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Abstract

The paper consists of two parts. In the first part, we investigate analyt-
ical properties of systems of singular linear ordinary differential equations
with variable coefficient matrices and unsmooth inhomogeneities. The aim
is to precisely formulate conditions which are necessary and/or sufficient
for the existence and uniqueness of solutions which are at least continuous
on the closed interval including the singular point. Smoothness proper-
ties of such solutions are also discussed. In the second part of the paper,
we deal with convergence of the polynomial collocation applied to solve
the analytical problem. It turns out that under suitable assumptions, the
collocation converges uniformly with the regular stage order. The theory
is illustrated by numerical examples.
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1 Introduction

Singular boundary value problems (BVPs) arise in many relevant applications
in natural sciences and engineering [1, 4, 9, 10, 12, 13, 18, 23, 24] and therefore,
numerous papers providing analytical results on their structural properties, sta-
bility and convergence of different numerical methods, and results of numerical
simulations are available. A popular model class for the theoretical investiga-
tions is the following linear singular BVP,

y′(t) =
M0

t
y(t) + f(t), t ∈ (0, 1], B0y(0) +B1y(1) = β, (1)
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where y is a n-dimensional real function, M0 is a n × n matrix and f is a
n-dimensional function which is at least continuous, f ∈ C[0, 1]. Here, B0

and B1 are constant matrices and it turns out that they are subject to certain
restrictions for a problem with a unique continuous solution, cf. [16]. We say
that BVP (1) has a time singularity of the first kind at t = 0.

Problems (1), where f may additionally depend on the space variable y and
have space singularity at y = 0, have been studied in [2, 27, 29, 30]. The an-
alytical properties of (1) have been discussed in [16, 32], where the attention
was focused on the existence and uniqueness of solutions and their smoothness.
Especially, the structure of the boundary conditions which are necessary and
sufficient for (1) to have a unique continuous solution on [0, 1] was of special
interest.

In [11], we generalized these analytical results to the problem

y′(t) =
M0

t
y(t) +

f(t)

t
, t ∈ (0, 1], B0y(0) +B1y(1) = β, (2)

where f ∈ C[0, 1] but f(t)/t may not be integrable on [0, 1]. The BVPs of type
(2) arise in the modelling of the avalanche run up [26] and occur when the reg-
ular system of ordinary differential equations (ODEs) u′(x) = M0u(x) + g(x),
posed on the semi-infinite interval x ∈ [0,∞), is transformed by x = − ln t to a
finite domain t ∈ (0, 1].

In this paper, we are interested in extending results for the BVP (2) to the
case, where the coefficient matrix M depends on t,

y′(t) =
M(t)

t
y(t) +

f(t)

t
, B0y(0) +B1y(1) = β. (3)

Here, f : [0, 1] → Rn and M : [0, 1] → Rn×n have continuous components.
Moreover, B0, B1 ∈ Rm×n are constant matrices and β ∈ Rm. Note that in
general m ≤ n. We focus our attention on the existence and uniqueness of a
solution y ∈ C[0, 1]. This smoothness requirement results in general, in n −m
additional initial conditions the solution y has to satisfy. We also specify con-
ditions for f and M which are sufficient for y ∈ Cr[0, 1], r ∈ N.

The motivation for the above analysis of the variable coefficient case is
twofold: First of all, in order to investigate the nonlinear case one can choose
to study the properties of its lineralization, see [16]. In this context a related
linear BVP with a variable coefficient matrix has to be studied. More precisely,
the technique applied in [16] is based on the assumption that a solution to the
nonlinear problem exists. Next, the nonlinear problem is linearized at the exact
solution and the well-posedness of this linearization is studied. We are not going
to follow this technique however, and plan in an upcoming paper to show the
existence of the solution of the nonlinear BVP, instead of assuming its existence.
Secondly, for us, the investigation of the structural properties of (3) is necessary
and interesting in its own right, as a prerequisite for the convergence theory of
the collocation method described in the second part of the article.
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Before discussing the most general BVP (3), we first consider simpler prob-
lems consisting of the ODE system

y′(t) =
M(t)

t
y(t) +

f(t)

t
, (4)

subject to initial/terminal conditions. This means that we deal with the initial
value problem (IVP),

y′(t) =
M(t)

t
y(t) +

f(t)

t
, B0y(0) = β, (5)

where B0 ∈ Rm×n, β ∈ Rm, and m ≤ n, or with the terminal value problem
(TVP),

y′(t) =
M(t)

t
y(t) +

f(t)

t
, B1y(1) = β, (6)

where B1 ∈ Rn×n, β ∈ Rn, respectively.

