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Abstract We consider periodic boundary value problems for ordinary second order
differential equations of the form u” = f(t,u,u), where [ satisfies the (local)
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1. Introduction

We will study the existence and localization of more solutions to the problem
(1.1) u' = f(t,u,u’), u(0)=u(2r), u'(0)=71d(2m).

First, supposing that f satisfies the Carathéodory conditions on [0,27] x R? we modify
theorems of [15] concerning a connection between the existence of lower and upper func-
tions of (1.1) and properties of the topological degree of the operator corresponding to
(1.1) on sets which are defined by means of these lower and upper functions. (Theorems
1.3, 1.4.)

Using these results we find two disjoint sets (one convex and the second non-convex)
and prove that each of them contains at least one solution to (1.1). (Theorems 2.1, 2.2.)
This leads to the existence and localization of three solutions to (1.1). (Theorem 2.3.)
Finally we show an application to periodic boundary value problems with singularities
and for any n € N, n > 3, we present conditions which guarantee n — 1 different positive
solutions. (Theorems 3.3, 3.5.)

We say that f : [0,27] x R* — R fulfils the Carathéodory conditions on [0, 27] x R?, if
f has the following properties: (i) for each z,y € R the function f(-,z,y) is measurable
on [0,2x]; (ii) for almost every ¢t € [0,2x] the function f(t,-,-) is continuous on R?
(iii) for each compact set K C R? the function mg (t) = SUp(, 1K | f(t,z,y)| is Lebesgue
integrable on [0, 27]. For the set of functions satisfying the Carathéodory conditions on
[0,27] x R? we write Car([0, 27] x R?).

We will work with the Banach spaces C[0, 27] (the space of functions z continuous on
[0,27] with the norm ||z||c = max.c(p,2x) |2(2)]), C'[0,27] (the space of functions z
having continuous first derivatives on [0, 27r] with the norm ||z||: = max;e(o 24 {|z(2)| +
|z’ (t)|}), L]0, 27] (the space of functions y Lebesgue integrable on [0, 27] with the norm
|yl = foh ly(t)|dt) and Ls[0,27] (the space of functions y square Lebesgue integrable

1
on [0, 27] with the norm ||y||; = ( OZW yz(t)dt) 9.
ACI0,27] (AC'[0,27]) denotes the set of functions absolutely continuous on [0, 2] (hav-

ing absolutely continuous first derivatives on [0,27]) and BV]0,27] is the set of func-
tions of bounded variation on [0,2x]. If € BV]0,2x], s € (0,2n] and ¢ € [0,27), then
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The following definition is taken from [15].

Definition 1.1. Functions (o1, p1) € AC[0, 27]xBV/[0, 27] are said to be lower functions
of (1.1), if pi™® is nondecreasing on [0, 27],

o1 (t) = pu(t), pL(t) > f(t,01(t),pi(t)) for ae. te€0,27],
01(0) =01(2m), p1(04) > p1(27—).

Similarly, functions (o2, p2) € ACI0,27] x BV[0, 27| are said to be upper functions of
(1.1), if p3™® is nonincreasing on [0, 2],

Ué (t) = pz(t)a P’z (t) < f(taaQ (t)apZ (t)) for ae. t€ [07 271—]7
02(0) = 02(2m), p2(0+4) < p2(27—).

Let us choose an arbitrary number pu € (—00,0) and define operators

L, : domL, — L0, 2], z =z + px,
NN : 01[0727T]_)L[0727T]7 :L"—)f(',ib'('),:l?’('))-F/liL',

where
domZ, = {x € AC'[0,27] : 2(0) = z(2n), 2'(0) = ' (27)}.

The linear bounded operator L, has its bounded inverse L;l : L[0,27] = dom L, and if

we denote Lf = iL,' where i : AC'|0,27] — C'[0,27] is the embedding, the operator

LINM is compact and the problem (1.1) is equivalent to an operator equation

(1.5) (I-L}N,z=0.

