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1 General existence principle for singular BV Ps

1.1 Introduction

Let n € N, [0,7] C R and D C R". As usual, C" ([0, 7]) and AC"1([0,T]) de-
notes the set of functions having (n — 1)-th derivatives continuous and absolutely
continuous on [0, 7], respectively. Li([0,77]) is the set of Lebesgue integrable
functions on [0, 7.

Assume k € Nand Y € R*. Car([0,T] x Y) stands for the set of functions
f:00,7] x Y — R fulfilling the local Carathéodory conditions on [0, 1] x Y, i.e.:
(i) for each y € Y the function f(-,y) : [0,7] — R is measurable; (ii) for a.e.

*Supported by grant no. 201/01/1451 of the Grant Agency of Czech Republic and by the
Council of Czech Government J14/98:153100011.
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t € [0,7] the function f(¢,-) : Y — R is continuous; (iii) for each compact set
K C Y the function mg(t) = sup{|f(¢,y)| : v € K} is Lebesgue integrable on
[0,7].

Having a Banach space and its subset M, then ¢l/(M) and 0M stand for the
closure and the boundary of M. In what follows we assume that C™*([0,7]) and
L,([0,T1]) is respectively equipped with the norm

Jelln-r = max( 3 KO0t € 0.7], and ol = [ (0.

Then C™~*(]0,T]) and L,([0,T]) become Banach spaces. For any measurable set
M C R, u(M) denotes the Lebesgue measure of M.

We study the singular BVP

u™(t) = ft,ult), ..., u (1)), (1.1)
u€S, (1.2)

where f satisfies the local Carathéodory conditions on [0,7] x D, the set D is not
closed, f has singularities in its phase variables on the boundary 9D and S is a
closed subset in C"~*([0,T]). Denote D; = {z; € R : (zo,..., 2, 1) € D}, 0 <
1 <n-—1.

We say that f has a singularity on 0D in its phase variable x; (0 < j <n—1),
if there exists d; € 0D, such that

limsup |f(t,zo,...,2j,...,2,1)| = 0 (1.3)
zj—dj,x;€D;
fora.e. t€[0,7] and all z; € D;, 0 <i<n—1,i#j.

We say that u is a solution of singular BVP (1.1),(1.2) ifu € AC™ ([0, T])NS
and u satisfies (1.1) for a.e. ¢t € [0,T].

A point tg € [0, is called a singular point corresponding to a solution u of
BVP (1.1),(1.2) if there is a j € {0,...,n — 1} such that u)(¢;) = d; where
d; € 0D, fulfils (1.3).

Only singular BVPs with singular points ¢ = 0 or (and) ¢ = T have been
studied in the mathematical literature, till now. See e.g. [1], [2], [6], [7], [8],
[10], [11], [15]. Such singular BVPs can be considered under weaker assumptions
imposed on f provided we look for their solutions in the set ACJ"*((0,7)) N
C"™%([0,T]). But this approach cannot be used in the case of the general BVP
(1.1), (1.2) which can have singular points anywhere in [0, 7']. Moreover, singular
points corresponding to different solutions of BVP (1.1), (1.2) can be different,
as well. The first existence results for higher order BVPs having singular points
inside (0,7") have been recently achieved by the authors in [3] and [12].

In this paper we present the general existence principle which can be used for
a large class of singular problems including those, considered in [3] and [12]. Our
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existence principle is formulated for the singular BVP (1.1),(1.2) and is based
on the regularization and sequential techniques. Such techniques consist in a
construction of a proper sequence of auxiliary regular problems and in limiting
processes.

Having auxiliary regular BVPs, we first need to prove their solvability. Such
proofs are often based on the Nonlinear Fredholm Alternative (see e.g. [9], Theo-
rem 4 or [14], p. 25) which we formulate in the form convenient for the application
to the problems mentioned above. Particularly, we consider the differential equa-
tion

n—1
W) + Y ai(tu(t) = glt,u(t), ..., u" V(D)) (L4)
i=0
and the corresponding linear homogeneous equation
n—1 )
W™ () + 3 a;(t)ul(t) = 0, (1.5)
i=0

where a; € L1([0,7]),0<i<n—1, g € Car([0,7] x R"). Further we deal with
the boundary conditions

Li(w)=r, 1<j<n, (1.6)

with 7; € R and continuous linear functionals £; : C"1([0,7]) - R, 1 < j<n
and with the corresponding homogeneous conditions

Li(u)=0,1<j<n. (1.7)

By a solution of BVP (1.4), (1.6) we understand a function u € AC™*([0,17)
which satisfies conditions (1.6) and for a.e. ¢ € [0, 7] fulfils (1.4).

