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Abstract

Singular differential equation (p(t)u′)′ = p(t)f(u) is investigated. Here
f is Lipschitz continuous on R and has at least two zeros 0 and L > 0. The
function p is continuous on [0,∞), has a positive continuous derivative on
(0,∞) and p(0) = 0. An asymptotic formula for oscillatory solutions is
derived.
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1 Introduction

In this paper we investigate the equation

(p(t)u′)
′
= p(t)f(u), t ∈ (0,∞), (1)

where f satisfies

f ∈ Liploc(R), f(0) = f(L) = 0, f(x) < 0, x ∈ (0, L), (2)

∃B̄ ∈ (−∞, 0) : f(x) > 0, x ∈ [B̄, 0), (3)

F (B̄) = F (L), where F (x) = −
∫ x

0

f(z) dz, x ∈ R, (4)
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and p fulfils
p ∈ C[0,∞) ∩ C1(0,∞), p(0) = 0, (5)

p′(t) > 0, t ∈ (0,∞), lim
t→∞

p′(t)

p(t)
= 0. (6)

Equation (1) is a generalization of the equation

u′′ +
k − 1

t
u′ = f(u), t ∈ (0,∞), (7)

which arises for k > 1 and special forms of f in many areas. For example: In the
study of phase transitions of Van der Waals fluids [3], [10], [23], in population
genetics, where it serves as a model for the spatial distribution of the genetic
composition of a population [8], [9], in the homogeneous nucleation theory [1],
in relativistic cosmology for description of particles which can be treated as
domains in the universe [17], in the nonlinear field theory, in particular, when
describing bubbles generated by scalar fields of the Higgs type in the Minkowski
spaces [7]. Numerical simulations of solutions of (1), where f is a polynomial
with three zeros have been presented in [6], [14], [16]. Close problems about the
existence of positive solutions can be found in [2], [4], [5].

Due to p(0) = 0, equation (1) has a singularity at t = 0.

Definition 1 A function u ∈ C1[0,∞) ∩ C2(0,∞) which satisfies equation (1)
for all t ∈ (0,∞) is called a solution of (1).

Definition 2 Let u be a solution of equation (1) and let L be of (2). Denote
usup = sup{u(t) : t ∈ [0,∞)}. If usup < L (usup = L or usup > L), then u is
called a damped solution (a bounding homoclinic solution or an escape solution).

These three types of solutions have been investigated in [18]-[22]. In particular,
the existence of damped oscillatory solutions which converge to 0 has been
proved in [22].

The main result of this paper is contained in Section 3 in Theorem 8, where
we provide an asymptotic formula for damped oscillatory solutions of equation
(1).

2 Existence of oscillatory solutions

Here we will study solutions of (1) satisfying the initial conditions

u(0) = B, u′(0) = 0, (8)

with a parameter B ≤ L. Reason is that we focus our attention on damped
solutions of (1) and that each solution u of (1) must fulfil u′(0) = 0 (see [22]).

First, we bring two theorems about the existence of damped and oscillatory
solutions.
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Theorem 3 [22] Assume that (2)-(6) hold. Then for each B ∈ [B̄, L) problem
(1), (8) has a unique solution. This solution is damped.

Theorem 4 Assume that (2)-(6) hold. Further, let there exists k0 ∈ (0,∞)
such that

p ∈ C2(0,∞), lim sup
t→∞

∣

∣

∣

∣

p′′(t)

p′(t)

∣

∣

∣

∣

< ∞, lim inf
t→∞

p(t)

tk0

∈ (0,∞], (9)

lim
x→0+

f(x)

x
< 0, lim

x→0−

f(x)

x
< 0. (10)

Then for each B ∈ [B̄, L) problem (1), (8) has a unique solution u. If B 6= 0,
then the solution u is damped and oscillatory with decreasing amplitudes and

lim
t→∞

u(t) = 0. (11)

Proof. The assertion follows from Theorems 5,11 and 17 in [22]. ¤

Example 5 The functions

• p(t) = tk, p(t) = tk ln(tℓ + 1), k, ℓ ∈ (0,∞),

• p(t) = t + α sin t, α ∈ (−1, 1),

• p(t) = tk

1+tℓ , k, ℓ ∈ (0,∞), ℓ < k,

satisfy (5), (6) and (9).
The functions

• p(t) = ln(t + 1), p(t) = arctan t, p(t) = tk

1+tk , k ∈ (0,∞),

satisfy (5), (6), but not (9) (the third condition).
The function

• p(t) = tk + α sin tk, α ∈ (−1, 1), k ∈ (1,∞) ,

satisfy (5), (6) but not (9) (the second and third conditions).

Example 6 Let k ∈ (0,∞).

• The function

f(x) =

{

−kx for x ≤ 0
x(x − 1) for x > 0,

satisfies (2) with L = 1, (3), (4) with B̄ = −(3k)−1/2 and (10).