As already mentioned, the analytical properties of (2) with a constant co-
efficient matrix have been discussed in [11]. Particular attention was paid to
the structure of the most general boundary conditions which are necessary and
sufficient for the existence of a unique continuous solution on the closed interval
[0, 1]. It turned out that the form of such conditions depends on the spectral
properties of the coefficient matrix M0. Motivated by the case with a con-
stant coefficient matrix, we distinguish also in (4) between three cases, where
all eigenvalues of M(0) have negative real parts, positive real parts, or they are
zero.

Moreover, we refer to papers [5, 6, 8, 14, 22, 28], where the solvability of
similar linear singular problems is discussed. Interesting results for linear BVPs
with time singularities in weight-spaces can be found in [3, 19, 20, 21]. Although
this framework is close to what we are aiming at here, it is not quite complete.
So, in a way our results are closing the existing gaps.

ODE systems (4) were also investigated in [31], where existence of a unique
continuous solution y has been studied. Main results of [31] are formulated in
[31, Theorem 1.1] and [31, Theorem 1.3]. In Theorem 1.1, f and M are as-
sumed to be continuous and all eigenvalues of M(0) to have negative real parts.
In Theorem 1.3 smoothness of higher derivatives of y up to order r ≥ 1 has
been characterized. It turns out that for M,f ∈ Cr[0, 1] there exists a unique
solution y ∈ Cr[0, 1] provided that all real parts of the eigenvalues of M(0) are
smaller than r and different from natural numbers. The current paper completes
the results of [31] for the variable matrix M . In contrast to [31], where only
particular solutions without boundary conditions are considered, in this paper
general structure of linear two–point boundary conditions is of interest.

To compute the numerical solution of (1) polynomial collocation was pro-
posed in [15]. This was motivated by its advantageous convergence properties
for (1), while in the presence of a singularity other high order methods show
order reductions and become inefficient [17]. Consequently, for singular BVPs
[7, 25], two open domain Matlab codes based on collocation have been imple-
mented. The code sbvp can be used to approximate explicit first order ODEs
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[7], while bvpsuite is applicable to arbitrary mixed order problems also in the
implicit form [25]. During numerical simulations of numerous singular BVPs
both codes proved to work dependably and efficiently. This was our motivation
to analyze polynomial collocation when it is applied to solve BVP (3). The
respective study can be found in the second part of the paper.

The first part of the paper is organized as follows: In Section 2, the necessary
notation is introduced and in Section 3, the results for the constant coefficient
matrix M0 are recapitulated. In Sections 4, 5, and 6, three case studies are
carried out, the case of only negative real parts of the eigenvalues of M(0),
positive real parts of the eigenvalues of M(0), and zero eigenvalues of M(0),
respectively. Finally, the three case studies are used to formulate the results
for the general initial value problems, terminal value problems, and BVPs in
Section 7. In Section 8, we summarize the most important results of the article.

2 Notation

Throughout the paper, the following notation is used. We denote by Rn and
Cn the n-dimensional vector space of real-valued and complex-valued vectors,
respectively, and denote the maximum vector norm by

|x| := |(x1, . . . , xn)>| = max
1≤i≤n

|xi|.

We denote by Cn[0, 1] the space of continuous real vector-valued functions on
[0, 1]. In this space, we use the maximum norm,

‖y‖ := max
t∈[0,1]

|y(t)|,

and the norm restricted to the interval [0, δ], δ > 0, is denoted by

‖y‖δ := max
t∈[0,δ]

|y(t)|.

Cpn[0, δ], δ > 0, is the space of p times continuously differentiable real vector-
valued functions on [0, δ] with the norm

‖y‖Cp
n[0,δ] :=

p∑
k=0

‖y(k)‖δ.