The degree theory implies that if for some open bounded set 2 C C'[0, 27] the relation
deg(I — LN, Q) #0

is true, then the operator L;'[N“ has a fixed point in 2 which means that the problem

(1.1) has a solution in 2. Such set 2 can be found by means of strict lower and upper

functions of (1.1) which are defined in the following way.

Definition 1.2. Lower functions (o1, p1) of (1.1) are called strict if o7 does not satisfy
the equation in (1.1) a.e. on [0, 27| and if there is € > 0 such that

pi(t) > f(t,z,y) for a.e. t € |0,2n] and all (x,y) € [01(t),01(t)+e]x[p1(t)—¢, p1(t)+€].

Similarly, upper functions (o2, p2) of (1.1) are called strict if o5 does not satisfy the
equation in (1.1) a.e. on [0, 27] and if there is € > 0 such that

py(t) < f(t,z,y) for ae. t €[0,2n] and all (x,y) € [o2(t)—e, 02(t)]| X [p2(t) —¢, p2(t)+£].
Theorem 1.3. Let (01, p1) and (02, p2) be strict lower and upper functions of (1.1) with
(1.6) o1(t) < o2(t) on[0,27],

and let there exist m € L[0, 27| such that

(L.7) flt,z,y) >m(t) (or f(t,x,y) <m(t)),
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for a.e. t € [0,27] and for all (x,y) € [01(t),02(t)] X [—-Ma, Ma] with M> by (1.2).
Further, let

Q1 ={z € C'0,2n] : o1(t) <z(t) <o2(t) on[0,27], ||2'||c < |Iml|l1}
and let LY N, be the operator from (1.5) with p < 0. Then

deg(l — LN, Q) =1.

Proof. We can argue as in the proof of Theorem 2.4 [15] with the following differences.
Here, we have w(y) = y, so the consideration in [15] concerning w and @ can be omitted
and we can suppose that f is bounded either above or below - see (1.7). Moreover,
it suffices to assume that (1.7) is fulfilled for y € [—Ms, M,] instead of y € R which
can be seen in the mentioned proof if we put My = c. Finally, the results and proofs
in [15] remain valid if we work with an arbitrary negative u instead of -1. Then, this
p has to appear in auxiliary equations used in [15], for example we take the equation
u" + pu = f(t,u,u’) + pu instead of u” —u = f(t,u,u’) — u. O

Theorem 1.4. Let (01, p1) and (02, p2) be strict lower and upper functions of (1.1) with
(1.8) o2(t) < o1(t) on [0,27]

and let there exist m € L[0,2x] such that (1.7) is true for a.e. t € [0,27] and for all
(x,y) € [As, B1] X [—M2, M), where M, is given by (1.2) and Ay, By by (1.4). Further,
let

Q = {zeC'0,2n]: A <z(t) < By on [0,27], ||2'||c < [Im|h,
oa(ty) < z(ty) < o1(ty) for some t, € [0, 2]}

and let LY N, be the operator from (1.5) with p < 0. Then

deg(I — L} Ny, ) = —1.

Proof. Let us put f(t,z,y) = f(t,a(z), f2(y)), where

Bl if x >Bl,
alr) = x if Ay <z < By,
A2 if x <A2

and 2 is given by (1.3). Then we can argue as in the proof of Theorem 2.5 [15] working
with f instead of f. O

If we use Theorems 1.3, 1.4 and similar arguments as in [15] we get the following existence
results.

Theorem 1.5. The assumptions of Theorem 1.3 with possibly nonstrict lower and upper
functions and nonstrict inequalities in (1.6) and (1.7) imply the existence of a solution
of (1.1) in the set cl(2y). O

Theorem 1.6. The assumptions of Theorem 1.4 with possibly nonstrict lower and upper
functions and nonstrict inequalities in (1.8) and (1.7) imply the existence of a solution
of (1.1) in the set cl(2s). O
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2. Multiplicity results
Here, we will prove theorems about the existence and localization of two and three

solutions to (1.1). Suppose that 1 € [0,1], n € N, f € Car([0,27] x R?), (0i,p;) €
AC([0,27]) x BV([0,27]), i =1, ...,n, and define functions

(2.1) wilt,n) = sup{lF(t,03(8), pi(8)) — F(t,03(8), 2] = |palt) — 2| <}, i =1,...,m.
We can see that w; € Car([0,27] x [0,1]), i = 1,...,n, are non-negative, non-decreasing
in the second variable and w;(¢,0) =0 a.e. on [0,27],7i =1,...,n.