• The function

f(x) =

{

kx2 for x ≤ 0
x(x − 1) for x > 0,

satisfies (2) with L = 1, (3), (4) with B̄ = −(2k)−1/3 but not (10) (the
second condition).
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In the next section, the generalized Matell’s theorem which can be found as
Theorem 6.5 in the monograph by I. Kiguradze will be useful. For our purpose
we provide its following special case.

Consider an interval J ⊂ R. We write AC(J) for the set of functions ab-
solutely continuous on J and ACloc(J) for the set of functions belonging to
AC(I) for each compact interval I ⊂ J . Choose t0 > 0 and a function ma-
trix A(t) = (ai,j(t))i,j≤2 which is defined on (t0,∞). Denote by λ(t) and µ(t)
eigenvalues of A(t), t ∈ (t0,∞). Further, suppose

λ = lim
t→∞

λ(t) and µ = lim
t→∞

µ(t)

be different eigenvalues of the matrix A = limt→∞ A(t) and let l and m be
eigenvectors of A corresponding to λ and µ, respectively.

Theorem 7 [11] Assume that

ai,j ∈ ACloc(t0,∞),

∣

∣

∣

∣

∫ ∞

t0

a′
i,j(t) dt

∣

∣

∣

∣

< ∞, i, j = 1, 2, (12)

and that there exists c0 > 0 such that

∫ t

s

Re(λ(τ) − µ(τ)) dτ ≤ c0, t0 ≤ s < t, (13)

or

∫ ∞

t0

Re(λ(τ)−µ(τ)) dτ = ∞,

∫ t

s

Re(λ(τ)−µ(τ)) dτ ≥ −c0, t0 ≤ s < t. (14)

Then the differential system

x′(t) = A(t)x(t) (15)

has a fundamental system of solutions x(t), y(t) such that

lim
t→∞

x(t)e
−

R

t

t0
λ(τ) dτ

= l, lim
t→∞

y(t)e
−

R

t

t0
µ(τ) dτ

= m. (16)

3 Asymptotic formula

In order to derive an asymptotic formula for a damped oscillatory solution u of
problem (1), (8), we need a little stronger assumption than (10). In particular,

the function f(x)
x should have a negative derivative at x = 0.

Theorem 8 Assume that (2)-(6) and (9) hold. Assume moreover that there
exist η > 0 and c > 0 such that

f(x)

x
∈ AC[−η, η], lim

x→0

f(x)

x
= −c. (17)
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Then for each B ∈ [B̄, L) problem (1), (8) has a unique solution u. If B 6= 0,
then the solution u is damped and oscillatory with decreasing amplitudes such
that

lim sup
t→∞

√

p(t)|u(t)| < ∞. (18)

Proof. Step 1. Construction of an auxiliary linear differential system. Choose
B ∈ [B̄, L), B 6= 0. By Theorem 4, problem (1), (8) has a unique oscillatory
solution u with decreasing amplitudes and satisfying (11). Having this solution
u, define a linear differential equation

v′′ +
p′(t)

p(t)
v′ =

f(u(t))

u(t)
v, (19)

and the corresponding linear differential system

x′
1 = x2, x′

2 =
f(u(t))

u(t)
x1 −

p′(t)

p(t)
x2. (20)

Denote

A(t) = (ai,j(t))i,j≤2 =

(

0 1
f(u(t))

u(t) −p′(t)
p(t)

)

, A =

(

0 1
−c 0

)

.

By (6), (11) and (17),
A = lim

t→∞
A(t).

Eigenvalues of A are numbers λ = i
√

c and µ = −i
√

c, eigenvectors of A are
l = (1, i

√
c) and m = (1,−i

√
c), respectively. Denote

D(t) =

(

p′(t)

2p(t)

)2

+
f(u(t))

u(t)
, t ∈ (0,∞).

Then eigenvalues of A(t) have the form

λ(t) = − p′(t)

2p(t)
+

√

D(t), µ(t) = − p′(t)

2p(t)
−

√

D(t), t ∈ (0,∞). (21)

We see that
lim

t→∞
λ(t) = λ, lim

t→∞
µ(t) = µ.

Step 2. Verification of the assumptions of Theorem 7. Due to (6), (11) and
(17), we can find t0 > 0 such that

u(t0) 6= 0, |u(t)| ≤ η, D(t) < 0, t ∈ (t0,∞). (22)

Therefore, by (17),

a21(t) =
f(u(t))

u(t)
∈ ACloc(t0,∞),
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and so
∣

∣

∣

∣

∣

∫ ∞

t0

(

f(u(t))

u(t)

)′

dt

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

lim
t→∞

f(u(t))

u(t)
− f(u(t0))

u(t0)

∣

∣

∣

∣

=

∣

∣

∣

∣

−c − f(u(t0))

u(t0)

∣

∣

∣

∣

< ∞.

