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1 Introduction, lemmas

Let 1" be a positive number. We will consider the singular Dirichlet boundary

value problem
(r((t)2'(1))" = pqg(t) f (£, (1)), (1.1)
z(0) =2(T) =0, max{z(t) : 0 <t < T} -min{x(t) : 0<t < T} <0, (1.2)

where p is a positive parameter and f is singular at the point x = 0 of the
phase variable x in the following sense
lim f(t,z) = —o0, lim f(t,z) =00 forte [0,T]. (1.3)
z—0~ z—0t
We say that a function z € C*([0,T]) is a solution of problem (1.1), (1.2)
if « has precisely one zero ¢, in (0,7), r(z)z" € C((0,T) \ {to}), = fulfils
(1.2) and there exists o > 0 such that (1.1) is satisfied for p = po and
t € (0,7)\ {to}.
In this paper, we are interested in finding effective conditions imposed on
the functions r, ¢ and f for the existence of solutions to problem (1.1),(1.2).
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Any such solution goes through the singularity of f. As far as we know, this
case has not been solved yet. Up till now, only positive (negative) solutions
on (0,7) of the Dirichlet problem with the singularity at the point z = 0
of the phase variable x in nonlinearities of considered second-order differen-
tial equations have been studied (see, e.g., [1]-[9], [11]-[17] and references
therein). Solutions were considered either in the class C°([0,T]) N C?((0,T))
([1]-13], [8], 9], [13], [14)) or C1([0,7]) N C2((0,T)) ([4], (9], [11)- [14], [17])
or C°([0,T]) N ACL((0,T)) ([5]-[7], [15], [16]). Here AC}._.((0,T)) denotes
the set of functions having absolutely continuous first derivatives on each
[a,b] C (0,7). The nonlinearities of equations are usually nonpositive ([1]—
[5], [8], [9], [11]-[15], [17]) but in ([3], [6], [7], [16]) this assumption is over-
come.

According to our above definition, solutions of problem (1.1), (1.2) belong
to the class C'([0,7]). The character of smoothness of solutions is very
important for the consideration of their existence. We note that if we study
solutions of our problem only in the class of functions having continuous first
derivatives on [0,T] except of zeros of solutions in (0,7), we can get the
existence result as well as the exact multiplicity result easier, see [10].

Since our solutions have to go through the singularity of f and they have
to be smooth there, we will develop a new approach to prove their existence.
This approach is based on “gluing” of positive and negative parts of solutions
and on smoothing them.

Throughout the paper we assume that
(H1) r € C°(R), r(x) > ro > 0 for x € R,
(H2) ¢ € C°((0,T)), q(t) <0 for t € (0,T) and
Q = sup{|q(t)] : t € [0, T]} < o0,

(H3) f € C°([0,T]x D), where D = (—o0,0)U(0,00), f(t,-) is nonincreasing
on D for ¢t € [0,7] and

0<k(t) < f(t,z)signx < g(x) on [0,T] x D,
where k € C°([0,T]), g € C°(D),

/Og(fv) dr < oo, /Og(x) dr < 0.

Remark 1.1. From our next considerations it follows that the assumptions
imposed on £ in (H3) can be weakened and formulated locally. It is sufficient
to assume that for any M > 0 there is a function ky; € C°([0,T]) such that

0 <kpy(t) < f(t,x)signz on [0,T] x [-M,0) U (0, M].
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Then all results which are proved here are valid.

Let as note that since f(¢,-) is nonincreasing on D for ¢ € [0,7], we
can assume without loss of generality that ¢ is nondecreasing on (—o0,0),
nonincreasing on (0, c0) and

lim g(z) € (0,00). (1.4)

|x| =00

Suppose that A € (0,00), B € (—0,0) and a, b € [0,77], a < b. We will
need the following auxiliary boundary conditions

z(a) = x(b) =0, z(t) > 0 for t € (a,b), (1.5)
z(a) = x(b) =0, z(t) <0 for t € (a,b), (1.6)
z(a) = z(b) =0, x(t) >0 fort € (a,b), max{z(t):a <t <b} <A, (1.7)
z(a) =z(b) =0, z(t) <0 fort € (a,b), min{z(t) :a <t <b} > B. (1.8)

Let j € {5,6,7,8} and u be a positive fixed number. We say that x €
Cl([a,b]) is a solution of problem (1.1),(1.j), if x satisfies (1.j), r(x)a’ €
C'((a,b)) and (1.1) with this fixed y is fulfilled for ¢ € (a, b).

Let the functions r* : R — [rg,00), f*:[0,7] x D - R and ¢* : D - R
be defined by

r(z) =r(=z), f'(tz)=—-ft—-2), g¢"(x)=g(-2)

Then (H1) and (H2) imply that r* € C°(R), f* € C°([0,1] x D), f*(t,-) is
nonincreasing on D for ¢ € [0,77], g* € C°(D) and

0<k(t) < f*(t,x)signz < ¢g*(z) on [0,7] x D,

/09*(33) dr < oo, /Og*(a:) dx < 00.