Furthermore, we denote by Rm×n, Cm×n the m× n-dimensional space of real-
valued, complex-valued matrices, respectively, and denote the corresponding
matrix norm by

|A| = max
1≤i≤m

n∑
j=1

|aij |.

Additionally, the space of p-times continuously differentiable real-valued matrix
functions on [0, δ] is denoted by Cpm×n[0, δ], δ > 0, p ∈ N. This space is equipped
with the norm

‖M‖Cp
m×n[0,δ]

:=

p∑
k=1

‖M (k)‖δ,
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where
‖M‖δ := max

t∈[0,δ]
|M(t)|.

If it cannot be confusing, we omit the subscripts m and n for simplicity of
notation, and write C[0, 1] = Cn[0, 1], Cp[0, 1] = Cpn[0, 1], Cp[0, 1] = Cpm×n[0, 1],
etc.

3 Linear problems with constant coefficient ma-
trix

In this section, for reader’s convenience, we recapitulate the most important
results derived in [11] for the case of a constant coefficient matrix M0. These
results are necessary prerequisites for the investigation of problem (3) with a
variable coefficient matrix M(t). More precisely, we collect analytical results for
the ODE system

y′(t) =
M0

t
y(t) +

f(t)

t
, (7)

subject to initial/terminal conditions. This means that we deal with the IVP,

y′(t) =
M0

t
y(t) +

f(t)

t
, B0y(0) = β, (8)

where B0 ∈ Rm×n, β ∈ Rm, and m ≤ n, and with the TVP,

y′(t) =
M0

t
y(t) +

f(t)

t
, B1y(1) = β, (9)

where B1 ∈ Rn×n, β ∈ Rn, respectively.

In the first step of the analysis, we consider the ODE system (7) and con-
struct its general solution. We denote by J ∈ Cn×n the Jordan canonical form
of M0 and by E ∈ Cn×n the associated matrix of the generalized eigenvectors
of M0. Thus, M0 = EJE−1. In the case that the matrix J consists of l Jordan
boxes, J1, J2, . . . , Jl, the fundamental solution matrix has the form of the block
diagonal matrix, tJ = diag(tJ1 , tJ2 , . . . , tJl), where

Jk =


λk 1

. . .
. . .

. . . 1
λk

 ∈ Cnk×nk , k = 1, . . . , l,

and

tJk = tλk



1 ln t (ln t)2

2 . . . (ln t)nk−1

(nk−1)!

0 1 ln t . . . (ln t)nk−2

(nk−2)!

0
. . . 1

. . .
...

...
. . .

. . . ln t

0 . . . . . . 0 1


, t ∈ (0, 1]. (10)
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Here, λk = σk+iρk ∈ C is an eigenvalue of M0 and dimJ1+dimJ2+· · ·+dimJl =
n. The general solution of equation (7) is then given by

y(t) = tM0c+ tM0

∫ t

1

s−M0−If(s) ds, t ∈ (0, 1],

where c ∈ Cn and tM0 = EtJE−1 ∈ Cn×n. From the structure of the matrix tJk

in (10), it is obvious that the solution contribution related to the k-th Jordan
box may become unbounded for t = 0. Apparently, the asymptotic behaviour of
the solution depends on the sign of the real part σk of the associated eigenvalue
λk. Therefore, we have to distinguish between three cases, σk < 0, λk = 0, and
σk > 0. We assume that M0 has no purely imaginary eigenvalues to exclude
solutions of the form tiρ = cos(ρ ln t) + i sin(ρ ln t).

For the case where all eigenvalues of M0 have negative real parts, it is neces-
sary to prescribe initial conditions of a certain structure to guarantee that the
solution is continuous on [0, 1].

Theorem 1 (Theorem 5 in [11]). Let us assume that all eigenvalues of M0 have
negative real parts. Then for any f ∈ C[0, 1], IVP (8) with the initial conditions
M0y(0) = −f(0) has a unique solution y ∈ C[0, 1]. This solution has the form

y(t) = (L1f)(t), t ∈ [0, 1],

where L1 : C[0, 1]→ C[0, 1] is defined by

(L1f)(t) :=

∫ 1

0

s−M0−If(ts) ds, t ∈ [0, 1].