Theorem 2.1. Let € € (0,00) and let (01,p1), (03,p3) be lower functions of (1.1),
(02, p2), (02 + €, p2) be upper functions of (1.1), and

(2.2) 01(t) < o3(t) < o2(t) +e < o3(t) on[0,2n].
Suppose that there exists m € L([0,27]) such that
(2.3) fte,y) Zm(t) (or <)

for a.e. t €[0,27], all (z,y) € [01(t), B3] x [- M3, M3], where M3, B3 are given by (1.2),
(1.4). Further, let Qq be the set from Theorem 1.3 and

N = {ze€ Cl[0,271'] to1(t) < z(t) < Bs  on 0,27, ||J:'||C < |lml1,
02(ty) + € < x(ty) < o3(ty) for some t, € [0,2x]}.

Then (1.1) has at least two different solutions u, v such that u € cl(1) and v € cl(Q3).

Proof. Let us put

f(t,01(t), B3(y)) + @ — o1 (t) —wn(t, ;725%)  if = <oy,
g(t,w,y)= f(t,fl?,ﬂg(y)) lf 01 SQZSBg,
f(t,Bs, B3(y)) if = > Bj,

where 3 and w; are defined in (1.3) and (2.1), respectively. By Theorem 1.5, the problem
(2.4) u' = g(t,u,u), u(0) =u(2r), u'(0) =u'(27)

has a solution u € cl(€21). Moreover, we can apply Theorem 1.6 on the problem (2.4)
with the lower functions (o3, p3) and the upper functions (o2 + €, p2) and get a solution
v satisfying

(2.5) { e+ Ay <o(t) <Bg on[0,27], |v'llc < llmlls,

o2 (ty) + € <v(ty) < o3(ty) for some t, € [0, 2m].

Therefore, if we prove o1 (t) < v(t) on [0, 27], we get v € cl(€23). Suppose on the contrary
that
(2.6) max o1(t) —v(t) = o1(to) — v(to) > 0.

te[0,27]
Since 01(0) —v(0) = 01(27) — v(27), we can restrict ourselves on the case ty € [0,2m).
Let to € (0, 2w). Then, according to (2.6),

pitot) —v'(to) <0 < pi(to—) — v'(to).
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On the other hand since pi™® is nondecreasing, we get p1(to—) < p1(to+). Therefore
p1(to+) — v'(to) = 0. If tp = 0, then o7 — v has the maximum at 27 as well and

pL(0+) = v'(0) <0 < py(2m—) — v (2m).

On the other hand, by Definition 1.1, p1(0+) > p1(27—). Thus p1(0+) — v'(0) = 0.
Hence, we have proved
(27) p1(to+) — ’Ul(to) =0.
In view of (2.6) and (2.7) we can find ¢; € [0, 1] and § > 0 such that for all ¢ € [tg,to+0] C
0,27]
o1(t) = v(t)
o1(t) —v(t) +1°
Therefore, by Definition 1.1, (2.1) and (2.4), we have for a.e. t € [to,to + I]

I (t) — V()] Se1 <

pr(t) = 0"(8) > f(t, 01(t), pr(2)) — g(t,v,0")

= ft,o1(t), pr(t)) — f(t,01(t), B3(v")) — v(t) + 01(t) +wi(t, m)
> oty |pr — o) +wr(t, 01‘717;”“) +o1(t) —v(t) > ou(t) — v(t) > 0.