Consider the differential equation

(r(x ()" (t)) = pq(t)f*(t, =(2)), (1.9)

where p is a positive parameter. Let A € (0,00) and B = —A in (1.8). We
can check that a function u is a solution of problem (1.1), (1.5) and (1.1),
(1.7), if and only if the function u* = —u on [a, b] is a solution of problem
(1.9), (1.6) and (1.9), (1.8), respectively.

In what follows we will use this fact in formulations of “dual” results
which will be signed by * and which will not be proved.

In our considerations we will use the function H : [0, 00) — [0, 00) defined
by

H(u) = /Our(s) ds, (1.10)



where 7 is the function from (H1). Of course, H is continuous increasing
function. The inverse functions to H is denoted by H~! : [0, 00) — [0, 00).

Our further studies are based on some results proved in [12] which are
slightly modified here.

Lemma 1.2. For each pn > 0 and a, b € [0,T], a < b, there exists a solution
u of problem (1.1), (1.5) such that max{u(t) : a <t < b} < A, where A > 0
15 an arbitrary number satisfying the inequality

2(/Ar(s) ds)2

< 0 . (1.11)
(b - a?Q [ rls)g(s)ds
0
Moreover,
Hil(Z“[ﬁtga) fort € [a, %b]
u(t) > it (1.12)
Hil( - for t € (“£2,0),
where K = min { /GTM(S —a)q(s)k(s) ds, /;(b — 5)q(s)k(s) ds}.

Lemma 1.3. Let p >0 and a, b € [0,T], a < b, A > 0 be such that (1.11) is
true. Suppose that u € C°([a, b)) satisfies (1.7), r(u)u’ € C*((a,b)) and (1.1)
is fulfilled for t € (a,b). Then

[r(u(t))u'(t)] < \/Q/LQ /OAT(S)g(s) ds forte€ (a,b) (1.13)

and for each &, t € [a, b] the inequality

‘/th(S)f(S,U(S)) ds‘ < 2\/% /OAr(s)g(s) ds (1.14)

18 valid.

The paper is organized as follows. Sec. 2 - 4 contain the existence and
uniqueness results to problems (1.1),(1.j), j € {5,6,7,8}, and results con-
cerning analytic properties of some auxiliary functions. The main results
about the existence of solutions to problem (1.1), (1.2) are given in Sec. 5.

2 Uniqueness and monotonicity

In order to construct sign-changing solutions to problem (1.1),(1.2) we first
need existence and uniqueness for solutions to auxiliary problems (1.1), (1.j),



j € {5,6,7,8}. These results are presented in Theorems 2.1, 2.2* 2.5 and
2.6*. Further needful results about a dependence of such solutions on values
of the parameter y are contained in Lemmas 2.3 and 2.4. Finally, a depen-
dence of the solutions on the length of intervals [a, b] C [0, 7] is described in
Lemma 2.7.

Theorem 2.1. Let a,b € [0,7], a < b. Then for each p > 0 problem
(1.1), (1.5) has a unique solution. Suppose moreover that A > 0 and put

2(/0A r(s) d3)2
- arQ [ r(s)(s) ds

Then for each p € (0, m4(a,b; A)] problem (1.1), (1.7) has a unique solution.
Proof. Lemma 1.2 implies the existence both for problem (1.1),(1.5) if
p > 0 and for problem (1.1),(1.7) provided p € (0,m(a,b; A)]. To prove
the uniqueness, we assume that for some fixed 2 > 0 there exist two different
solutions wy, uy of (1.1),(1.5) or of (1.1),(1.7). Then there exist a < a <
B < bsuch that ui () > ug(er), uh(a) < ui(@), ur(B) = ua(B), ua(t) < uy(t)
for t € (o, f). Then according to (H3) we have f(t,us(t)) > f(t,ui(t)) for
t € (a, ). Let us put

my(a,b; A) = (2.1)

ug(t)
p(t) :/ o r(s)ds fort € [«, f]. (2.2)
uy(t
Then
p(a) < p(B) =0. (2.3)
Further, for t € («, 3), we get p”(t) < 0 and p'(«) < 0. Therefore
p'(t) <0 forte (a,p], (2.4)
which contradicts (2.3). O

Theorem 2.2 Let a,b € [0,T], a < b. Then for each pn > 0 problem
(1.1), (1.6) has a unique solution. Suppose moreover that B < 0 and put

2(/; r(s) ds)2
(- 01Q [ r(s)o(s)ds

Then for each € (0,m_(a,b; B)] problem (1.1), (1.8) has a unique solution.

m_(a,b; B) = (2.5)

Lemma 2.3. Let 0 < iy < po, a, b € [0,T], a <b, and let u; be a (unique)
solution of problem (1.1), (1.5) with p = p;, i =1, 2. Then

uy(t) < ug(t) fort € (a,b). (2.6)