Theorem 1.1. (Nonlinear Fredholm Alternative) Let the linear homogeneous

problem (1.5), (1.7) have only the trivial solution and let there ezist a function
Y € Ly([0,T)) such that

lg(t, o, ..., xpo1)| < (t)  for a.e. t €[0,T] and all zy, ..., x,—1 € R.
Then the nonlinear problem (1.4), (1.6) has a solution.

The classical tool which has been often used in limiting processes is the
Lebesgue Dominated Convergence Theorem. Note that in our case of the general
boundary condition (1.2) we need not be able to find a Lebesgue integrable ma-
jorant function to any auxiliary sequence of regular functions relevant to problem
(1.1), (1.2), because we do not know positions of singular points ¢ corresponding to
solutions of (1.1), (1.2). Therefore our limiting processes are based on the Vitali’s
Convergence Theorem, where the assumption about the existence of a Lebesgue
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integrable majorant function is replaced with a more general assumption about
the uniform absolute continuity.

A collection A C Ly([0,71]) is called uniformly absolutely continuous on [0, T
if for every ¢ > 0 there exists § > 0 such that if ¢ € A and M C [0,7] with
pu(M) < 6, then

/M lo(8)|dt < <.

Theorem 1.2. (Vitali’s convergence theorem, [5], p. 178-180.) Let {f,} be a
sequence in Li([0,T]) which is convergent to f for a.e. t € [0,T]. Then the
following statements are equivalent:

(a) f e Li([0,T]) and lim, o || fr — fllz, = 0.

(b) The sequence {f,} is uniformly absolutely continuous on [0,T].

1.2 Main result
Consider an auxiliary sequence of regular differential equations

WM (t) = fult,ult),. .., u™ (), (1.8)
where f,, € Car([0,T] x R"), m € N.

Theorem 1.3. (General existence principle) Let us suppose that there is a
bounded set Q@ C C"1([0,T]) such that

(i) for each m € N, the regqular BVP (1.8), (1.2) has a solution u,, € €;

(i1) the sequence { f(t, (1), ..., ul D ()}, is uniformly absolutely contin-
uous on [0,7T7].

Then we have

(I) there exist u € cl(?) and a subsequence {u,y} C {u,,} such that

lim ||um/ - UHCn—l = 0,
m/ —00

(I1) wu is a solution of the singular BVP (1.1), (1.2), if

Hm fo (6, e (), - ., w70 (@) = f(tu(d), ..., u (1))

m/ —oo

for a.e. t €[0,T].



Proof. By (i), for each m € N there exists a solution u,, of BVP (1.8),(1.2) in
Q. Since Q € C"71([0,T7]) is bounded, there is an r > 0 such that

||| cn-1 < r for m € N. (1.9)

Further, according to (i7), for each € > 0 there exists 0 > 0 such that for each
t,7 € [0,7] and each m € N we have

Jug ™V () = ufy ™ (r)] <

m

(), uli = (s))| ds| < e

whenever |t — 7| < 6. Hence {u(""Y(#)} is equicontinuous on [0,7] and since
{u,} satisfies (1.9), the Arzela-Ascoli theorem guarantees the existence of a sub-
sequence {u,, } converging in C" ([0, T]) to a function u € cl(f2). Let

B for (e (£), - ubs V(1) = f(Eult), ..., u (1))

m/—o0

for a.c. ¢t € [0,T). By (i), the sequence { fo (¢, th (£), - .., u% V(2))} is uniformly

) m

absolutely continuous on [0,7]. Therefore we can use the Vitali’s convergence
theorem by which f(¢,u(t),...,u™ V() € Ly([0,T]) and letting m' — oc in the
equalities

t
ufgfl)(t) = uggfl)(()) —|—/ For (5,0 (5), - -, ul D (s)) ds, t€[0,T], m' €N,
0

) Y/

we get
W () = +/ s,u(s),. .., u™V(s))ds, tel0,T).