The initial conditions M0y(0) = −f(0) are necessary and sufficient for y to be
continuous on [0, 1]. Moreover, if f ∈ Cr[0, 1], r ≥ 1, then y ∈ Cr[0, 1].

In case that all eigenvalues of the matrix M0 have positive real parts, there
exists a unique continuous solution of a terminal value problem. It turns out
that its smoothness depends not only on the smoothness of an inhomogeneity
f but also on the size of real parts of the eigenvalues of M0.

Theorem 2 (Theorem 8 in [11]). Let us assume that all eigenvalues of M0 have
positive real parts and let the matrix B1 ∈ Rn×n in (9) be nonsingular. Then
for any f ∈ C1[0, 1] and any β ∈ Rn there exists a unique solution y ∈ C[0, 1]
of TVP (9). This solution has the form

y(t) = (L2f)(t), t ∈ [0, 1],

where L2 : C1[0, 1]→ C[0, 1] is defined by

(L2f)(t) := tM0B−11 β + tM0

∫ t

1

s−M0−If(s) ds, t ∈ [0, 1]. (11)

Moreover, this solution additionally satisfies the initial condition M0y(0) =
−f(0). Finally, if f ∈ Cr+1[0, 1], r ≥ 0 and if σ+ > r, where σ+ is the smallest
positive real part of the eigenvalues of M0, then y ∈ Cr[0, 1].
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We now construct y ∈ C[0, 1] in the case of the inhomogeneity f which is
not as smooth as in the previous theorem. This situation is explained in the
following remark:

Remark 3 (Remark 9 in [11]). A continuous solution to (7) exists also in the
case when f is not continuously differentiable in [0, 1]. However, in this case,
we need some more structure in f close to the singularity. Let us assume that
there exist a constant α > 0 and a function h ∈ C[0, δ], δ > 0 such that

f(t) = O(tαh(t)) for t→ 0. (12)

Let us denote

Ω = {f ∈ C[0, 1] such that f satisfies (12)}, (13)

and let L̃2 : Ω → C[0, 1] be defined by (11). Then the solution of (7) is still
continuous on [0, 1] and has the form

y(t) = (L̃2f)(t), t ∈ [0, 1].

Moreover, if the parameter α in (12) satisfies α > r+ 1, r ≥ 0, if h ∈ Cr+1[0, δ],
and σ+ > r + 1, then y ∈ Cr+1[0, 1].

The special structure in f close to the singularity (12) is also required to cover
the case of zero eigenvalues of M0. Let us denote by R the projection matrix

onto the space X
(e)
0 spanned by eigenvectors associated with zero eigenvalues

and by R̃ the matrix consisting of the linearly independent columns of R.

Theorem 4 (Theorem 11 in [11]). Let all eigenvalues of the matrix M0 be zero,

m := dimX
(e)
0 , and let the set Ω be given by (13). Then for any B0 ∈ Rm×n

such that the matrix B0R̃ ∈ Rm×m is nonsingular and for any f ∈ Ω and
β ∈ Rm, there exists a unique solution y ∈ C[0, 1] of IVP (8). This solution has
the form

y(t) = (L3f)(t), t ∈ [0, 1],

where L3 : Ω→ C[0, 1] is defined by

(L3f)(t) := R̃(B0R̃)−1β +

∫ 1

0

s−M0s−1f(st) ds, t ∈ [0, 1].

This solution satisfies also the initial condition M0y(0) = 0, which is necessary
and sufficient for y ∈ C[0, 1]. Moreover, if α ≥ r + 1, r ≥ 0, f ∈ Cr[0, 1], and
h ∈ Cr[0, δ], then y ∈ Cr+1[0, 1].

4 Eigenvalues of M(0) with negative real parts

Here, we investigate system (4), where all eigenvalues of M(0) have negative
real parts. Note that system (4) is equivalent to

y′(t) =
M(0)

t
y(t) +

(M(t)−M(0))y(t) + f(t)

t
.

In the proof of the existence and uniqueness of a continuous solution y of the
ODE system (4), we use techniques developed in [11] for a constant coefficient
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matrix, see Theorem 1. No additional assumptions on the variable coefficient
matrix M need to be made, provided that all eigenvalues of M(0) have negative
real parts. To show the smoothness of the solution y ∈ Cr[0, 1], r ∈ N, condition
(14) has to hold.