Proof. First, let us prove the inequality

uy(t) < ug(t) fort € a,bl. (2.7)

uz(t)
We can follow the proof of Theorem 2.1. Let us set p(t) = / “ r(s) ds for
t

ul

t € [a,b]. Suppose ui(a) = ug(), ui(B) = uz(f), ua(t) < uy(t) fort € («, B)
with some a < o < < b. Then the function p fulfils

pla) = p(B) = 0. (2.8)

Further, for t € (o, B), we get p"(t) = q(t)(paf (¢, u2(t)) — p f (¢, ua(t))) <0
and p'(«) < 0. Thus (2.4) holds, which contradicts (2.8). So, we have proved
(2.7) which means that

p(t) >0 fort e [a,bl. (2.9)

Let us suppose that there exists £ € (a, b) such that u;(§) = uy(€). Then, by
(2.7), v} (&) = u)(&). Therefore p(&) =0, p'(§) =0, p"(§) < 0. This implies
that there exists ¢ > 0 such that p'(¢) < 0 for ¢t € (£, £+ €], contrary to (2.9).

([

Lemma 2.4. Let a, b€ [0,T], a <b, {p,} C (0,00), lim,, o0 ptr, = o > 0.
Let u,, be a solution of problem (1.1), (1.5) (or (1.1), (1.6)) with u = py,
n € NU{0}. Then

lim u,(t) = up(t) uniformly on [a,b]. (2.10)

n—00

Proof. It is sufficient to consider solutions of (1.1), (1.5) and to assume that
{pn} is strictly monotonous, for example decreasing. Then, by Lemma 2.3,

up(t) < unt1(t) < uy,(t) forte (a,b), neN. (2.11)

Further, by Lemma 1.3,

r(un(t)) et (8)] < Wl@ [ e ds fori e fab), neN

and thus

1 [lusl]
lul (t)| < —\/2/“@/ r(s)g(s)ds fort € [a,b], n €N,
To 0

where || - || stands for the sup-norm in C°([a,b]). Therefore {u/ (¢)} is uni-
formly bounded on [a,b] which together with the monotonicity of {u,(t)}
gives

lim u,(t) = w(t) (> u(t)) uniformly on [a,b]. (2.12)

n—0o0



We are going to prove that ug(t) = w(t) for t € [a,b]. From (H3), (2.11)
and (2.12) it follows that f(¢,u,41(t)) > f(t,u,(t)) for t € (a,b), n € N
and lim,, o f(t,un(t)) = f(t,w(t)) for t € (a,b). Since q(t)f(t,u,(t)) is
integrable on [a, b] for each n € N (see (1.14) with u = u,,), the Levi theorem
yields

t t

lm [ q(s)f(s,u,(s))ds = / q(s)f(s,w(s))ds forte[a,b]. (2.13)

— 00 a a

Now, integrating the equalities
t
() (0) = r(O) (0) + i [ 4(9) (s, 00(s)) s, 1€ [a,8], nEN,
from a to t € (a,b], we get

/%w<>@—wmmu>u—w

/ / (7,un(7))drds for t € [a,b], n € N. (2.14)

Since {u],(a)} is bounded, we can assume without loss of generality that
lim,,_,o ul (a) = C € R. By the limit process for n — oo in (2.14), we get
according to (2.13)

w(t)
/ r(s)ds = Cr(0)(t — a) —|—/L0// 7))drds for t € [a,b]
0

and thus (for ¢ € [a, b))

w(t) = H*(Cr(0)(t — a) +u0/ / w(7)) dr ds) (2.15)
where H is defined by (1.10) and H ! is its inverse. Since
1 , 1 1
(H ' (u)) = = for u € [0, 00),

H'(H(u))  r(H ()

(2.15) implies that w € C'([a, b]) and

r(w(t))w'(t) = Cr(0) + o /atq(s)f(s, w(s))ds for t € [a,b],

which gives r(w)w' € C'((a,b)). Moreover w fulfils (1.1) with u = g for
€ (a,b). Finally, by (2.12), w(a) = w(b) = 0 and w(t) > 0 for ¢t € (a,b).
Using Theorem 2.1 on uniqueness, we obtain w(t) = uy(t) for ¢ € [a, b].
The case that {u,} is increasing is considered similarly and so we omit
it.



To prove the assertion for solutions of (1.1), (1.6) we use the dual consid-
eration. 0

Theorem 2.5. For each A > 0 and a, b € [0,T], a < b, there ezists just one
value po € [my(a,b; A), 00) of the parameter u, where m, (a,b; A) is given by
(2.1), such that problem (1.1), (1.5) with u = po has a solution u satisfying

max{u(t) :a <t < b} = A.