Consequently v € AC™1([0,T]) and satisfies (1.1) a.e. on [0,7]. In addition,
since {u,,} C S and S is closed, we have u € S. We have proved that u € ¢l(€2)
is a solution of the singular BVP (1.1), (1.2).

|

Remark 1.4. Assumption (éi) in Theorem 1.3 is equivalent to the following
condition:

(¢ii) For every € > 0 there exists ¢ > 0 such that if {(7;,1;)}52, is a system of
mutually disjoint intervals (7;,¢;) C (0,T) and if

>t
=1
then

Z/ oty (), D (@)t <

for each m € N.
For the proof see e.g. [4], Lemma 3.



Remark 1.5. The absolute continuity of the Lebesgue integral yields that con-
dition (4i) in Theorem 1.3 is satisfied if there exists a function ¢ € L([0,7]) such
that

[frn(t, (D), - ug ™V (8))] < (t)
for a.e. t € [0,7] and each m € N.

2 Application to conjugate BV Ps

2.1 Formulation of problems

Consider the (p,n — p) conjugate boundary value problem of the form

u™(t) = ft,ult), ..., u™ (1)), (2.1)
uw(0)=...=u"PD0) =0, w@)=...=u?(T) =0, (2.2)

where n > 2, 1 < p < n — 1 are fixed natural numbers. Here, R, = (0, 00),
Ry =R\ {0}, D =R, x R{"' and f € Car([0,T] x D). We assume that f has
singularities on 0D in all its phase variables, i.e.

limsup | f(¢, zo, ..., %, ..., &n1)] =00, 0<j<n—1,
z;—0

for a.e. t € [0,7] and all (zo,...,x,_1) € D.

By replacing ¢ by T —t if necessary, we may asssume that p € {1,...,n/2} for
neven and p € {1,...,(n+ 1)/2} for n odd. Then we observe that the greater
p is chosen, the more complicated structure of the set of all singular points of a
solution to (2.1), (2.2) is obtained. Since singular problem (2.1), (2.2) for p =1
has been studied in [3] and [6], we assume p = 2 and consider the (n — 2,2)
conjugate boundary conditions

u(0) =...=u"0) =0, u(l)=1d(T)=0. (2.3)

Problem (2.1), (2.3) is general enough to demonstrate the profit of the application
of Theorem 1.3 because it has solutions with singular points lying inside of (0,7")
and it has not been solved in this setting before. Hence, the application of The-
orem 1.3 provides new existence results for problem (2.1), (2.3) which generalize
earlier ones in [1] and [7].

In this paper we will use the following assumptions

f € Car([0,T] x D) and there exists ¢ > 0 such that

2.4
c < f(t,xo,...,xy_1) for ae. t € [0, 7] and all (xg,...,z,_1) € D; } (24)



h € Car([0,T] x [0,00)) is nondecreasing in its second argument and

1 /T n=2  pneicl (2.5)
li - h(t,z)dt < |1 — :
meup > J, 62 ( T @H-_z)!) :
w; : Ry — R, are nonincreasing and
r n—i . (26)
/ wi(t")dt < o0, 0<i<n-—1;
0
n—1 n—1
fltwo, .y wno) < h(t, Y [ail) + Y willal)
=0 i=0 (2.7)

for a.e. t € [0,7] and all (g, ...,x,_1) € D,
where h and w; satisfy (2.5) and (2.6).

The main result for the solvability of problem (2.1,),(2.3) is given in the
following theorem.

Theorem 2.1. (Existence result for (2, n-2) conjugate BVP) Let assump-
tions (2.4) — (2.7) hold. Then problem (2.1),(2.3) has a solution which is positive
on (0,7).

2.2 Lemmas

Here, we prove a priori estimates of a certain class of functions (Lemmas 2.4
and 2.5) which will be needed for the construction of the set € in order to apply
Theorem 1.3. To this aim we first provide a description of zeros for the class of
functions under consideration.

