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Boundary value problems with nonlinear 
conditions 

IRENA RACHUNKOVÁ 

Abstract. We study the nonlinear second order differential equation x" = f(t, .r, x') 
with a Carathedory nonlinenarity / and nonlinear boundary conditions g\(x(a)) x'(a)) = 
0, g2(x(b), x'(b)) = 0, [a, b] C R. Using the topological degree method we find conditions 
for the existence of solutions to the above problem in terms of upper and lower solutions. 

1991 Mathematics Subject Classification: 34B15 

(Dedicated to the memory of Svatopluk Fucik) 

1 Introduc t ion 

In the paper we consider the problem 

x" = f ( t , x , x ' ) , (LI) 

gi(x(a),x'(a)) = Q, g2(x(b), x'(b)) = 0, (1.2) 

where J = [a, 6] C H, / : J x R2 —> IR satisfies the Caratheodory conditions, (/,• : 
(R2 —•> R, i — 1, 2, are continuous (generally nonlinear) functions. By a solution 
of problem (1.1), (1.2) we mean a function u E AC1 (J) (having an absolutely 
continuous first derivative on J) and satisfying conditions (1.2) and equation (1.1) 
for a. e. t £ J. 

We find conditions for the existence of solutions of (1.1), (1.2). Such questions 
were studied for example in [1], [2], [3], [6]. But in [2] the appropriate linear part 
of (1.2) was required and in [3] the monotonocity of gi, g<i was supposed. Our 
approach is close to [1], where problem (1.1), (1.2) is studied for a continuous right 
hand side / satisfying the Bernstein-Nagumo conditions and </i, gi monotonous 
in the second variable. 

Here, neither of monocity of </i, #2, nor growth conditions for / are required. 
Our results generalize the earlier ones of [6] and they are obtained by means of 
topological degree method together with upper and lower solutions method. 

Our proofs are based on the following theorem: 

Continuation Theorem. [1, p. 40]. Let X, Y be Banach spaces, L : domL C 
X —» Y a Fredholm map of index 0 and Q C X an open bounded set. Let N : X —> 
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Y be L-compact on Q, Q : X —> Y a continuous projector with Ker Q = ImF ano7 

J : Im Q -> Ker L an isomorphism. Suppose 

1. for each X £ (0, 1) every solution x of Lx — XNx is such that x £ dQ; 

2. QNx ^ 0 for each x G Ker L H dft and 

3. the Brouwer degree d[N0, Q 0 Ker L, 0] ^ 0, where N0 = J<3N : Ker L —> 
Ker L. Then £he equation Lx = N# has a£ leas£ One solution in domL D 0 . 

Let us remind that functions a, (3 G ^4CX(J) are called lower and upper 
solutions for (1.1), (1.2), respectively, if they fulfill a"(t) > f(t, a(t), a'(t)), 
P"(t) < f(t, 0(t), /?'(*)) for a.e . t e J and 

gi(a(a),af(a))>0, </i(/?(a), ?(a)) < 0, 

<72(a(6), a'(6)) < 0, ftP),i?(»))>0. 

2 The existence results for bounded nonlinearity 

First we will prove the existence of solutions to (1.1), (1.2) provided / is bounded 
by an Lebesgue integrable function (p. We cannot apply the Continuation Theorem 
onto (VI), (V2) directly, but we have to construct a sequence of auxiliary problems 

x" = \fn(t,x,x'), A € [0 ,1 ] , 

í i„(*(o) , *'(<.)) = 0, g2n{x(b), x'{b)) = 0, (2n.Л) 

where n E N , r G (0, oo), 

fn = * 

i f(t, r, 0) 
/(-, r, y) + [/(*, r, 0) - f(t, r, y)]n(x - r) 

f(t, x, y) 
f(t, -r, y) - [f(t, -r, 0) - /(*, - r , y)]n(x + r) 

for — r — \/n < x < —r 
{ f(t, ~ r, 0) 

for x > r + 1/n 
for r < æ < r + 1/n 
for — r < X < r 

for æ < — r - 1/n, 

Øťn(я, -У) = < 

1, 2. 

for x > r + 1/n 
for Г < íГ < r + 1/n 
for — r < # < r 

f *(r, 0) 
gi(r, žl) + [gi(r, 0) - # ( r , y)]n(x - r) 
#*(*, 2l) 
gг(-r, H) - bѓ(- r , 0) - gi(-r, y)]n(x + r) 

for — r — 1/n < æ < — r 
9i(—r, 0) for æ < - r - 1/n, 
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If we put for fixed n 

X = Cl([a, 6]), Y = L(a, b) x (R2, domL = ACl{[a, b]) C X, 

L : d o m L - > Y, x -> (x", 0, 0), 

N:X-+Y, * - ^ ( /„( . ,*( . ) , *'(.)), 

#in(x(a), x'(a)), #2n(z(&), *'(&))), 

then problem (2n.A) can be written in the form 

Lx = ANx 

Using the Continuation Theorem for problems (2n.A), for any n G N, we get the 
existence of solutions un of (2n.l), and by the Arzela-Ascoli Theorem we prove the 
existence of limit u of the appropriate subsequence of (txn)i°. One can see that u 
is a solution of (1.1), (1.2). These considerations lead to the following theorem. 