This solution is unique (for pu = py).
Proof. Theorem 2.1 implies that for each p > 0 there exists just one solution
u(t, p) of (1.1), (1.5). Let us put p(p) = max{u(t, ) : a <t < b} and suppose
that
p(p) <A for p>0. (2.16)
atb
2

By Lemma 1.2, u(-,p) satisfies (1.12) for p > 0. Thus, putting t =

in (1.12), we get p(u) > H *(Kp) for p > 0. Since lim, oo H (Ku) =
00, we obtain a contradiction to (2.16). Therefore there is a p; > 0 such
that p(u1) > A. On the other hand if u € (0, m,(a,b; A)] then, due to
Theorem 2.1, p(p) < A. Lemmas 2.3 and 2.4 imply that p is increasing and
continuous on (0,00), and so there is a unique py € [my(a,b;a), 1) such
that A = p(ug) = max{u(t, po) : a <t < b}. O

Theorem 2.6 For each B < 0 and a, b € [0,T], a < b, there exists just one
value p* € [m_(a,b; B),00) of the parameter p with m_(a,b; B) from (2.5)
such that problem (1.1), (1.6) with pu = p* has a solution u* satisfying

min{u*(t) :a <t < b} = B.
This solution is unique (for p = p*).

Lemma 2.7. Let p > 0, a = 0, by, by € (0,7], by < by, and let u; be a
(unique) solution of problem (1.1), (1.5) with b=10;, i = 1,2. Then

u(t) <wug(t) forte|0,b]. (2.17)

Proof. Since u;(0) = ug(0) = 0 and uy(by) = 0 < uz(by), thereisa by € [0, by)
such that Ul(t) < Ug(t) for t € (bo,bl] and ul(bo) = Ug(bo). If bo =0, then
(2.17) is true. Let us suppose that by > 0 and that there exist 0 < a < 5 < by
such that (2.3) is true with p given by (2.2). Then we can argue as in the
proof of Theorem 2.1 and get a contradiction, which completes this proof. O



3 Continuous dependence of parameter val-
ues on endpoints of solutions domains

Let A > 0. Then, by Theorem 2.5, for each ¢ € (0,7] there exists just
one value of the parameter p, which will be denoted by p(c), such that the
problem

(r(z(®)="())" = u(c)g() f (8, x(1)), t € (0,¢) (3.1)
z(0) =x(c) =0, z(t) > 0on (0,¢), max{z(t) : 0 <t <c}=A '
has a (unique) solution which we will denote by .. In such a way we get the
function
p: (0,77 — (0, 00). (3.2)

This section is devoted to the study of analytic properties of p. This function
will play an important role in the next consideration of a behaviour of deriva-
tives of solutions of (3.1) at endpoints. Some properties of p are presented
in the following proposition.

Proposition 3.1. The function p(c) is continuous and nonincreasing on
(0,7

Proof. First, let us prove that u(c) in nonincreasing on (0,77]. Let 0 < ¢; <
¢y < T and let y be a solution of equation (1.1) for p = p(ey) satisfying the
conditions y(0) = y(c2) = 0, y(t) > 0 for ¢t € (0, ¢y). Then, by Lemma 2.7,
ue, (t) < y(t) for t € [0,¢;] and thus max{y(t) : 0 < ¢t < ¢} > A. Using
Lemma 2.3 and Theorem 2.5 we deduce that u(c2) < p(er). Now, we will
prove that u(c) is continuous on (0, 7']. Suppose that 4 is discontinuous from
the left at some ¢ € (0,77, i.e. that

po = lim p(c) # plco). (3.3)

c—Cco—

Since p(c) is nonincreasing, we have pg > p(cp) > 0. Let {c,} C (0, co)
be an increasing sequence and lim, ., ¢, = ¢o. Consider the corresponding
sequence {u,, } of solutions of problems (3.1) for ¢ = ¢,,n € N. According
to (3.1) we have

0<u(t)<A fortel0,c,],neN. (3.4)

Further, by (H1) and Lemma 1.3, we get rolu,, (t)| < [r(uc,(t))u; (1) < Ly,
where L; = \/Q/L(cl)Q Jit g(s)r(s)ds, therefore

L
ul ()] < =% fort € [0,¢,),n € N, (3.5)
To



Using the Arzela-Ascoli theorem we can suppose without loss of generality
that {u.,(t)} uniformly converges on each interval [0, cy — ¢] C [0, ¢p), where
e € (0,¢p). Thus

lim u,, (t) = u(t) locally uniformly on [0, ). (3.6)

— 00

Then u € C°([0,¢p)) and u(0) = 0. Let us denote for n € NU {0}

tn

K, = min{/02 sq(s)k(s)ds, /C"(cn —s)q(s)k(s)ds}. (3.7)

:?

