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Summary. In this paper we present conditions ensuring the existence and localization of lower and
upper functions of the periodic boundary value problem u"” + ku= f(t,u),u(0)=u(27), v'(0) =
u'(27), k€R, k#0. These functions are constructed as solutions of some related generalized linear
problems and they can be nonsmooth, in general.
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1 . Introduction

Theorems about the existence of solutions of boundary value problems for ordinary
differential equations often suppose the existence of lower and upper functions to the
studied problem. For such theorems concerning periodic boundary value problems
we can refer e.g. to the papers [1], [2], [3], [5], [6], [8], [9], [10], [11], [12], [13], [14] and
our forthcoming paper [15]. We can decide whether the problem has constant lower
and upper functions (see e.g. [2], [5]) and to find them if they exist. In general,
however, it is easy neither to find nonconstant lower and upper functions nor to
prove their existence which can make difficult the application of such theorems.
One possibility how to get nonconstant and possibly nonsmooth lower and upper
functions to the periodic boundary value problem

(1.1) u" +ku=f(t,u), u(0)=u(2r), ' (0)=1d'(27), keR, k#0

is shown here. (The case k = 0 is solved in [13] and [14].) We make use of fairly gen-
eral definitions of these notions introduced in [12] and we construct them as solutions
of generalized periodic boundary value problems for linear differential equations in
sections 2 and 3. (Essentially they are solutions of linear generalized differential
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equations in the sense of J. Kurzweil, cf. e.g. [4], [17], [18] and [19].) Our next paper
[15] will show new effective existence criteria for the problem (1.1). The proofs of
them are based on the theorems about the existence and localization of lower and
upper functions from this paper.

We say that f : [0,27] xR — R fulfils the Carathéodory conditions on [0, 2 7] xR,
if f has the following properties: (i) for each « € R the function f(., z) is measurable
on [0,27]; (ii) for almost every ¢ € [0,27] the function f(¢,.) is continuous on R;
(iii) for each compact set KC R the function mxk(t) = sup ek |f(¢, )| is Lebesgue
integrable on [0, 2 7).

The set of functions satisfying the Carathéodory conditions on [0,27] x R is
denoted by Car([0,2 7] x R).

Throughout the paper we assume f € Car([0,27] x R).

For a given subinterval J of R (possibly unbounded) C(.J) denotes the set of
functions continuous on J, L[0,2 7] stands for the set of functions Lebesgue inte-
grable on [0,27], L2[0,27] is the set of functions square Lebesgue integrable on
[0,27], Ly [0,27] is the set of functions essentially bounded on [0,2 7], AC[0,27]
denotes the set of functions absolutely continuous on [0,2 7] and BV 0,2 7] is the
set of functions of bounded variation on [0, 2 7]. For x € L[0,27], y € L2[0,2 7] and
z € L [0, 2 7], we denote
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If v € BV[0,27], s € (0,27] and ¢t € [0,2n), then the symbols z(s—), z(t+) and
ATx(t) are respectively defined by

z(s—) = lim z(7), z(t+)= lim z(7) and A%z(t) = z(t+) — 2(t)
T—§— T+
and z* and x*"¢ stand for the absolutely continuous part of x and the singular part
of x, respectively. We suppose z¢(0) = 0.

L™[0,27] and L"™*™[0,2 ] are respectively the sets of column n-vector valued
and of n x n-matrix valued functions with elements from L[0,27]; AC"[0,2 7] and
AC™*"[0, 2 ] are respectively the sets of n-vector valued and of n x n-matrix valued
functions whose elements are absolutely continuous on [0, 27| and BV™[0, 2 7| is the
set of n-vector valued functions whose elements have a bounded variation on [0, 2 7].

For a subset M of R, xjs denotes the characteristic function of M. For z €
L[0,27] and a.e. t € [0,27], we write

7 (t) = max{z(t),0} and =z (t) = max{—z(t),0}.
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By a solution of (1.1) we understand a function u : [0,27] — R such that
u' € AC[0,2 7], u(0) = u(27), v'(0) = «'(27) and

u"(t) + ku(t) = f(t,u(t)) forae te][0,27]

1.1. Definition. Functions (o1, p;) € AC[0,27]| x BV|[0, 27| are said to be lower

sing

functions of the problem (1.1), if the singular part pi™® of p; is nondecreasing on
0,2 7],

ai(t) =p(t), pi(t) +Ekoi(t) > f(t,o1(t)) forae. te][0,27]
and
(1.2) 01(0) = 01(2m),  p1(0+) = p1(27—).