T h e o r e m 2 .1 . Let r G (0. co) and (p G L(J) be such that for a. e. t £ J and each 
x G [—r, r] 

0 i ( - r , O ) ^ ( r , O ) < O , (2.1) 

< /2 ( - r , 0 )# 2 ( r , 0 )<0 , (2.2) 

/(*, - r , 0 ) < 0 , /(*, r , 0 ) > 0 (2.3) 

!/(*, *, y)l < <P(*) for each y£R. (2.4) 

Then problem (1.1), (1-2) has a solution u with 

- r < u(t) < r for each t G J. (2.5) 

For detailed proof of Theorem 2.1 see [6]. 
Now, using lower and upper solutions method, we can get results more general 

than those in Theorem 2.1. 

T h e o r e m 2.2. Let a, f3 be lower and upper solutions of (1.1), (1.2) with a(t) < 
(3(t) for each t G J and a"'. fi" G L^(J). Further let <p G L(J) be such that for 
a. e. t G J and each x G [&(t), P(t)]), y G !R the condition (2.4) is satisfied. 

Then problem (1.1), (1.2) has a solution u with 

a(t) < u(t) < (3(t) for each t G J. (2.6) 

P R O O F : Let us fix n G UN and put 

v(P) = [/(*, W . /?'(*)) ~ /(*, /?(*), » ) W * " #*))• 
iv(a) = [/(<, a( t) , a'(t)) - /(*, a(<), t/)]n(x - a(t)), 
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fn(t, x, y) 

9in(x, y) 

f(t,P(t)>F(t)) + *-0(t)-l/* 
for x > f3(t) + 1/n 

/(*, P(t)> 9) + w(P) for p(t) <x< (l(t) + 1/n 
f(t, x, y) for a(t) <x< /3(t) 
f(t> <*(t), y) - w(a) for a(t) - 1/n < x < a(t) 
f(t,a(t)ya'(t)) + x - a(t) + l/n 

for x < a(t) — 1/n 

9i(0(a),F(a)) + P(a) + l/n-x 
for x > /3(a) + 1/n 

9i(l3(a))y) + [g1(p(a)^'(a))-gl(p(a),y)]n(x-p(a)) 
for /3(a) <x< /3(a) + 1/n 

9i(x, y) 
for a(a) < x < /3(a) 

9i(<*(a), V) ~ [gi(a(a)}a'(a)) - gl(a(a)iy)]n(x - a (a)) 
for a(a) - 1/n < x < a(a) 

gi(a(a)) a'(a)) + a (a) - 1/n - x 
for x < a(a) — 1/n 

92(P(b)>P(b))+x-(3(b)-l/n 
for x > /3(b) + 1/n 

92(P(b)>v) + l92(P(b)J'(b)) - 9*(0(b)>v)M* - PW) 
for /3(b) <x< /3(b) + 1/n 

92(x, y) 
for a(6) < x < (3(b) 

g2(<*(b),y) - [92(<*(b),af(b)) - g2(<*(b)}y)]n(x - a(6)) 
for a(6) - 1/n < x < a(6) 

g2(<x(b), a'(b)) +x- a(6) + 1/n 
for x < a(6) — 1/n 

The functions f n , gin, g2n satisfy the conditions of Theorem 2.1 for r > 1 + 
max{|a(*)|, \/3(t)\ : t <E J} + esssup {|a"(*)|, \/3"(t)\ : t E J}. Thus there exists 
solution un of problem 

X = Jfl \ty X, X j , 

gm(x(a)) x'(a)) = 0, <72n(*(6), x'(b)) = 0 

satisfying (2.5). 
Let us show that un fulfills also the inequalities 

g2n(x, y) 

- 1/n + a(t) < un(t) < fl(t) + 1/n for each t € J. (2.7) 

Put v(t) = un(t) — a(t) + 1/n and suppose that min{v(t) : t 6 J} = v(t) < 0. Let 

t £ (a, 6). Then we can find S > 0 and t0 > t such that v'(t0) — 0, i/(*) > 0 and 

v(t) < 0 for each t £ (*0, t0 +6] C J. Thus //o°+<5 u"( r )dr = t/(*0 + <5) - v'(t0) > 0, 

and on the other hand j ^ 0 + i / ' ( r )dr < f ^ i;(r)dr < 0, a contradiction. Let 
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a = t0. Then v(a) < 0, i.e. un(a) < a(a) - \/n and g\n(un(a), u'n(a)) = gi(a(a), 
a'(a)) — v(a) > 0, a contradiction. Similary for b = <o-

The second inequality in (2.7) we prove analogously putting v(t) = ft(t) — 
un(t) + 1/n. 

