6.5): Parameter a = −2.

For the values of c ≥ 1 the starting guess mentioned above has been used.
For larger values of c providing alternative starting guesses was necessary. For
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example, for c = 5 the earlier computed solution for c = 2 has been used.
Figure 6 illustrates that solutions uc of problem (6.5) with c changing from 0

to 1 do not fulfil the order given by (6.3). This together with Figure 4 leads to
the hypothesis that the order (6.3) cannot be proved for solutions of (1.1), where
f(t, x, y) depends on y or f has a singularity at x = 0.

Now, consider the functional Φ1 of (5.14) with α = 1 and T = 1, that is

Φ1(x) =
∫ 1

0
|x(t)|dt for x ∈ C1[0, 1]. Let L be the set of all positive solutions of

problem (6.5). Using Theorem 5.6, we have proved that there exists a positive
solution of problem (6.5) giving a minimal value of Φ1 on L. To illustrate this
result, we have approximated the values of the integrals

Φ1(uc) =

∫ 1

0

uc(t)dt.

Here, we put a = −2 and by uc we denote a positive solution of (6.5) for a specific
nonnegative value of c. In order to approximate Φ1(uc)], we introduce a partition
of the interval [0, 1] into equidistant subintervals of length 10−2. As a quadrature
formula, we use the composed Gaussian rule with five evaluation points in each
subinterval of [0, 1]. The results can be found in Table 1 below.

c Φ1(uc)

0.0 0.259842454338672
0.1 0.228105737635487
0.2 0.235421595255397
0.3 0.244242057208884
0.5 0.264432168174144
1.0 0.322297787747369
2.0 0.521359670723535
5.0 1.000102652113081

10.0 1.819813323209159
100.0 16.79012750689064

Table 1: Problem (6.5).

Table 1 shows that Φ1(uc) is not monotonous for c ∈ [0,∞), that is the inequality
c1 < c2 need not imply Φ1(uc1) ≤ Φ1(uc2). But we know that there exists at least
one c∗ ∈ [0,∞) such that Φ1(uc) reaches its minimum at uc∗ .
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