Then, by Lemma 1.2,

\ g (M) for t € [0, 2]
U, (1) > )
H-1 (w) for t € (%L;Cn]a

Cn

and thus, according to (3.3) and (3.6),

1 (mcé_Kot) for t € [0, %]
u(t) > .
-l (M(Co%)) for t € (%, co),

co

which means that w(t) > 0 for t € (0,¢9). Moreover f(¢,u,(t)) > 0 for
t € (0,¢,), n € N and
lim f(t, u.,(t)) = f(t,u(t)) forte (0,cp). (3.8)

n—0o0

According to Lemma 1.3 we get

‘/ (s, u, (s)ds

which implies, by means of the Fatou theorem, that ¢(t) f (¢, u(t)) is integrable
on each compact interval which is contained in [0, ¢). Let us choose £ > 0
such that I, = [e,¢o — ] C (0,¢). Let & € (¢,¢9 — £). Then we have for
sufficiently large n € N

/u:::) r(s)ds = r(uc, (§))ug, (§)(t — &)
plcn / / (1, uc, (T)drds  fort € I, (3.9

2QQ A
< 2\/M(0n) /0 g(s)r(s)ds fortel0,c,], n €N,

and
0< f(t,ue, () < f(t,Ce) forte I, (3.10)

where C. = min{u(t) : t € I.} > 0. In view of (3.4) and (3.5) the sequence
{r(ue, (§))ur, (§)} is bounded and thus we can suppose that it is convergent,
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ie. limy, o r(ue,(§))ur, (§) = V. Now, having in mind (3.8) and (3.10), we
can use the Lebesque dominated converegence theorem. Letting n — oo in

(3.9) we get

/ui(;(:) r(s)ds =V (t — &) + o /: /; q(7)f(r,u(r))drds fort e I.. (3.11)

Since ¢ is an arbitrary small positive number and the function ¢(t) f(¢, u(t))
is integrable on [0,¢y — ) C [0, ¢p), we can deduce that (3.11) is valid for
t €0,co). Then

W) = <V+u0/£ q(s)f(s,u(s))ds) fort € [0,c0), (3.12)

ie. u e CY[0,¢)), and further

(r(u(®))u'(t))" = pog(t) f (£, u(t))  for t € (0,co), (3.13)
and so r(u)u’ € C((0,¢0)). By (3.5), ue, (t) < E(c, —t) < L(¢y — t) for

T0 T0

t €10, ¢,), n € N, which yields 0 < u(t) = limy, o0 te, (£) < E(co —t) for t €
(0,¢0). Set u(cg) = limeey— u(c). Then u(cy) = 0 and also max{u(t) : 0 <
t < ¢y} = A. Further, by Lemma 1.3 (see (1.14)), the function ¢(t)f(t, u(t))
is integrable on [0, ¢o], which means that (3.11) and (3.12) are valid on [0, ¢g]
and u € C([0,¢]). We have proved that u is a solution of problem (3.1)
with ¢ = ¢y and p(c) = pp. But with respect to the definition of the function
pwe get g = p(co), which contradicts (3.3). Therefore p is continuous from
the left on (0, 7.

We can argue similarly to prove that p is continuous from the right on

0,7). O

Let B < 0. Then, by Theorem 2.6*, for each ¢ € [0,7) there exists just
one value of the parameter p, which will be denoted by p*(c), such that the
problem

() (0) = 1 a0 (t.2(0), 1€ (@ T) -
z(c)=x(T) =0, z(t) <0 on (¢,7), min{z(t):c<t<T} =B
has a (unique) solution which we will denote by u*. This defines the function
w10, T) — (0,00), (3.15)
whose properties are “dual” to those of p.
Proposition 3.2 The function p*(c) is continuous and nondecreasing on

[0,7).
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4 Continuous dependence of derivatives of so-
lutions on endpoints of their domains

Let A > 0,c¢ € (0,7] and let p(c) and u.(t) be the corresponding (uniquely
determined) parameter and solution of problem (3.1), respectively. Let us
define the function Ay : (0,7] — (—o00,0) by the formula

Aa(e) = ul(c). (4.1)

Here ul(c) means the left derivative of u. at ¢. The gluing and smoothing
process described in next Sec.5 is based on the analytic properties of the
function A4 and functions ®4, A}, @3 defined by formulas (4.13), (4.17),
(4.20). These properties are presented in propositions of this section.