Lemma2.2. Let ¢ > 0 and let u € AC"1([0,T]) satisfy (2.3) and
u™(t) > ¢ fora.e. t €0,T). (2.8)
Then we have

(i) u > 0 on (0,T) and there exists a unique point ty € (0,T) such that
u¥(t) =0 fork=1and k =n—1;

(¢7) if n > 4, then there exist just two points t;,s; € (0,T), t; < s;, such that

uD(t) =ul(s)) =0 for2<i<n—2;

(172) all these zeros are ordered in the following way:
ifn=23,then ) <ty <ty <T,
ifn=4,then 0 <ty <ty <sy<T, 0<ty<ts<T,
if n >4, then

{0<tn_2<tn_3<...<t3<t2<t1<T, (2.9)

0<tpo<tn1<S,2<8,3<...<83<s8y9<T.



Proof. First, we prove that u' has just one zero in (0,7"). Since u(0) = u(T), u’

has at least one zero in (0, 7).

Let n = 3. Assume that there are ¢, s; such that 0 < ¢; < s; < T and u/(t;) =
u/(s1) = 0. Then, by (2.3) and the Mean Value Theorem, we can find ¢, €
(t1,s1), 2 € (s1,T) such that u”(t2) = u”(s2) = 0, which contradicts (2.8).

Let n > 4 and asssume that u’ has zeros t;,s; and 0 < t; < s; < T. Then, by
(2.3) as before, we can find ¢y € (0,t1), sy € (t1,51), 72 € (s51,7) such that

u"(tz) = u"(s2) = u"(re) = 0. (2.10)

If n = 4, then (2.10) implies that u™ has a zero in (0,7), contrary to (2.8).
Let n > 4. Then (2.10) with »"(0) = 0 yields the existence of points t; €
(0,t2), s3 € (ta2,52), r3 € (s9,T) such that u"(t3) = u"(s3) = u"(r3) = 0.
Continue inductively we get points t,,_o € (0,%,_3), Sp—2 € (tn_3,Sn_3), rn_2 €
(5,3, T) such that u™ 2 (t,_ ) = u" 2 (s, ) = u" 2 (r,_,) = 0. Consequently
we have at least two zeros of u™~Y in (0, T) and at least one zero of u(™ in (0, T),
contrary to (2.8).

Hence, for n > 3, «’ has just one zero t; € (0,7'). Therefore we can deduce by
the same argument as before that u(? has at least two zeros t;,s; € (0,71),t; <
5,2 < i <n—2 u™"Y has at least one zero t,_; € (0,7), and (2.9) holds. By
(2.8), u»V) is increasing on [0,7] which implies that 4™~ has the only zero
tn_1 € (0,T). So, u” has just two zeros t;,s; € (0,T),2 < i < n — 2. Finally, by
(2.8), u("2) is convex on [0, 7] which yields u"=? > 0 on (0, ,_5). Therefore by
(2.3), u® > 0 on (0,#;), 1 <i < n— 3, and consequently u > 0 on (0, 7). This
completes the proof. O

Remark 2.3. Lemma 2.2 describes a location of all singular points of an arbitrary
solution u to problem (2.1),(2.3). Particularly, u always has the singular points
0 and 7T and, for n > 4, u has two sets of singular points depending on u and
lying inside (0,7): {t;}7-" and {s;}7=5. These two sets need not be disjoint and
their location is given by (2.9).

Define

B={uec AC™'([0,T)]) : u satisfies (2.3) and (2.8) with ¢ > 0}. (2.11)

Lemma2.4. Let w; fulfil (2.6). Then there exist constants A; € Ry, 0 < i <
n — 1, such that for each function u € B the estimates

T .
| @@ < A 0<i<n—1, (2.12)
0

hold.



n—1)

Proof. Let u € B. Then, by Lemma 2.2, there is just one zero t,,_; of ul in
(0,7). Integrating (2.8) we get

—u"D(t) > ¢(ty_y —t) for te€0,t,_1], (2.13)

u () > et —tp_y) for t € [t,_1,T). ‘

Step 1. We find estimates for w2,
Integrate the first inequality in (2.13) from ¢ € [0,%,, _2) to ¢, 2. Then
tp—2
u () = = [T U (@) dr 2 S —ta2) + (fa = 1)) 2 St =)
Hence,
a2 (t) > S (tus — 1) for t € [0, 1y_s]. (2.14)

2!
Let n > 3. Integrate the first inequality in (2.13) from ¢, 5 to t € (t,,_2,t,_1] and

then integrate the second inequality in (2.13) from t € [t,, 1,5, 2) to s, o and
from s,,_9 to t € (s,_2,T]. We get