Further, by (9), a22(t) = −p′(t)
p(t) ∈ C1(t0,∞). Hence, due to (6),

∣

∣

∣

∣

∣

∫ ∞

t0

(

p′(t)

p(t)

)′

dt

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

lim
t→∞

p′(t)

p(t)
− p′(t0)

p(t0)

∣

∣

∣

∣

=
p′(t0)

p(t0)
< ∞.

Since a11(t) ≡ 0 and a12(t) ≡ 1, we see that (12) is satisfied. Using (21) we get
Re(λ(t) − µ(t)) ≡ 0. This yields

∫ t

s

Re(λ(τ) − µ(τ)) dτ = 0 < c0, t0 ≤ s < t,

for any positive constant c0. Consequently (13) is valid.

Step 3. Application of Theorem 7. By Theorem 7 there exists a fundamental
system x(t) = (x1(t), x2(t)),y(t) = (y1(t), y2(t)) of solutions of (20) such that
(16) is valid. Hence

lim
t→∞

x1(t)e
−

R

t

t0
λ(τ) dτ

= 1, lim
t→∞

y1(t)e
−

R

t

t0
µ(τ) dτ

= 1. (23)

Using (21) and (22) we get

exp

(

−
∫ t

t0

λ(τ) dτ

)

= exp

(
∫ t

t0

(

p′(τ)

2p(τ)
−

√

D(τ)

)

dτ

)

= exp

(

1

2
ln

p(t)

p(t0)

)

exp

(

−i

∫ t

t0

√

|D(τ)| dτ

)

,

and hence
∣

∣

∣
e
−

R

t

t0
λ(τ) dτ

∣

∣

∣
=

√

p(t)

p(t0)
, t ∈ (t0,∞).

Similarly
∣

∣

∣
e
−

R

t

t0
µ(τ) dτ

∣

∣

∣
=

√

p(t)

p(t0)
, t ∈ (t0,∞).

Therefore (23) implies

1 = lim
t→∞

∣

∣

∣
x1(t)e

−
R

t

t0
λ(τ) dτ

∣

∣

∣
= lim

t→∞
|x1(t)|

√

p(t)

p(t0)
,

and

1 = lim
t→∞

∣

∣

∣
y1(t)e

−
R

t

t0
µ(τ) dτ

∣

∣

∣
= lim

t→∞
|y1(t)|

√

p(t)

p(t0)
.
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Step 4. Asymptotic formula. In Step 1 we have assumed that u is a solution of
equation (1), which means that

u′′(t) +
p′(t)

p(t)
u′(t) = f(u(t)) for t ∈ (0,∞).

Consequently

u′′(t) +
p′(t)

p(t)
u′(t) =

f(u(t))

u(t)
u(t) for t ∈ (0,∞),

and hence u is also a solution of equation (19). This yields that there are
c1, c2 ∈ R such that u(t) = c1x1(t) + c2y1(t), t ∈ (0,∞). Therefore

lim sup
t→∞

√

p(t)|u(t)| ≤ (|c1| + |c2|)
√

p(t0) < ∞.

¤

Remark 9 Due to (9) and (18), we have for a solution u of Theorem 8

u(t) = O(t−k0/2) for t → ∞. (24)

Example 10 Let k ∈ (1,∞).

• The functions f(x) = x(x − 1) and f(x) = x(x − 1)(x + 2) satisfy all
assumptions of Theorem 8.

• The functions f(x) = x2k−1(x− 1) and f(x) = x2k−1(x− 1)(x+2) satisfy
(2)-(4) but not (17) (the second condition).

Example 11 Consider the initial problem

(t2u′)′ = t2u(u − 5)(u + 10), u(0) = −3, u′(0) = 0. (25)

Here L0 = −10, L = 5 and we can check that B̄ < −3. Further, all assumptions
of Theorems 4 and 8 are fulfilled. Therefore, by Theorem 4, there exists a unique
solution u of problem (25) which is damped and oscillatory and converges to 0.
By Theorem 8, we have

lim sup
t→∞

t|u(t)| < ∞, that is u(t) = O(
1

t
) for t → ∞.

The behaviour of the solution u(t) and of the function tu(t) is presented on
Figure 1.
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Figure 1.

Remark 12 Our further research of this topic will be focused on a deaper
investigation of all types of solutions defined in Definition 2. For example, we
have proved in [18] and [22] that damped solutions of equation (1) can be either
oscillatory or they have a finite number of zeros or no zero and converge to
0. A more precise characterization of behaviour of non-oscillatory solutions
including their asymptotic formulas in as open problem. The same can be
said about homoclinic solutions. In [20] we have found some conditions which
guarantee their existence and we have shown that if u is a homoclinic solution
of equation (1), then limt→∞ u(t) = L. In order to discover other existence
conditions for homoclinic solutions we would like to estimate their convergence
by proper asymptotic formulas.
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