Similarly, functions (o2, p2) € AC[0,2 7] x BV[0,2 7] are said to be upper func-

sing

tions of the problem (1.1), if the singular part p}"¢ of py is nonincreasing on [0, 2 7],

aa(t) = pa(t), ph(t) = koo(t) < f(t,02(t)) forae. t€0,27]
and
(1.3) 02(0) = 02(2m),  p2(0+) < p2(27—).

2 . Periodic solutions of certain generalized linear
differential problems

We want to show that if for a.e. ¢ € [0,2 7] and all x € [}, where I; is a subinterval
of R, the function f fulfils a condition of the form

(2.1) ft.z) < B()
(2.2) ft,z) > B(b),

with § € L[0,2 7], then it is possible to construct lower or upper functions for the
problem (1.1), respectively.

It is known that if k # n? for all n € N U {0}, then the problem

(2.3) o=p, p+ko=p(t) ae on [0,27],
(2.4) 0(0) = o(2m), p(0) = p(2m)
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possesses a unique solution (o, p) € AC[0,27] x ACI0,2~]| for any § € L[0,27].
Consequently, if we have in addition

(2.5) o(t) € I, forallt €[0,2],

then the functions (o, p) are lower or upper functions of (1.1) (according to whether
(2.1) or (2.2) is satisfied). In general the relation (2.5) need not be true, of course.
However, if we admit a more general notion of a solution to the linear problem
(2.3), (2.4) and if the intervals I; of validity of (2.1) or (2.2) are large enough, we
can always use the problem (2.3), (2.4) for a construction of lower or upper functions

for (1.1).
To show this, let us consider a linear differential system on [0, 2 7]
(2.6) §'=Pt)E+q(t),

where P € L"*"[0,27] and ¢ € L"[0,2x]. By a solution of (2.6) on [0,27] we
mean a function £ € AC"[0, 2 7] satisfying (2.6) a.e. on [0,27]. The corresponding
normalized fundamental matrix solution of the system

(2.7) §'=P)¢
is denoted by X, i.e. X € AC"*"[0,2 7] and
t
X(t) = 1+/ P(s) X(s)ds on [0,27],

0
where I stands, as usual, for the identity n x n-matrix. Its inverse matrix X ~1(¢) is
defined for any ¢ € [0,27], X! € AC"*"[0,2 7] and if
(2.8) det (X 1(2m) —I) £0

holds, then for any ¢ € L"[0,2 x| there is a unique solution & € AC"[0, 2 7] of (2.6)
on [0,2 7] such that

(2.9) £(0) = £(2r).

This solution can be written in the form

f(t):/OWG(t,s)q(s) ds on [0,27],

where
(2.10) Glt,s) = X(1) (XTem =1 for b5, X1(s)
[+ (X7'@2m) —1)7" for s<t

is the Green function of the problem (2.7), (2.9).
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2.1. Definition. Let 7 € [0,27) and d € R™ be given. By a solution of the problem
(2.6), (2.9),

(2.11) ATE(r) =

we mean a function & € BV"[0,2 7] such that the relations (2.9) and

(2.12) E'(t)=P(t) &) +q(t) ae. on0,27]

are satisfied and £ — d x(r.2,) € AC"[0, 2 7].

2.2. Proposition. Assume (2.8). Then for any 7 € [0,27), any d € R" and any

q € L™[0,27], the problem (2.6), (2.9), (2.11) possesses a unique solution & and this
solution is given by

2w

(2.13) £(t) =G(t, 1) d+/ G(t,s)q(s)ds on [0,2n],
0

where G is defined by (2.10).

Proof. For any ¢ € R", the functions

z(t) = X(t)c+ X(t) /OtX_l(s)q(s) ds, tel0,2n],
and

y(t) = X)X (21) ¢ — X / X 1(s)g(s)ds te€[0,27],

2.
)
12

6) on [0,27|, such that z(0) = ¢ and y(27) = ¢,
or0<t<7-and§() y(t) for 7 < t < 27. Then
) and

are the unique solutions of (
respectively. Define £(t) = x(t
¢ € BV"[0,2 | fulfils (2.9), (2.