~u"D (1) > St~ t,21)? for 1€ [tuos, taci],

2!
—umD(g) > % ($n2—1)* for t€[tny,sn], (2.15)
u" (1) > % (t=sn2)® for t€[snT]

If n =3, we put s,,_o =T in (2.15).
Step 2. We find estimates for u(=3).
Let n > 4. There are two cases to consider: (i) t,_3 < t,_1 and (ii) t,_3 > t,_1.
Case (i). Let t,_3 < t,_;. After integration, (2.14) gives
(n-3) ©
W 2
The first inequality in (2.15) implies, by integration,

C
(—(tn o — 1)+t ) > §1:3 on [0,t, .

_ C

w3 (t) > i(tn_g —t)® for t€ [th_otn_s],
" c

—u"3(t) > i(zt—tn,?,)3 for ¢ € [ty s, tn_1).

Since —u(™=3)(t,_;) > 0, we integrate the second inequality in (2.15) from ¢,_,
to t € (tp—1, Sp—2) and deduce that

e c
u" (1) > 5t tno1)® for t € [ty 1, Sn_s)-

Finally, integrating the third inequality in (2.15), we get

D) > (s, 5 — 1) for ¢ € [sp_25n_s),

!
(= sn3)®  for t € [s, 3T

¢
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Case (ii). Let t,, 3 > t, 1. Then by an analogous procedure we get

- c
w3 (1) > §t3 for t e [0,t,-2],
ACC) (t) > é(tnfl —t)*  for t€ [ty 2t
- c
u™=3) (t) > ﬁ(t”ﬂ?’ —t)®  for t€ [ty 1t 3,
o c
—ym=3) (t) > g(75 —tn3)® for t€ [ty 3,5, 2],
c
w3 () > 5(87%3 —1)* for € [sy_9,Sn 3],
u(n—3) (t) > %(t — Sn—3)3 for te [Sn—?nT]'

Ilfn=4(n=3), weput s, 3=1T (t,_3 = s,—3 = T') and argue as above.

Step 3. If n > 4 we find estimates for v, 0 < i <n — 4.
Using the estimates of Step 2 we continue inductively and deduce that for any 7 €
{2,...,n — 4} there are p; disjoint intervals (ax_1,ax),1 < k <p;, p; <2(n—1),

such that .

kL—J [ak—lv ak] = [07 T], (2.16)

and for each k € {1,...,p;} one of the inequalities

. Cc i

WO 2 gt = o)™ for t€ far,al

or (2.17)
. Cc i

WO 2 o gyl = 0" for 1€, al

is satisfied. If i € {0, 1}, then (2.16) and (2.17) are valid with p; < 2n — 3.
Step 4. We prove the estimates (2.12).
To summarize, Steps 1-3 provide that for each function v € B and for each

i € {0,...,n — 1} there exists a finite number p; < 2n of disjoint intervals
(ak_1,ar), 1 < k < p;, such that (2.16) and (2.17) are satisfied. Now, choose an
arbitrary 7 € {0,...,n— 1}. Since w; is nonincreasing and (2.17) is true, we have

/OTwi(|u )t = Z/ak 1 £)|)dt

<§Vw(ﬁ( ax 1) >dt+/ (n—l) (ak—t)”i>dt].

If we put " = ¢/(n—1i)! and z = ¢;(t — ap_;) in the first integral (z = ¢;(ay —t)
in the second integral), we get, by (2.6),

T . 4 cil’ .
| wnu@dr < = [ wizr )z = A < oo
0 0

&)
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Lemma is proved. O

Lemma2.5. Let B be defined by (2.11) and let (2.5),(2.6) be fulfilled. Then
there exists r* > 1 such that for each function u € B satisfying

u™(t) < Bt n + 2 (1)) + z[wiuu(“(tm fw)] (218)

for a.e. t €[0,T], the estimate
|lul|gn-1 < 7* (2.19)

holds.
Proof. Consider u € B satisfying (2.18). By Lemma 2.2 we can find ¢,_» € (0,7")
such that u™=2(t, ,) = 0.