Theorem 5. Let us assume that all eigenvalues of M(0) have negative real parts
and M ∈ C[0, 1]. Then for any f ∈ C[0, 1] system (4) has a unique solution
y ∈ C[0, 1]. This solution satisfies the initial condition M(0)y(0) = −f(0)
which is necessary and sufficient for y to be continuous on [0, 1]. Moreover, if
f ∈ Cr[0, 1], M ∈ Cr[0, 1], r ≥ 1 and M is such that

M ′(t) = tγD(t), t ∈ [0, 1], (14)

where D ∈ Cr−1[0, 1], γ > r − 1, then y ∈ Cr[0, 1].

Proof: According to Theorem 1, any continuous solution of system (4) satisfies

y(t) = (L1g)(t) =

∫ 1

0

s−M(0)−Ig(st, y(st)) ds, t ∈ [0, 1],

where g(t, y(t)) = (M(t)−M(0)) y(t) + f(t). In order to show the existence
and uniqueness of a continuous solution of (4), we choose δ ∈ (0, 1] and study
the fixed point equation

y = Ky, y ∈ C[0, δ],

with an operator K defined by

(Ky)(t) :=

∫ 1

0

s−M(0)−Ig(st, y(st)) ds

=

∫ 1

0

s−M(0)−If(st) ds+

∫ 1

0

s−M(0)−I (M(st)−M(0)) y(st) ds, t ∈ [0, δ].

The proof is now carried out in two steps.

Step 1. Existence and uniqueness of a solution y.
We prove the existence and uniqueness of a solution y = Ky, y ∈ C[0, δ]
by means of the Banach fixed point theorem. It follows immediately from
Theorem 1 that the first contribution in Ky,∫ 1

0

s−M(0)−If(st) ds,

is continuous on [0, δ]. For any function y ∈ C[0, δ], the second contribu-
tion, ∫ 1

0

s−M(0)−I (M(st)−M(0)) y(st) ds,

is also continuous on [0, 1], cf. Theorem 1. Therefore, the operator K is a
mapping from C[0, δ] to C[0, δ].
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We now show that K is contracting. Let y1, y2 ∈ C[0, δ], then

‖Ky1 −Ky2‖δ = max
t∈[0,δ]

∣∣∣∣∫ 1

0

s−M(0)s−1 (M(st)−M(0)) (y1(st)− y2(st)) ds

∣∣∣∣
≤ max

t∈[0,δ]

{∫ 1

0

∣∣∣s−M(0)
∣∣∣ s−1 ds max

s∈[0,1]
|M(st)−M(0)| max

s∈[0,1]
|y1(st)− y2(st)|

}
≤ max

t∈[0,δ]

{∫ 1

0

∣∣∣s−M(0)
∣∣∣ s−1 ds max

s∈[0,t]
|M(s)−M(0)| max

s∈[0,t]
|y1(s)− y2(s)|

}
≤ const. ‖M(·)−M(0)‖δ‖y1 − y2‖δ,

where ‖M(·)−M(0)‖δ = maxt∈[0,δ] |M(t)−M(0)|. Note that by Lemma

3 [11],
∫ 1

0
|s−M(0)|s−1 ds = const. and since M is continuous on [0, 1]

lim
t→0

M(t)−M(0) = 0.

Therefore there exists a sufficiently small δ such that

const. ‖M(·)−M(0)‖δ =: LN < 1, (15)

and consequently, the operator K is a contraction. The Banach fixed point
theorem yields the existence of a unique continuous solution y of (4) on
[0, δ]. Using the classical theory, this solution can be uniquely extended
to t = 1. The initial condition M(0)y(0) = −f(0) follows from the form
of K and Theorem 1.

Step 2. Smoothness of the solution.
Now, we deal with the smoothness of y. Let us assume that r ∈ N and
f, M ∈ Cr[0, 1]. The property K : Cr[0, δ] → Cr[0, δ] follows by arguing
as in the proof of Theorem 1. We now show that K is a contraction on
Cr[0, δ] for a sufficiently small δ.