Hence, for all t € [to,to + d] we get

0 < / (p1(s) = v"(s))ds < pu(t) — v'(t) = (p1(to+) — v’ (to))

= pu(t) —0'(t)

and

0< / (p1(s) = v'(s))ds = o1 (t) — v(t) — (o1 (t0) — v(to),

to

which contradicts (2.6). So, we have proved that the problem (2.4) has a solution u €
cl(21) and a solution v € cl(23). Since g = f on cl(Q1) U cl(Q3), u, v are solutions of
(1.1) and the relation cl(£2;) N cl(Q3) = § quarantees that « and v are different. O

Theorem 2.2. Let ¢ € (0,00) and let (o1,p1), (03,p3) be upper functions of (1.1),
(02, p2), (02 + €,p2) be lower functions of (1.1), and let (2.2) be valid. Suppose that
there exists m € L([0,2x]) such that (2.3) is satisfied for a.e. t € [0,2n], all (z,y) €
[A1,03(t)] x [-Ms, M3], where Ms, Ay are given by (1.2), (1.4). Further, let

Qy={z € Cl[0,27r] s oa(t) +e <z(t) <os(t) on]0,27], ||a:’||C < |lm||1}
and

Qs = {zeCo,2n]: A <x(t) <o3(t) on]0,27], 'l < llml]s,
o1(ty) < z(ty) < o2(ty) for some t, € [0,2n]}.

Then (1.1) has at least two different solutions u, v such that u € cl(4) and v € cl(25).

Proof. Since Theorem 2.2 is dual to Theorem 2.1, we can put

f(t, A, Bs(y)) if x <A,
g(tal‘:y) = f(t>$763(y)) it 4 <az< O'3(t)
f(t,o3(), Bs(y) + @ — o3(t) +wi(t, 75.57)  if > 05(t)
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and use similar arguments as in the proof of Theorem 2.1. O

Theorem 2.3. Let e € (0,00) and let (o1,p1), (03,p3), (03 +¢€, p3) be lower functions of
(1.1), (o2, p2), (02 +€,p2), (04, p4) be upper functions of (1.1) and

o1(t) < 03(t) < o2(t) + € < 03(t) < 03(t) + € < 04(t) on [0, 27].

Suppose that there exists m € L([0,27]) such that (2.3) is fulfilled for a.e. t € [0,2n], all
(x,y) € [01(t),04(t)] X [~ My, M4], where My is given by (1.2). Further, let 1 be the set
from Theorem 1.3 and

N = {ze€ Cl[0,27r] s o1(t) < z(t) < oa(t) on [0, 27], ||x'||C < ||ml|1,
oa(ty) +€ < z(ty) < o3(ty) for some t, €[0,2x]},

Q; = {zeC'0,2n]:05(t) +e <a(t) <out) on [0,27], ||| < |Iml1]}-

Then (1.1) has at least three different solutions u, v and w such that u € cl(), v €
cl(Q) and w € cl(Qr).

Proof. Let us put

fto1(t), B1(y)) + 7 —o1(t) —wi(t, ;255)  if = <oy,
g(t,w,y)z f(tvxaﬂﬁl(y)) it oy <z <oy,
[t 04(t), Ba(y)) + @ —0a(t) +walt, J55H7)  if > 04,

where 4 and wi, wy are defined in (1.3) and (2.1), respectively. By Theorem 1.5, the
problem (2.4) has a solution u € cl(£21) and a solution w € cl({27). Further, as in the
proof of Theorem 2.1, we can apply Theorem 1.6 on the problem (2.4) and get a solution
v satisfying (2.5). Finally, arguing similarly as in the proof of Theorem 2.1 we get
o1(t) < v(t) < o4(t) on [0,2x], which together with (2.5) imply that v € cl(€2). Since
g = foncl(Q)Ucl(Q) Ucl(Q7) and these three sets are disjoint, we get three different
solutions of (1.1). O

3. Periodic problem with a singularity
Here, we suppose that the function f in (1.1) has the form

ft,z,y) = g(z) +e(t),

and consider the problem

(3.1) u'" = g(u) +e(t), u(0)=u2r), u'(0)=nr1u'(2n),

where

(3.2) g € C(0,00) and e € L[0,27].

We denote by € the mean value of a function e, i.e. € = - 027T e(t)dt. The function g

can have a singularity at 0, i.e. g need not be bounded at 0.