Put max{|u™ " V(t)| : t € [0,T]} = p. Then —p < u™ N (t) < p on [0,T].
Integrate this inequality from ¢, 5 to t € (¢, 2,7] and from t € [0,%, 2) to ¢, .
We get —pT < u=2(t) < pT on [0,T]. Similarly, using (2.3) and repeating the
integration from 0 to ¢t € (0,77, we obtain step by step

@ (t)] < p(njiniz_;)’ on [0,7], 0<i<n-—3
Hence,
|u||gn-1 = maxgﬂu(i)(tﬂ :t€[0,T)} < pK, (2.20)
where i
=1 g (n—i—2)"

Now, integrate (2.18) from ¢, to t € (¢,—1,T], where ¢,_; € (0,T) is the unique
zero of w1V, by Lemma 2.2. Then, due to (2.8),

0 <u" V() < /t:1 s,n + Z |u®( ds + Z/ [wi(|ul(s)]) + wi(1)]ds

for t € (t,—1,7]. Similarly, integrating (2.18) from ¢ € [0,t,_;) to t,_; and using
(2.8), we get

0 < —uD(t) < /tt“ h(s,n+7§|u(i)(s)|)ds
+Z/tn Twi(|uP(s)]) + wiL)]ds

11



for t € [0,¢, 1). Hence, by (2.5) and (2.20),

n—1

D (¢ |</ sn—l—pde—l—Z[Twz +/ wi(|u® ()|)d3]

=0

for t € [0,7]. Further, by Lemma 2.4, we can find constants 4;,0 <i < n—1,
independent on u and satisfying (2.12). So, if we put

i Tw;(1 =A,
i=0

we have p < [ h(s,n + pK)ds + A and consequently

AK +n

T
h K)d .
(s,m+p )S+n+pK

1<
“n+pK Jo

(2.21)

According to (2.5) we can find € > 0 and p* > 0 such that for all 7 > p*

1 T
—/ h(t,r)dt <
0

r

1—¢ q AK +n
an
K T

<e.

Therefore, by (2.21), n + pK < p*. So, we can put r* = p*/K and (2.19) is
proved. O

According to the assumption (i) of Theorem 1.3, the following lemma is
devoted to the study of the uniform absolute continuity of the function set W
defined below.

Lemma 2.6. Let w; fulfil (2.6) and B be given by (2.11). Put
W ={w;(ju?)):ueB, 0<i<n—1}. (2.22)

Then the collection W is uniformly absolutely continuous on [0,T]; i.e., for each
e > 0 there exists 6 > 0 such that

/M wilu® (s)|)ds < =

for each uw € B,0 <i<n-—1, and for each M C [0,T], u(M) < 9.

Proof. By Remark 1.4 it sufficies to prove that for each ¢ > 0 there exists 6 > 0
such that for any system of mutually disjoint intervals (o, 5;) C [0,7],7 € N,
the condition

(6, - <5:>2/ wi(lu® (s)|)ds < e, (2.23)

j=1 j=1"%

12



is valid for v € B and 0 < ¢ < n — 1. Choose an arbitrary € > 0, an arbitrary
u € B and an arbitrary iy € {0,1,...,n —1}. Put

Yilt) = wio(E ), Digla) = [ iy (s)ds for t,x € 0,1,

Then, by (2.6), I';, is absolutely continuous on [0,7]. It means that if we put

c 1

= m, Ep = ZCZ’()&, (224)
then there exists dy > 0 such that for any system {(a;, b;) }52, of mutually disjoint
intervals (aj,b;) C [0,77], the condition

n—io __

Cio

o0

S0 — ag) < 6 = 3 (Tao(by) — Ty (7)) < o (2.25)

is valid. By virtue of Step 4 of the proof of Lemma 2.4, there are p; (< 2n)
disjoint intervals (ag_1, ax), 1 < k < p;,, such that (2.16) and (2.17) hold. Choose

a system { (o, 8;) 152, (g, B5) C [0, T] satisfying
> (B —aj) <6, (2.26)
7j=1

where § € (0,dp/c;,) is so small that for each j € N thereisa k € {1,...,p;, — 1}
such that

[, B5] C [ak-1, ar1]- (2.27)
Fix j € Nand find k € {1,...,p;, — 1} fulfilling (2.27). Put
Bi .
L= [ wi(lu® @)t (2.28)
o