Proposition 4.1. The function As defined by (4.1) is continuous on (0,7
and satisfies the inequality
ATO
Tr(0)

for c € [Z,T} . (4.2)

AA(C) < 2

Proof. Let us suppose that A, is discontinuous from the left at some ¢, €
(0,7]. Then there exists an increasing sequence {c,} C (0, ¢p), lim, 00 ¢, =
¢y, such that lim,, . Aa(c,) # Aa(c), iee.

lim u, (cn) # uy, (o), (4.3)

n—o0

where {u,, } is the corresponding sequence of solutions of problems (3.1) for
¢ =¢y,n € NU{0}. From Proposition 3.1 and its proof we get that

i ) = o) (1.9
and
lim w,, (t) = ue(t) locally uniformly on [0, ¢). (4.5)

— 00

Let max{u,, (t) : 0 <t < ¢,} = ue, (&) = A for n € N. Then &, € (0,¢,)
and u;, (&,) = 0 for n € N. The sequence {,} is bounded and thus we can
write without loss of generality

Jim & = & € (0,c0), ug, (&) =0, (4.6)

because limy, o0 U, (§,) = e, (&) = A. Using (4.5), (4.6) and the fact that
ey (co) = 0, we can find ng € N and ¢ > 0 such that for n € N,n > ng,

Cn > Co— €0, &o<cy—¢eo, & <c— e,
and consequently for j € NU {0}

U, (t) <0 for t € [co — €0, 5. (4.7)
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Now, choose € € (0,¢¢| and integrate the equalities (for j € NU {0})

(7 (e, (£))ue; ()" = plc;)q () f (£, ue, (2))

from &; to ¢y —e. We get

ey (co = )ty (eo = &) = nley) [ alt)F(E ue (1))t

4]

According to (3.8) and (3.10) with v = u,,, we obtain

iy [ 9(0)f 0w, ()t =0
and co—¢ co—¢€
T [ g0 (1 we, ()t = [T a(0) (8 (1)),

which imply that for each ¢ € (0, go] we have lim,, o u, (co —¢)) = ug, (co —
g)). In view of (4.3) we can assume without loss of generality that there is a
0 > 0 such that either

r(0)ug, (cn) > 7(0)uy, (co) +p for n € N,n > ny, (4.8)

or
r(0)ug (cn) < 7(0)uy,(co) —p forn € N,n > ny, (4.9)

is true. First, suppose that (4.8) occurs. Then, since r(u.,)u,, is decreasing

on [0, c,], we get r(0)ug, (co) + p < 1(ue,(co — €))uy, (co — ) for e € (0, ],
which contradicts the continuity of the function r(u,,)u;, on [0, co]. Now, let
(4.9) be valid. Then we can find &; € (0, g] such that

2

Ucq (Co—€1) p
/0 g(s)r(s)ds < ) (4.10)

we derive the inequalities

From (3.1), (4.7) and (H3)
2(r (e, (1)) ug,, (1)) r (ue, (t) ) ug, (1)
< —2p(cn) Qg (ue, (1))r (te, ())ug, (2)

for t € [cy — €1, ¢,] and for a sufficiently large n € N. Choose € € (0,&,] and
integrate (4.11) from ¢y — € to ¢,. Letting n — oo, we obtain

(4.11)

(r(uep(eo = )ity (eo = £))” > (r(O)y(c0) = p)”

2l [ gls)r(s)ds > (Ol () — 200 0} o)

13



and thus for each € € (0,&] the inequality

(r ey (0 — 2Dty (co — ) > (r(0)uly (co))” — 20r(0)et (o)

is fulfilled. But this is impossible because 2pr(0)u;, (co) < 0 and the function
7 (e, )Ug, is continuous on [0, ¢y]. This completes the proof of the continuity
of Ay from the left on (0, 7).

To prove that A, is continuous from the right on (0,7) we can argue
in the same way as before with the only difference that {c,} C (¢, 1) is
decreasing and the convergence in (4.5) is uniform on [0, ¢, now.

It remains to prove estimate (4.2). Let ¢ € [£,7]. Then there exists
¢ € (0,¢) such that max{u.(t) : 0 < t < ¢} = u.(§) = A, u.(§) = 0.
Since A = uc(§) — ue(c) = u (v)(§ — ¢), where v € (£, ¢), we get u(v)
= A/({ —¢) < —A/T. Having in mind that r(u.)u. is decreasing on [0, ¢], we
obtain —Ary/T > roul.(v) > r(u.(v))u.(v) > r(0)u.(c), which gives (4.2). O

Now, consider A > 0,¢ € (0,7") and the corresponding parameter p(c).
By Theorem 2.2*, for p = pu(c), a = ¢, b = T, there exists exactly one solution
of the problem

(WO = OICE), T
z(c) =x(T) =0, z(t) <0on (¢,T),
which we denote by v.. Let us define the function ®, : (0,7) — (—o0,0) by

the formula
P 4(c) = ve(o), (4.13)

where v/(¢) means the right derivative of v, at c.

Proposition 4.2. The function ® 4 defined by (4.13) is continuous on (0,71)
and
lim ®,4(c) = 0. (4.14)

c—T—

Proof. To prove the continuity we can follow the proof of Proposition 4.1
doing only small modifications.

It remains to prove (4.14). Suppose on the contrary that (4.14) falls.
Then there exists an increasing sequence {c,} C (%,T), lim, oo ¢, = T,
such that

dim vy (ep) =V <0, (4.15)

where {v., } is the corresponding sequence of solutions of problems (4.12) for
¢ = ¢p,n € N. By Proposition 3.1, the sequence {u(c,)} is nonincreasing
and 0 < p(c,) < pler) for n € N. Further, there exist &, € (¢,,T") such that

min{v,, (t) : ¢, <t <T} =, (&) =B, <0 forneN.