Under the assumption
1

(3.3) lim g(&)d¢€ = oo,

z—0+ /.
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the existence of positive solutions to (3.1) has been studied by many authors starting
from the paper [8] by Lazer and Solimini. Their results have been extended for example
by [2], [3], [5], [10], [13], [16], [17], [18] and [23]. Here we bring conditions which guarantee
multiplicity results for (3.1) and generalize some of the existence results mentioned above.

First, we present two lemmas which are taken from [17] and which will be useful in what
follows.

Lemma3.1. Let g € C(0,00) satisfy (3.3). Then there exists a sequence {en}50_, C
(0,1) such that

glem) >0 for allm e N, lime, =0, lim g(e,) = oco.
O

Lemma 3.2. Let us suppose that g and €,,, m € N, are from Lemma 3.1 and let g fulfil

(3.4) timin 22 5 L
Let us put
0 if x <0,
gm(@) =9 9lEm) if v € [0,em],
g(z) if x> e

Then for any r > 0 and any e € L0, 27| there exists R > 0 such that
u(t) <R on[0,27]
holds for all m € N and all solutions u of

u" = gm(u) +e(t), w(0)=u2w), u'(0)=u'(27), terftl)i,gn] u(t) <.

a

Theorem 3.3. Suppose that (3.2) is fulfilled. Further, let there exist n € N, n > 3, and
aiy .- ,an € (0,00) such that

(3.5) (g(z) +8) (=1)" >0 forall =€ [a;b], i=1,...,n,
where .
(36) bi:ai-l-gHe—EHl,i:1,...,n, and a; >b;—1,1=2,...,n.

If n is odd, suppose moreover that either

(3.7) lim sup g(z) < oo,

T—r00

or (3.4) is satisfied. Then the problem (3.1) has at least n — 1 different positive solutions.

Let us note that we need not the assumption (3.3) in Theorem 3.3. In fact, the behaviour
of g can be arbitrary in a right neighbourhood of 0. Therefore we use the following little
modification of Lemma 3.2.
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Lemma 3.4. Suppose that the assumptions of Theorem 3.3 are satisfied. Then there
exists R > b, such that
u(t) <R on[0,2n]

for any solution u of (3.1) with the property

(3.8) ap < terf(l)l,‘lzln] u(t) < by.

Proof. First, suppose that (3.7) is true. Then there is M > 0 such that g(z) < M for all
& € [a1,00). Let u be a solution of (3.1) satisfying (3.8). Then [[u'||c < M + |le|ly and
so, for all ¢ € [0, 27]

w(t) < by + 27 (M + ||e]|1) = R.

Now, let (3.7) be false but (3.4) be true. Assume the contrary, i.e. that there is a
sequence {uy} of solutions of (3.1) satisfying

a; < min ug(t) <b,, lUm max wu(t) = oco.
te[0,27] k  tel0,27]

In particular, for any k € N, there is ¢ € [0,27] such that ug(tx) = b,. Further, we can
extend the functions ug, £ € N and e on R and get that

uy (t) = g(ux(t)) + e(t) forae.teR

is true for any £ € N. Now, we can do the same computations as in the proof of [17,
Lemma 3.4] and get a contradiction. O

Proof of Theorem 3.3. Let us put

g(R) if >R,
(3.9) g1(z) =4 g(z) if a; <z <R,
g(a1) if ©<ay,

where R is the constant from Lemma 3.4. Then g1 + e € Car([0,27] x R) fulfils all
conditions of Theorem 3.3 and moreover, for a.e. ¢t € [0,27] and all € R it satisfies
(2.3) with m(t) = e(t) + max,¢[q,,r] 9(z). The conditions (3.5) and (3.6) imply the
existence of an ¢ > 0 such that

(3.10) (g1(z) +8) (1) >0 forall =€ [a;—¢,b), i=1,...,n,
with

(3]_].) a;—e>bi—1, 1=2,...,n.