A*E(r) = X () [X~12m) — T e — X / X=1(s) g(s) ds.

Consequently, if we put

2

X1 s) gls) ds),

where M = X~'(2r) — I, then & verifies (2.11). Moreover, £(t) — d x(r,20)(t) = z(?)
holds on [0,27] and hence § — d x(;2. € AC"[0,27]. Finally, using the relation
X 1m)M =1+ M, we get

c=M"1 <X71(7—)d+
0

£(t) = X(t) (M’1 (X (r)d+ /027T X '(s)q(s)ds] + /OtXl(s) q(s) ds)
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for 0 <t <7 and

£(t) = X(t) ([I + MY [X_I(T) d+ ' X7(s) q(s) ds] [ X71(s) q(s) ds)

0 t

for 7 <t < 27, wherefrom the representation (2.13) of £ follows. O

2.3. Remark. Clearly, for any solution ¢ of (2.6), (2.9), (2.11) we have £* =
§ — dX(r2q]5 £ = d X(r,24] and & is left-continuous on (0, 27].

2.4. Remark. The problem (2.6), (2.9), (2.11) can be rewritten as the integral
equation

t
() =€)+ [ Ps) €l ds+ b)) = h(0), t€ (0,27,
0
where
t
h(t) = d x(r2x(t) +/ q(s)ds on [0,27].
0
This equation is a very special case of generalized differential equations introduced
by J. Kurzweil in [4].

Now, we will apply Proposition 2.2 on the problem (2.3), (2.4) generalized in the
sense of Definition 2.1. In the case k = —a? we get the following result:

2.5. Corollary. Let k = —a?, a € (0,00), 7 € [0,27), § € R and 8 € L[0,27].
Then the problem

(2.14) o' = p, p+ko=p(t),
0(0) =0(2m), p(0)=p27), Ato(r)=0, Atp(r)=94¢

possesses a unique solution (o, p). Moreover, o € AC[0,27], p* = 0 X(r,24] and

(2.15) ot)y=g(jt—7]) 0+ /0 7rg(|t —s]) B(s)ds, on[0,27],
where

(2.16) o(z) = _ cosh(a(m —2))

€ 10,27
2 « sinh(am) for @ € 0,27]
Proof. The fundamental matrix solution X of the corresponding homogeneous sys-
tem o' = p, p' = o? 0, is given by

sinh(at)
Ny = [ cohlet) —] on [0, 27]
a sinh(at) cosh(at)
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and det (X *(27) —I) = —4 sinh(ar) # 0.
Thus, we can apply Proposition 2.2 to the problem (2.6), (2.9), (2.11) with

=) w0=(5) o)
) ) T )

to obtain that the problem (2.14) possesses a unique solution (o, p). Since, in partic-
ular, Ato(7) = 0 and ATp(r) = 0, it follows from Definition 2.1 that o € AC|0, 2 7]
and p — 6 X(r2m € AC[0,27] (i.e. p** = § X(r,2¢]). Furthermore, substituting for X
into (2.10), we get

( sinh(a(m +t — s)) cosh(a(m +t —s))
2 sinh(an) 2 a sinh(am)
a cosh(a(m+t—s))  sinh(a(r+1t—s))
2 sinh(an) 2 sinh(an)
if 0<t<s<2m,
G(t,s) = <
sinh(a(m + s — 1)) cosh(a(m + s — 1))
2 sinh(ar) 2 « sinh(am)
_acosh(a(r +s—1t))  sinh(a(r +s—1))
2 sinh (o) 2 sinh(ar)
\ if 0<s<t<o2n,
which implies that o has the form (2.15), where g is defined in (2.16). O

2.6. Remark. We can verify that for any a € (0, 00), the Green function g from
(2.16) satisfies the relations

coth(am) 1
2.1 B 1) R — f 5
(2.17) 5 S g(z) < > sinh(ar) <0 forzel0,27]
and
2w 1
(2.18) / ot = s ds =5 forseo,2n]
0