Let r = 1 and γ > 0 in (14). Then for any y1, y2 ∈ C1[0, δ],

‖Ky1 −Ky2‖C1[0,δ] = ‖Ky1 −Ky2‖δ + ‖ (Ky1)
′ − (Ky2)

′ ‖δ,

where (Ky)′ is given by

(Ky)′(t) =

∫ 1

0

s−M(0)f ′(st) ds+

∫ 1

0

s−M(0)M ′(st)y(st) ds

+

∫ 1

0

s−M(0) (M(st)−M(0)) y′(st) ds, t ∈ [0, δ],

and according to (14), (15), the following estimate holds:

‖Ky1 −Ky2‖C1[0,δ] ≤ LN‖y1 − y2‖δ

+ max
t∈[0,δ]

{
tγ
∫ 1

0

∣∣∣s−M(0)sγ
∣∣∣ ds max

s∈[0,1]
|D(st)| max

s∈[0,1]
|y1(st)− y2(st)|

}
+ max
t∈[0,δ]

{∫ 1

0

∣∣∣s−M(0)
∣∣∣ ds max

s∈[0,1]
|M(st)−M(0)| max

s∈[0,1]
|y′1(st)− y′2(st)|

}
≤ LN‖y1 − y2‖δ + LN2‖y1 − y2‖δ + LN3‖y′1 − y′2‖δ ≤ L‖y1 − y2‖C1[0,δ],
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where

L = max{LN + LN2, LN3},

LN2 = δγ
∫ 1

0

∣∣∣s−M(0)
∣∣∣ sγ ds‖D‖δ,

LN3 =

∫ 1

0

∣∣∣s−M(0)
∣∣∣ ds‖M(·)−M(0)‖δ.

For a sufficiently small δ, L < 1, and therefore, K is a contraction on
C1[0, δ].

Now, let r = 2 and γ > 1 in (14). Then for any y1, y2 ∈ C2[0, δ],

‖Ky1 −Ky2‖C2[0,δ] = ‖Ky1 −Ky2‖C1[0,δ] + ‖ (Ky1)
′′ − (Ky2)

′′ ‖δ,

where, by virtue of (14),

(Ky)′′(t) =

∫ 1

0

s−M(0)sf ′′(st) ds+ tγ−1
∫ 1

0

s−M(0)sγD(st)y(st) ds

+ tγ
∫ 1

0

s−M(0)sγ+1D′(st)y(st) ds+ 2tγ
∫ 1

0

s−M(0)sγ+1D(st)y′(st) ds

+

∫ 1

0

s−M(0)s (M(st)−M(0)) y′′(st) ds, t ∈ [0, δ],

and the following estimate holds:

‖Ky1 −Ky2‖C2[0,δ] ≤ L‖y1 − y2‖C1[0,δ]+LN4‖y1 − y2‖δ+LN5‖y1 − y2‖δ
+ LN6‖y′1 − y′2‖δ + LN7‖y′′1 − y′′2‖δ ≤ L2‖y1 − y2‖C2[0,δ].

Here,

L2 = max{L,LN4 + LN5, LN6, LN7},

LN4 = δγ−1
∫ 1

0

∣∣∣s−M(0)
∣∣∣ sγ ds‖D‖δ,

LN5 = δγ
∫ 1

0

∣∣∣s−M(0)
∣∣∣ sγ+1 ds‖D′‖δ,

LN6 = 2δγ
∫ 1

0

∣∣∣s−M(0)
∣∣∣ sγ+1 ds‖D‖δ,

LN7 =

∫ 1

0

∣∣∣s−M(0)
∣∣∣ sds‖M(·)−M(0)‖δ.

For a sufficiently small δ, L2 < 1, and thus, K is a contracting operator
on C2[0, δ].

Similarly, we can show that K is a contraction on Cr[0, δ] for r > 2 and
γ > r − 1. This yields the existence of a unique solution y ∈ Cr[0, δ]
such that M(0)y(0) = −f(0). This solution can be uniquely extended to
t = 1, so y ∈ C[0, 1] ∩ Cr[0, δ]. Under the assumption f, M ∈ Cr[0, 1]
the classical theory yields a unique solution z ∈ Cr(0, 1] of equation (4)
satisfying z(δ) = y(δ). Consequently, z = y on [0, 1] and y ∈ Cr[0, 1].