14



Then v, (&,) = 0for n € Nand the sequence {B,,} C [B,,0) is nondecreasing.
Therefore lim,, o B, = # < 0. Fix n € N. Then, by Theorem 2.6*, there
exists just one p such that the problem (4.12) with ¢ = ¢, has a (unique)
solution w’ satisfying min{u}(¢t) : ¢, < t < T} = B,,. This implies that
pit = p(e,) and u = v, for n € N and, by Theorems 2.2* and 2.6*, the
relation

0<m_(cy, T;By) < pfcy) (4.16)

is true. Let 8 < 0. Then, by (2.5) and (4.16), we get

2 (/On r(s)ds)
/Bon g(s)r(s)ds

By the limitting process for n — oo we obtain a contradiction. So, we
have proved lim,, ., B, = lim, o v,(&,) = 0. Similarly as in the proof of
Proposition 4.1, we compute that

2u(c1)@ 0

((0))? Jim Bng(s)r(s)ds =0,

2

< pu(e))(T —¢,)*Q  forn € N,

lim (vén (cn)) : <

n—0o0

which contradicts (4.15). O

Now, let us consider the “dual” situation. Let B < 0,¢ € [0,7) and
let p*(c) and u’(t) be the corresponding (uniquely determined) parameter

and solution of problem (3.14), respectively. Let us define the function A% :
[0,7) — (—00,0) by the formula

Ap(0) = (ug)'(e). (4.17)
Here (u})'(c¢) means the right derivative of u} at c.

Proposition 4.3 The function A}, defined by (4.17) is continuous on [0, 1)
and satisfies the inequality

A%(e) < for ¢ € {0, Z] . (4.18)

Tr(0) 2

Now, let ¢ € (0,7). By Theorem 2.1 for u = p*(¢),a = 0,b = ¢, there
exists exactly one solution of the problem

(r(z(t)2'(t)) = p*(c)g(t) f(t, x(t)), t € (0,¢)
=0,

(4.19)
z(0) = z(c) z(t) >0 on (0,c),

which is denoted by v¥. Let us define the function @3 : (0,7') — (—o0,0) by
% (c) = (v2)'(¢), (4.20)

15



*

*)'(¢) means the left derivative of v} at c.

where (v
Proposition 4.4 ®%; defined by (4.20) is continuous on (0,T) and

cl_l}rgi O3 (c) = 0. (4.21)

5 Main results

Theorem 5.1. For each A € (0,00) there ezists a solution x of problem
(1.1), (1.2) with the unique zero ty € (0,T) such that

max{z(t): 0 <t <T} =max{z(t): 0<t <t} =A if t¢€ [g’T)
and

T
max{z(t) : 0 <t <T}=max{z(t): 0<t <t} <A if t¢€ (0, 5)
Proof. Fix A € (0,00). For ¢ € (0,7") suppose that u.(t) and v.(t) are
the corresponding (uniquely determined) solutions of (3.1) and (4.12), re-
spectively, with the corresponding parameter p(c). Let Ay and ®4 be the
functions defined by (4.1) and (4.13), respectively. Then three cases can

) L S
(3)=0(3) o1

Then the function

). Moreover, to = £ and

is a solutions of problem (1.1), (1.2) with p 5

max{z(t) : 0 <t <T} = max{u%(t) 0<t< L} =A

2) Let ) - -
(3)>0(3) 2

By Proposition 4.1, the function A4(c) is continuous on (0,7] and Aa(c) <
T‘:’("g) for ¢ € [£,T]. According to Proposition 4.2, the function ®4(c) is
continuous on (0,7) and lim,,;— ®4(c) = 0. Therefore there exists at least

one ¢ € (%, T) such that Aa(cy) = Pa(co). Then the function

o(t) = { Uy (t)  for t € [0, ¢
Ve () for t € (co, T
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is a solution of problem (1.1),(1.2) with g = u(cy). Thus ¢y = ¢, and
max{z(t) : 0 <t <T} =max{ug(t) :0<t<c} = A

3) Let
( )<<1>A( ) (5.3)

Let us put B = min{vg() : £ <t < T} < 0 and consider the “dual”

functions u(t) and v}(¢) which are (uniquely determined) solutions of (3.14)
and (4.19), respectively, with the corresponding parameter p*(¢). Then

u

T T
()= vy forte [5,T], vi(t) =ug forte (o, 5]. (5.4)

ol *

Let A} and @3 be the functions defined by (4.17) and (4.20), respectively.
(5.4) implies that A (L) = ®4(T) and ®5(L) = A4(T) which, by (5.3) gives

AL (%) > @, (%) | (5.5)