The next result concerns the case k = o2,

2.7. Corollary. Let k = o* a € (0,00) \ N, 7 € [0,27), 6 € R and 3 € L[0,27].
Then the problem (2.14) possesses a unique solution (o, p). Moreover, o € AC[0, 2 7|,
P =6 X(r2x] and o has the form (2.15), where

(2.19) g(z) = % for z € [0,27).
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Proof. Substituting X in (2.10) by

= [ csled a |, telo,2q],

—a sin(at) cos(at)
we get

;

Csin(a(r+t—s))  cos(a(m+t—3s))

2 sin(am) 2« sin(a)
cos(a(m+t—s))  sin(a(m +1—5))
2 sin(am) 2 sin(am)
if 0<t<s<2m,
G(t,s) =

sin(a(mr+s—1t))  cos(a(r+s—1t))

2 sin(am) 2 « sin(a)
_acos(a(r+s—t) sin(a(r+s—1))

2 sin(a) 2 sin(a)

it 0<s<t<2n

\

and since under our assumptions we have det (X !(27) —I) = 4 sin*(ar) # 0, the
proof follows from Proposition 2.2 similarly as the proof of Corollary 2.5. O

2.8. Remark. For the function ¢ from (2.19) and any a € (0,00) \ N, we have

1
2.20 Moo € Nlgt oo = lglloe = =————
(2:20) 19 oo < llg* oo = gl = 5
and
21 1
(2.21) / g(lt —s)ds=—  forte0,2n]
0 «

Furthermore, if o € (0, 1], then

(2.22) 0 < cotan(arr)

1
< 5P <g(x) L ——— forz € 0,2n7].

~ 2 sin(an)

In the rest of this section we will derive some estimates for solutions of the
problem

(2.23) o'+ ko=0b(t), o(0)=0c(2r), o'(0) =0'(27)

which will be useful for the proofs of Section 3.
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2.9. Lemma. Let p € Ly [0,27], b € L[0,27] and b= 0. Then

2 N
[ w0 < v plh, where = 1 E I
0

Proof. First, notice that b* = b~ and [[bl]; = 4mwb* = 47b~ holds whenever b €
L[0,2 7] and b = 0. Thus, if p(s) > 0 a.e. on [0,2 7], then

" Pl
[ p(s)b(s) ds| < Pl 275 = [l
0

In a general case, we have

‘/O%P(S) ds = ‘/ d8+/027rp_(3) (=b(s)) ds

[161]x

< (1™ lloo + 1P Mloo) = = 2" 1Pl
O

2.10. Lemma. Let k # 0, b € L[0,27] and b = 0. Then & = 0 holds for any
solution o of (2.23).

Proof. In virtue of the periodicity conditions we have ¢” = 0. Thus, integrating
the differential equation from (2.23) over [0,27], we get 0 = 0" = —kT + b, i.e.
o =0. O

2.11. Lemma. Letk = —a? a € (0,00), b € L[0,27], b= 0 and let o be a solution
of (2.23). Then

(2.24) lolloe < @(c) [[0]]1,

where

7 coth(am)

(2.25) O(a) = mn{— 1o }.

If b € 1y[0,2 7], then o fulfils moreover

m
(220 ol < /% Il

Proof. Multiplying the relation

(2.27) —0"(t) = —a®o(t) — b(t) fora.e. t€0,27]
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by o(t), integrating it over [0,2 7] and using the Holder inequality, we get

2T
o]l = —a? ||0'||§+/0 b(t) o(t) dt < [[b]]1 [|o]oo-

Furthermore, by Lemma 2.10 we have & = 0, and thus o satisfies the Sobolev
inequality (see [7, Proposition 1.3])

m
229 lolle < /5 11
Hence
m
1ol < 7 bl

and, using the Sobolev inequality (2.28) once more, we obtain
T
(2.29) ol < 111

On the other hand, by Corollary 2.5,

(2.30) a(t):/owg(|t—s|)b(s) ds on [0,27]

with ¢ defined by (2.16). Hence, according to Lemma 2.9 and (2.17) we also have

coth(am)