For each n G N we get a solution t/n by this way and so we have a sequence 
(wn)i° of equibounded and equicontinuous functions together with their deriva­
tives. Applying Arzela-Ascoli Theorem we get a subsequence uniformly converging 
to u. We can see that u satisfies (2.6) and (1.1), (1-2). O 

3 The existence results for unbounded nonlin-
earity 

T h e o r e m 3.1. Let a, (3 be lower and upper solutions of (1.1), (1.2) with a(t) < 
j3(t) for each t G J and a", (3" G Loo(</)- Further let fi, v G AC(J) be such that 
u(t) < a'(t) < v(t), /j(t) < flf(t) < v(t) for each t G J and for a. e. t £ J and 
each x G [a(t), (3(t)] the conditions 

f(t, x, v(t)) > v'(t), f(t, x, //(*)) < ii'(t), (3.1) 

g2(x1 v(t)) > 0, g2(x,fi(t))<0 (3.2) 

are fulfilled. 
Then problem (1.1), (1-2) has at least one solution u satisfying (2.6) and 

fi(t) < ii'(t) < v(t) for each t G J. (3.3) 

PROOF: Let us put 

( f(t, x, v(t)) + (y - v(t))/(y - v(t) + 1) for y > v(t) 
/(*, *> V) = { /(*, x, y) for n(t) <y< v(t) 

{ f(t, x, n(t)) + (y - ii(t))/(\y - fi(t)\ + 1) for y < /i(<) 

f g2(x, v(t)) + y - v(t)) for y > v(t) 
fc{x, y) = < ^2(a?, y) for Ai(t) < y < i/(t) 

I 02fa, MW) + y - M*) for y < fi(t) 

and consider the problem 
x" = / ( t \ x, *') (3.4) 

gi(x(a),x'(a)) = 0, fo(x(b),x'(b)) = 0. (3.5) 

The functions / , g\, g2 fulfill the conditions of Theorem 2.2 with 
<p(t) = sup{|/(<, x, y)| : x 6 [«(*),/-*(*)], y € \p(t), u(t)]} + I. So, problem 
(3.4), (3.5) has a solution u with a(t) < u(t) < /?(<) on J. 
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Put z(t) = u'(t) - v(t). Let max{z(t) : t £ J} = z(*o) > 0. First, suppose 
to € [a, 6). Then we can find S > 0 such that 0 < z(t) < z(t0) for each t £ (£0, ô + 
($] C J. On the other hand by (3.1) //o°+<J z'(r)dr = //o°+<5(/(r, ti(r), ti'(r)) -
i / ( r ) )dr > 0, a contradiction. Further, t/'(6) > iv(6) implies ^2(^(6), u'(6)) = 
#2(^(6), 1/(6)) + u'(b) - i/(6) > 0. So u'(t) < v(t) for each t £ J. The inequality 
u(t) < u'(t) for each t £ J can be proved by similar arguments. Thus (3.3) is valid 
and therefore u is a solution of (1.1), (1.2) as well. D 

T h e o r e m 3.2. Let a, /3 be lower and upper solutions of (1.1), (1.2) with a(t) < 
(3(t) for each t £ J and a", /?" £ LOQ(J). Further let fjt, v £ AC (J) be such that 
fi(t) < a'(t) < v(t), p(t) < f3'(t) < v(t) for each t £ J and for a. e. t £ J and 
each x £ [a(t), /3(t)] the conditions 

f(t, x, v(t)) < v'(t), f(t, x, fi(t)) > //(*), (3.6) 

gi(*,v{t))>0, 9i(x,l*(t))<0 (3.7) 

are fulfilled. 
Then problem (1.1), (1.2) has at least one solution u satisfying (2.6) and (3.3). 

P R O O F : Theorem 3.2 can be proved similary as Theorem 3.L • 

No te . The condition (3.2) may be changed onto 

92(x,v(t))<0, 92(x,ii(t))>0, (3.2') 

and the assertion of Theorem 3.1 keeps its validity. Namely, in this case, we 
can define #2 by 

( 9i(x, v(t)) - y + v(t) for y > v(t) 
h(*> y) = \ 92(x, y) for a(t) <y< v(t) 

\ 92(2> ,"(0) - y + M*) f o r y < .**(*)• 

Similarly the condition (3.7) can be replaced by 

gx(x, */(*)) < 0 , 9i(x,fi(t))>0. (3.7') 

As a consequence of the theorems 3.1 and 3.2 we obtain 

T h e o r e m 3.3. [6] Let r, R £ (0, 00) be such that for a. e. t £ J and each 
x £ [~r, r] the conditions (2.1), (2.2), (2.3) and 

f(t, x, R) > 0, /(*, x, -R)< 0, 

92(x, R)92(x, -R)<0 
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are fulfilled. 

Then problem (1.1), (1.2) has at least one solution u satisfying (2.5) and 

R < u'(t) < R. (3.8) 

T h e o r e m 3.4. [6] Let r, R G (0, oo) 6e such that for a. e. t E J and each 

x e [-r, r] the conditions (2.1), (2.2), (2.3) and 

f{t, x, It) < 0, f{t, x, - It) > 0, 

g2{x, R)g2{x, - I t ) < 0 

are fulfilled. 

Then problem (1.1), (1.2) has at least one solution u satisfying (2.5) and (3.8). 

N o t e . At the end we would like to emphasize t h a t the theorems 3.1 a n d 3.2 are 

an i m p o r t a n t tool for proving multipl icity results to problem ( V I ) , (V2). 
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