There are two cases to consider. Case (i): o; < ar < f3;; Case (i): |oy, B;] C

[ak—1, ar] or oy, B5] C [ak, ag1].
Case (i). Let o < a < fj. Since w;, is nonincreasing, we get by (2.17),
(2.24), (2.27) and (2.28)

ag ag

I< [ (et —ac ) @yde+ [ g ((elar —0)" )t

@j @j
ﬂj n—i ﬂj n—i
[l (t = a)) )t + [ ((Gla — )" ).
ag g
Hence,

Iy < Ui (0 = 1)) = T 5 — ax-0)
+05 (cig (ar — 5)) = Dig(0) + Dig (30 (85 — ax)) — L' (0) (2.29)
+ L4 (i (arg1 — ar)) — Ty (i (art1 — B;))]-
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Case (ii). If (o, Bi] C lam—1, am], m € {k, k + 1}, we similarly get

I < Sl (io(B; — m-1)) — Dio(cio(@ — 1))
Cig (2.30)

+Fi0 (Cio (am - aj)) - 1—‘io (Cio (am - BJ))]
By (2.25), (2.26), (2.29) and (2.30), we have

le<@:€

j=1 Cig

and so (2.23) is proved. O
2.3 Proof of the existence result and an example

Here, in the proof of the existence result for problem (2.1), (2.3) given in Theorem
2.1, we will demonstrate the application of Theorem 1.3.

Proof of Theorem 2.1.
Step 1. We construct auxiliary regular BV Ps.
Let 7* > 1 be the constant by Lemma 2.5 satisfying (2.19). Put

i <r* i <r*
Uo(x):{|ai| if |z <r a(x):{x if |z| <r

r*oif x| >t rsgnx if |z > r*.

Choose m € N and first define an auxiliary function h,, € Car([0,T] x [0, 00) X
R™™ ') by the following recurrent formulas. For a.e. t € [0,7] and all zy €
[0,00),21,...,2,_1 € R we put

[t @o, @1, wp1) i zg > &

hm,O(taxOrxla e '7xn71) - 1
f(ta_al‘la"'al‘nfl) lf OSxOS%;
m

hm,i(t; TOyeoeyLjyenn ,J}n_l) =
( . 1
Pomic1(t, o, ooy @y ooy pmy) i |2y > —
m
m 1
| Gl (g, i) ()
1 1
_hm,ifl(t,fvo, ey Ty, —E,xiﬂ, . ,xnll)(xi _ E)]
if || < —
) m
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for1 <i<n-—1, and
hm(t, oy - - - ,"L'nfl) = hm,nfl(t, oy - - - ,l‘nfl).

For a.e. t € [0, 7] and for all (z,...,x, 1) € R" put
fm(t,zo, 21, ..y 1) = hy(t, 00(x0),0(21), ..., 0(xy 1)) (2.31)
and define the set
S ={ue€ C"*[0,T]) : u satisfies (2.3)}. (2.32)

We see by (2.4) that f,,, € Car([0,7] x R") for m € N. Hence, we have regular
auxiliary problems (1.8),(1.2) with f,, and S given by (2.31) and (2.32), respec-
tively. Since S is closed, we can apply Theorem 1.3 on problems (1.8),(1.2),
m € N.

Step 2. We prove that the assumption (i) of Theorem 1.3 is satisfied.
By (2.4) and (2.31), for each m € N there exists g,, € L([0,T]) such that

c S fm(t, Zo, - - 'an—l) S gm(t)

(2.33)
for a.e. t € [0,7] and for all (zo,...,z,-1) € R".

Further, for (xo,...,z,-1) € R" and m € N, we have max{oo(x¢),1/m} < |zo| +
1, wo(max{og(zp),1/m}) < wo(|zo|) + wo(r*) < wo(|wo]) + wo(1), and similarly
max{|o(x;)],1/m} < |z;| + 1, wi(max{|o(x;)|,1/m}) < wi(|z;]) + wi(1), 1 <@ <
n — 1. Therefore, by (2.7), for each m € N

oty @0y @y 1) < h(t,n + ; |$z|) + ;[Wz(mD +wi(1)] (2.34)

for a.e. t € [0,7] and for all (zo,...,z,1) € R".

We see that the problem u(™(¢) = 0, (2.3) has only the trivial solution. Hence,
by (2.33) and the Nonlinear Fredholm Alternative (see Theorem 1.1), there exists
a solution u,, of problem (1.8),(1.2) for m € N. Define

Q=A{ueB:|ulc-<r}.