) = (L), we get by Propositions 3.1 and 3.2*

Nl

Since p*(

pQ<ute) foree (o g] | (5.6)

According to Proposition 4.3*, the function Aj(c) is continuous on [0,7)

and Aj(c) < T'i—?g) <0 force [0, g] Using Proposition 4.4*, we have that
the function ®3(c) is continuous on (0,7) and lim. o ®5(c) = 0. This
together with (5.5) gurantee the existence of at least one ¢; € (0, %) such

that A%(c;) = ®4(c1). Then the function

vy (t) fort e [0, ¢
us (t) fort € (¢, 7]

C1

z(t) =

is a solution of problem (1.1), (1.2) with u = p*(¢;) and ¢y = ¢;. Let us apply
Lemma 2.3 for a = 0,b = ¢y, 1y = p*(c1), po = pler), ui(t) = vl (t), uz(t) =
ue, (t) for t € [0,¢;]. Then we get by (5.6) that v} () < u,(t) for t € [0, ¢1],
and so
max{z(t) : 0 <t < T} =max{v} () :0<t < e}
< max{ug, (t):0<t<¢}=A
|

Theorem 5.2 For each B € (—00,0) there exists a solution x of problem
(1.1), (1.2) with the unique zero t, € (O, T) such that

min{z(t): 0 <t < T} =min{z(t) : to <t < T} =B if t€ (o,g]
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and

min{z(t) : 0 <t < T} =min{az(t) : to <t <T}>B if t¢€ (g,T).

Theorem 5.3. For each A € (0,00) there exists a solution x of problem
(1.1), (1.2) with the unique zero ty € (0,T) such that

max{z(t) : 0 <t <T}=max{a(t) : tc <t <T}=A if ty¢€ (0, g]
and

max{z(t) : 0 <t < T} =max{a(t) : tp <t <T} <A if t¢€ (T

5,T).

Proof. To prove our theorem we replace the interval [0, ¢|] with [¢, 7] in (3.1)
and by means of the solution y.(t) of such problem we define the function

La:[0,7] = (—00,0), Ta(c)=y.(c).

Then we replace the interval [¢, 7] with [0,¢] in (4.12) and by means of the
solution z.(t) of such problem we define the function

Uy :(0,7) = (—00,0), Wa(c)=z.(c).

Analogously we introduce the “dual” functions I'; and U} by means of
solutions of problems (3.14) and (4.19), where the intervals [0, ¢] and [¢, T
are mutually replaced. Then, using similar arguments as in Sec. 4, we can
prove the continuity of I'y, ¥, I'%, ¥% and formulas lim, o+ ¥4(c) = 0,
lim._,— ¥%(c) =0,

A’I"o
Tr(0)

for c € {T

Ta(c) > for ¢ € [0, g} % (c) > 5,T}.

To
Tr(0)
Finally, we can argue as in the proof of Theorem 5.1. O

Theorem 5.4 For each B € (—00,0) there exists a solution x of problem
(1.1), (1.2) with the unique zero ty € (0,T) such that

T
min{z(t) : 0 <t <T}=min{z(t) : 0<t <t} =B if ty€ [E’T)
and

min{z(t) : 0 <t < T} =min{z(t) : 0<t <ty} > B if ty¢€ (0,%).
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Example 5.5. Let o, f € (0,1), a € (0,00), b € (—00,0) and

a
— for x > 0
xa
p(z) = b
for x < 0.
()7
Consider the differential equation
1
(L +e"")a") = H(Sin W=t 2) (h(t)signz + p(z)) (5.7)

with v € (0,00) and h : [0,T] — (0, 00) continuous. The assumptions (H1)-
(H3) are satisfied with r(u) = (1 + %)Y > 1, Q = 3, k = h and

max{a, —b}

g(z) =max{h(t) : 0 <t <T}+ min{[z[7, 27}

Consequently, Theorems 5.1, 5.2%, 5.3 and 5.4* can be applied to problem
(5.7),(1.2). For example, by Theorem 5.1, for each A € (0,00) there exists
a solution x of problem (5.7),(1.2). If ¢, € (0,7) denotes the unique zero
of z, then max{z(t) : 0 <t < T} = max{xz(t) : 0 <t < tr} = A provided
to € [£,7] and max{z(t) : 0 <t < T} = max{z(t) : 0 < ¢t <t} < A
provided ¢, € (0, %).

Remark 5.6. With respect to Remark 1.1, Theorems 5.1, 5.2%, 5.3 and 5.4*
can be applied to problem (5.7),(1.2), where h in (5.7) is even nonnegative
on [0,7]. Particularly, we can consider (5.7) with h = 0, that is,

(14 e*c®®)72") = u(sin ﬁ — 2)p(x).

In this case the functions kj; in Remark 1.1 are for example

a_ bl

kM(t):mln{W,W} fort € [O,T] and M > 0.
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