<
ol < S5

[161]:-

This together with (2.29) completes the proof of the first assertion of the lemma.
Now, suppose b € Ly[0, 2 7]. Using the Schwarz inequality, we deduce from (2.27)
that

lo"[I2 < 1Bl flel-
Since o satisfies the Wirtinger inequality (see [7, Proposition 1.3])
(2.31) lollz < [lo"]l2,

we get ||o’||2 < ||b]|2- This together with the Sobolev inequality (2.28) implies the
estimate (2.26). O
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coth(am)

2.12. Remark. As the function ¢(a) = is decreasing on (0, 00), p(0+) =

oo and lim, o ¢(z) = 0, there is exactly one o* € (0,00) (a* ~ 0.51624) such that
p(a*) = %, while p(a) > % for a € (0,0*) and ¢(a) < & for a € (a*, 00). This
means that the function ® from (2.25) can be described by

% if o€ (0,07,
() = coth(am) if € (0, 00)
To a € (a*,00

2.13. Lemma. Let k = o a € (0,00) \ N, b € L[0,27], b = 0 and let o be a
solution of (2.23). Then

(2.32) lolloo < W(c) |[b]]1,
where
(. m 1 .
m1n{6(1 —a?) da sin(om)} i ac03),
: 1 .
(2.33) () = m1n{6(1 i a?) 2« sin(cwr)} if ag(zl),
1 .
| 2 | sin(am)| i acloo)\N

If b € Ly[0,27] and a € (0,1), then o fulfils moreover

16112
2.34 o <y /= .
Proof. We have
(2.35) —0"(t) = a*o(t) — b(t) a.e. on [0,27]

According to Lemma 2.10, o satisfies both the Sobolev inequality (2.28) and the
Wirtinger inequality (2.31). Thus, proceeding similarly as in the proof of Lemma
2.11, we get

. ™
Y Y P R T MRS Y

If @ € (0,1), then using (2.28) once more, the relation

o X ———||b
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follows.
Further, o has the form (2.30), where g is given by (2.19) and satisfies (2.22)
if & € (0, %] and (2.20) for o € (3,00) \ N. Therefore Lemma 2.9 implies that

1011 : 1
o X ————— if o
lolloe < 4 o sin(ar) ifae(© 2]
and
1011 : 1
o ST if = .
lolloe < 2 a| sin(am)| ! a€(2 ) \N

Finally, let b € Ly[0,27] and « € (0,1). Then we can argue as in the proof of
Lemma 2.11 and derive from (2.35) the inequalities

lo']l3 < & |lo"[13 + [1bll2]lo])2
and
lo"]l2 (1 — o) < [|b]l2,

wherefrom (2.34) follows. O

2.14. Remark. For « € (0,1), denote

() = ﬁ and  o(a) = m.

It can be verified that there is exactly one af € (0,1) (o] ~ 0.412036) such that
() = P(a), di(e) > Pa(a) for a € (0,07) and ¢1(a) < ¢y(a) for a € (af, 1).
Similarly, there is exactly one aj € (0,1) (o = 0.628308) such that ¢ (a3) =
21p(a3), Y1(a) < 2¢s(a) for a € (3, a}) and ¢ (@) > 24hs(e) for o € (a3, 1). This
means that the function ¥ from (2.33) can be described by

( ﬁ, if € (0,a7],
1
. W if o€ (of,3],
50— a7 if ae(3 a3,
\ m if o€ (a;,00)\N

(cf. Fig. 1).
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Figure 1:

3 . Lower and upper functions

Consider the problem (1.1) and suppose that £ > 0 and that there exist a € R,
A; € (0,00), b € Ly [0,2 7] such that

(3.1) f(t,z) < a+b(t)

holds for a.e. t € [0,27] and all x € (A, 00). Then we can find r € (A4, 00) such
that

kri > a+|blle > f(t,r1) for ae. t €0,27],
which means that if we put
o1(t) =71, p(t) =0l (t) =0 on [0,27],
the functions (o1, p1) are lower functions for (1.1). Similarly, if
(3.2) f(t,z) > a+b(t)

holds for a.e. t € [0,27] and all z € (—o0, —Aj), we can find ry € (—o0, —As) such
that

kry <a—|blle < f(t,r2) fora.e. te0,27],
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which means that the functions (o2(t), p2(t)) = (r2,0) on [0, 2 7] are upper functions
of (1.1). We see that the constant function oy has to be quite large and positive and
the constant function o, has to be sufficiently small negative. Similar observations
can be done for £ < 0.