Therefore, by (3.10), we have

(3.12) (91(2) +e(t)) (=1)" > (e(t) —©) (—=1)°

for a.e. t € [0,2n] and all x € [a; —€,b], i =1,...,n.
Thus, if we put b(t) = e(t) — € and apply [16, Propositions 2.1 and 2.2] on the problem
(3.13) u'" =gi(u) +e(t), u0)=ul2r), u'(0)=nu'(27),

we can coustruct lower and upper functions (o;, p;), i = 1,...,n, of the problem (3.13).
Namely, if we put

1 2 27 27

S G(t,s)b(s)ds)dt + [  G(t,s)b(s)ds + = ||b]|1,
271' 0 0 0 6
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where G is the Green function of the problem v = 0, v(0) = v(27) = 0, then the functions
(01,p1) = (v(t) + a1,'(t)) are lower functions. It follows from (3.11) and from the fact
that o1(t) € [a1,b1] on [0, 27]. Similarly the functions (o2, p2) = (Y(t) + a2z —€,7(t)) are
upper functions. Moreover, having in mind that o3(t) € [az — €,b2 — €] on [0, 27] and
that (3.12) is valid on [a2 — €, b2], we see that (o2 + €, p2) are upper functions of (3.13),
as well. Repeating these arguments for i odd (even), we find lower (upper) functions
(04,pi), (i +€,pi), i =3,...,n to the problem (3.13). Moreover, the following ordering

(3.14) o1 <o03<o02+te<o3<o3+e<...<0op1<0,1+€<0, on [0,2n].

is valid.

Now, let us discuss the multiplicity of solutions. If n = 3, Theorem 2.1 gives two different
solutions u; € (1) and us € cl(€23) for the problem (3.13). Provided n = 4, we
use Theorem 2.3 and get for the problem (3.13) three different solutions u; € cl(£24),
uz € cl(Q) and us € cl(Q7). Let n = 5. Having three above solutions uj, us, us, we can
use Theorem 2.1 for the string of functions

o3 +e<o1<04+e<o05 On [0,27‘(’]
and get two solutions of (3.13), the first in cl(27) and the second in ¢l(€g), where

Qs = {ze€ Cl[0,27r] 2 o3(t) + e < z(t) < Bs on [0, 27], ||a:'||C < ||ml|1,
o4(ty) + & < z(t;) < o5(t,) for some ¢, € [0,2n]}.

(For Bs see (1.4).) But the first solution, which is in cl(€7), can be the same as ug.
Therefore we can get only four different solutions u; € cl(Q1), uz € cl(Q6), us € cl(Qr)
and ug € cl(Qg) for the problem (3.13). Let n = 6. As before, we have four solutions uy,
Uz, u3, uy and the string

03 +e<04<04+e<o05<05+e<0g On [0,271’].

We use Theorem 2.3 and get three solutions of (3.13), the first in cl1(£27), the second in
cl(9) and the third in cl(0), where

Ny = {ze€ Cl[0,27r] 1 o3(t) + € < z(t) < o6(t) on [0, 27], ||x'||C < ||ml|1,
o4(ty) + € < z(t,) < o5(t,) for some t, € [0, 2]}

and
Qo={z¢€ Cl[0,27r] co5(t) +e < x(t) < og(t) on [0,27], ||J:'||C < |lmll1}-

But since uz € cl(7), us € cl(Qg) and cl(Qg Ncl(Qy) # @, we can guarantee only five
different solutions u; € cl(Q1), uz € cl(s), us € cl(Q7), us € cl(Qy) and us € cl(N10)
for the problem (3.13). Since g = g1 on each set cl(€;), i € {1,...,10}, the obtained
solutions are also solutions of (3.1). For n > 7 we can use similar arguments. O

Theorem 3.5. Suppose (3.2), (3.3) and

(3.15) lim inf g(z) > —o0.

r—0+

Further, let there exist n € N, n > 3, and a1, - . .,a, € (0,00) such that the conditions
(3.16) (g(x) +8) (=1)' <0 forall x € [a;,b], i=1,...,n,

and (3.6) are valid. If n is even, suppose moreover (3.4). Then the problem (3.1) has at
least n — 1 different positive solutions.
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Proof. For n odd, let us put R = b,. If n is even, let R > b, be the constant given
by Lemma 3.2 for r = b,. By (3.2) and (3.15) we have g, := inf,¢ o,z 9(7) € R. Put