According to (2.33) and (2.34), u,,, € B and satisfies (2.18). Hence, by Lemma
2.5, U, € Q2 for m € N.

Step 3. We prove that the assumption (ii) of Theorem 1.3 holds.
Let us consider the sequence

A= {fm(ta um(t)a e 7u£r?71)(t))}$r?:l'
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Then, by (2.33) and (2.34), for m € N

0 < fults tm(8), .., uV(0)) < h(t,n+ 2 W (8)]) + E[wiuu&?(tm (D).

Since h € Car([0,T] x [0,00)) and u,, € Q for m € N, there exists a function
h* € Ly([0,T]) such that

n—1

A+ 3 W 0]) + 3 i) < 7o)

1=0
for a.e. t € [0,7] and m € N. So, we have

n—1

u ulnY : wi(|ufy
| fon (s U (2), -, ule ™D ()] < b (t)+; i(Jum (0)]) (2.35)

for a.e. t € [0,7] and for m € N.

Let the collection W be defined by (2.22). Then, by Lemma 2.6, W is uniformly
absolutely continuous on [0, 7], which implies that the sequence
n—1 ] 00
{ X willaf o)}
i=0

m=1

is uniformly absolutely continuous on [0,7']. Therefore, by (2.35) and Remark
1.5, the sequence A is uniformly absolutely continuous on [0, 7], as well.

Step 4. By Step 4 in the proof of Lemma 2.4, for each u,, € B and for each
i € {0,...,n — 1} there exists a finite number p;,,(< 2n) of disjoint intervals
(k10> Wen), 1 < k < pimy such that U2 @k 1.m, Gkm) = [0, T, and

0] 2 Gyt = )™ for € aamt
or
[0S ()] 2 (g — )" for ¢ € [kt thn]

(n —1)!

By virtue of the assertion (I) of Theorem 1.3 there is an u € ¢l/(€2) and a subse-
quence {Uyy } C {up} such that lim,, e [|tn — ul|cn-1 = 0.
Letting m’ — oo and working with subsequences if necessary, we get
l,1m Dimn' = Pi, Di < 2”7
m’—o0
and
lim app =ag, 0<k <p;,

m/ —00
where 0 =ap < a1 < ... <a, =T. Moreover (2.16) and (2.17) hold. Therefore
the set U; C [0,T] of all zeros of u”,0 < i < n — 1, is finite. Denote the set
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of all t € [0,T] such that f(¢,-,...,-) : D — R is not continuous by U,. Then
pu(Uy UUy) =0 and

Hm o (& e (2), -, w0 (8) = f(t,u(d), ..., u™ (1)
m/—00
for all t € [0, 7]\ (U; UUy).
Therefore, by Theorem 1.3, problem (2.1), (2.3) has a solution u. By (2.4)
and Lemma 2.2 we get v > 0 on (0,7). O

Consider the problem (2.1), (2.2) with a general p, 1 < p < n —1. Arguing
similarly as in the proof of Lemma 2.2 (for details see [13]) we can describe for
any solution of BVP (2.1), (2.2) the set of all its singular points, and then prove
Lemmas 2.4 - 2.6 as before. In such a way we get the following theorem the proof
of which is similar to that of Theorem 2.1.

Theorem 2.7. (Existence result for (p,n — p) conjugate BVP) Let as-
sumptions (2.4) — (2.7) hold. Then problem (2.1),(2.2) has a solution which is
positive on (0,T).

Example 2.8. Consider the function

n—1
Fltzo,. . anst) = at) + Y [bi(t) |zl + ci(t)#,]
i=0 ¢

where 1 < i <n—1, o € (0,1),5 € (0,1/(n —3)), the functions b;,¢; are
nonnegative and essentialy bounded on [0,7"] and the function a € L;[0, T fulfils
0 < ¢ < a(t) for a.e. t € [0,7] and for some ¢ € (0,00). Then f satisfies the
conditions (2.4)-(2.7) and so Theorem 2.1 guarantees the existence of a solution
u of the differential equation

n—1

W™ () = a(t) + 3 [balt)[u(2)

1=0

(677 1
+ ¢ (t) W]

satisfying the boundary conditions (2.3).
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