In the case that b is not essentially bounded or if we need other localization
of o1 or oy, this approach falls. However we can construct and localize lower and
upper functions by means of the results from Section 2.

If £ <0, we can write (1.1) in the form
(3.3) u" —ou= f(t,u), u(0)=u(2r), v'(0)=u'(27).

3.1. Theorem. Let a € (0,00) and let a € R, 7 € [0,27), § € [0,00), b € L[0,27]
be such that b= 0 and (3.1) holds for a.e. t € [0,27] and all x € [A(t), B(t)], where

(3.4) A(t) =g(]t — T|)5—%—(I)(Oé)||b“1 and B(t) = A(t)+2 ®(a)||b]|1 on]0,27]

and g and @ are given by (2.16) and (2.25), respectively.
Then there exist lower functions (o, p) of (3.3) such that

(3.5) At) <o(t) < B(t) on|0,27].
Proof. Let us put
B(t) =a+b(t) forae.tel0,2m]

By Corollary 2.5, there is a unique solution (o, p) of (2.14), where k = —a?, and, in
the view of (2.18), we have

(3.6) o(t)=g(jt—7])0 — % +/0 ﬂg(|t —s|)b(s)ds on [0,27],

where ¢ is given by (2.16). Denote

(3.7) oo(t) = /0 7rg(|t—s|)b(s) ds fort € [0,27].

Then oy is a solution to (2.23) and by Lemma 2.11 the estimate
(3.8) [oo]loo < ®(c) |]11

is true. Substituting (3.7) into (3.6) and using (3.4) and (3.8), we get (3.5). This
together with (3.1) and (2.14) means that

pl(t) —a’o(t) = B(t) = a+b(t) > f(t.o(t))

is true a.e. on [0,27], i.e. (o, p) are lower functions of (3.3). O
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In the case k£ > 0 we will write the problem (1.1) in the form

(3.9) u" +afu= f(t,u), u(0)=u(2r), v'(0)=1u'(27).

3.2. Theorem. Let a € (0,00) \ N and let a € R, 7 € [0,27), § € [0,00),
b € L[0,27] be such that b = 0 and (3.1) holds for a.e. t € [0,27]| and all
x € [A(t), B(t)], where

a
(3.10) At) = g(]t — T|)5+?—\If(a)||b||1 and B(t) = A(t)+2¥(«)||b]1
and g and ¥ are given by (2.19) and (2.33), respectively.
Then there exist lower functions (o, p) of (3.9) fulfilling (3.5).

Proof. By Corollary 2.7, the problem (2.14) with k£ = o2 and 3(t) = a+b(t) a.e. on
[0,2 7] has a unique solution (o, p) and, with respect to (2.15), (2.21),

a
(3.11) o(t) :g(|t—7'|)5+?+0'0(t) on [0,2 7],

where oy and ¢ are defined by (3.7) and (2.19), respectively. Thus, oy is a solution
of (2.23). By Lemma 2.13 we have

(3.12) l70lloe < W () [|B]]1-

Furthermore, since (3.10)-(3.12) yield (3.5), according to (3.1) and (2.14) we have
P(t)+a’o(t) =a+b(t) > f(t,o(t)) ae. on [0,27],

i.e. (o, p) are lower functions of (3.9). O

The next two assertions are respectively dual to Theorems 3.1 and 3.2 and their
proofs can be omitted.

3.3. Theorem. Let o € (0,00) andleta € R, 7 € [0,27), § € (—o0,0], b € L[0,2 7]
be such that b =0 and (3.2) holds for a.e. t € [0,27] and all x € [A(t), B(t)], where
A(t), B(t) are defined by (3.4), (2.16) and (2.25).

Then there exist upper functions (o, p) of (3.3) fulfilling (3.5).

3.4. Theorem. Let o € (0,00) \ N and let a € R, 7 E 0,27), § € (—o0,0],
b € L[0,27] be such that b = 0 and (3.2) holds for a.e. t € [0,27] and all x €
[A(t), B(t)], where A(t), B(t) are defined by (3.10), (2.19) and (2.33).

Then there exist upper functions (o, p) of (3.9) fulfilling (3.5).
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