K = lefly + |g«| and W

K* = K |lel|s + / l9(z)|da.

ai

It follows from (3.3) and Lemma 3.1 that we can choose € € {g,,}55_, such that € € (0,a;)
and

(3.17) / g(e)de > K.
Define
0 ifz <0,
gle) s ifz €[0,¢),
1 =
(3.18) o) g@)  ifzelsR),
9(R) ifz > R.

Then g; + e € Car([0,27] x R) fulfils (3.16) and moreover, for a. e. t € [0,27] and
all z € R it satisfies (2.3) with m(t) = g« + e(t). In the same way as in the proof of
Theorem 3.3 we get lower and upper functions for the problem (3.13) and the ordered
string (3.14). The only difference is that now (o1, p1) are upper functions, (o2, p2) are
lower functions, and so on.

Let us discuss the multiplicity of solutions. If n = 3, Theorem 2.2 gives two different
solutions u; € cl(24) and us € cl({25) for the problem (3.13). Provided n = 4, we
have solutions ui, us as before and, moreover, we can use Theorem 2.1 for the string of
functions

09 +e<o3<o03+e<og4 oOn [0,271’]

and get two solutions of (3.13), the first in cl(€24) and the second in cl(€1), where

N = {ze€ Cl[0,27r] : oa(t) + e < x(t) < By on|0, 27], ||x'||C < ||ml|1,
os(ty) + & < z(ty) < o4(t;) for some t, € [0,27]}.

(For B4 see (1.4).) But the first solution, which is in cl(€4), can be the same as u;.
Therefore we can get only three different solutions u; € cl(24), us € cl(Q5) and us €
cl(11) for the problem (3.13). Finally, suppose that n = 5. (For n > 6 we can argue
similarly.) As before, we have three solutions uj, us2,us and the string

o +e<o03<o03+e<o04<o04+e<o; onl0,2n].

We use Theorem 2.3 and also get three solutions of (3.13), the first in cl(£24), the second
in cl(212) and the third in cl(€;3), where

Qs = {z€C'0,2n]:02(t) +& < z(t) < o5(t) on[0,27], [|7'||c < [Im1,
os(ty) +e < x(ty) < o4(t,) for some t, € 0,2}

and
Q3 = {z € CH0,27] : 04(t) + e < x(t) < 05(t) on][0, 27, ||:U’||C < |Im||1}.

But since u; € cl(Qy4), us € cl(Q11) and cl(Q11) Ncl(Q12) # B, we can guarantee only
four different solutions uy € cl(4), us € cl(€25), ug € cl(12) and ug € cl(Q3) for the
problem (3.13).

From the definition of the sets Q;, j € {4,5,11, 12,13} it follows that each obtained
solution u;, i € {1,2, 3,4} satisfies min;c(o 25 ©i(t) < by
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Now, let us suppose, that u is an arbitrary solution of (3.13) with ¢g; defined by (3.18)
and that min,cjo 2. u(t) < b,. We need to prove that u is a solution of the problem (3.1).
Lemma 3.2 implies that u(t) < R on [0, 27]. Let us show that u(t) > € holds on [0, 27].
Let to and ¢; € [0, 27] be such that

i) = gyl v and ult) = g, w0

Clearly, a1 < wu(t;) < R. With respect to the periodic boundary conditions we have
u'(to) = u'(t1) = 0. Now, multiplying the differential relation u” (t) = e(t) + g1 (u(t)) by
u'(t) and integrating over [tg,t1], we get

u(tl) t1
/1 maﬁz—/e@meSme
u(to) to

which leads to . R
/ m@%Sme+/|MM%=Kf

(to) a1

On the other hand, with respect to (3.17) and (3.18),

a1
| > x.
13
Therefore u(ty) > € and u is a solution to (3.1). O
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