�
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5 Eigenvalues of M(0) with positive real parts

In this section, we study system (4) when all eigenvalues of the matrixM(0) have
positive real parts. For this spectrum of M(0), there exists a unique continuous
solution of TVP (6).

It turns out that a special structure of M is required in order to successfully
apply the Banach fixed point theorem, see Remark 3 which explains the situa-
tion with continuous, not necessarily smooth, inhomogeneity. Consequently, we
assume that a coefficient matrix M has the following form

M(t) = M(0) + tγD(t), γ > 0, D ∈ C[0, 1], t ∈ [0, 1]. (16)

Then, equation (4) can be equivalently rewritten,

y′(t) =
M(0)

t
y(t) +

tγD(t)y(t) + f(t)

t
.

Theorem 6. Let us assume that all eigenvalues of M(0) have positive real
parts and M satisfies condition (16). Moreover, let f ∈ C1[0, 1], the matrix
B1 ∈ Rn×n be nonsingular, and β ∈ Rn. Then there exists a unique solution
y ∈ C[0, 1] of TVP (6). Moreover, if f ∈ Cr+1[0, 1], r ∈ N, M satisfies con-
dition (16) with γ > r, D ∈ Cr[0, 1], and the smallest positive real part of the
eigenvalues of M(0) satisfies σ+ > r, then y ∈ Cr[0, 1].

Proof: The existence and uniqueness of a solution z ∈ C(0, 1] of problem
(6) follows from the classical theory because the interval (0, 1] does not contain
the singular point t = 0. Now, we ask the question, if the solution z can
be continuously extended to t = 0. In particular, we choose δ ∈ (0, 1] and
investigate the terminal value problem

y′(t) =
M(t)

t
y(t) +

f(t)

t
, t ∈ [0, δ], y(δ) = z(δ). (17)

By a slight modification of Theorem 2, we easily see that any solution y of
problem (17) satisfies

y(t) =

(
t

δ

)M(0)

z(δ) + tM(0)

∫ t

δ

s−M(0)−Ig(s, y(s)) ds, t ∈ [0, δ],

where g(t, y(t)) = f(t) + tγD(t)y(t). Therefore, the existence and uniqueness
of a continuous solution to problem (17) is equivalent to the existence and
uniqueness of a fixed point of the operator K defined on the space C[0, δ], where

(Ky)(t) =

(
t

δ

)M(0)

z(δ) + tM(0)

∫ t

δ

s−M(0)−If(s) ds

+ tM(0)

∫ t

δ

s−M(0)sγ−1D(s)y(s) ds, t ∈ [0, δ].

Again, the proof is divided into two parts.

Step 1. Existence and uniqueness of a solution y.
In order to use the Banach fixed point theorem to solve

y = Ky, y ∈ C[0, δ],

11



we first show that K : C[0, δ]→ C[0, δ]. According to Theorem 2 the first
contribution to Ky,(

t

δ

)M(0)

z(δ) + tM(0)

∫ t

δ

s−M(0)−If(s) ds,

is continuous. Moreover, for y ∈ C[0, δ] the function tγD(t)y(t) belongs
to Ω, cf. (13), and by Remark 3 we conclude that

tM(0)

∫ t

δ

s−M(0)sγ−1D(s)y(s) ds ∈ C[0, δ]

holds. Therefore, K : C[0, δ]→ C[0, δ]. Also, the operator K is a contrac-
tion. To see this consider y1, y2 ∈ C[0, δ]. Then,

‖Ky1 −Ky2‖δ = max
t∈[0,δ]

∣∣∣∣tM(0)

∫ t

δ

s−M(0)sγ−1D(s)(y1(s)− y2(s)) ds

∣∣∣∣
≤ max

t∈[0,δ]

{
tM(0)

∫ δ

t

∣∣∣s−M(0)
∣∣∣ sγ−1 ds max

s∈[t,δ]
|D(s)| max

s∈[t,δ]
|y1(s)− y2(s)|

}

≤ max
t∈[0,δ]

{∫ 1

t

∣∣∣∣∣
(
t

s

)M(0)
∣∣∣∣∣ sγ−1 ds

}
‖D‖δ‖y1 − y2‖δ.

According to Lemma 7 [11], the function

u(t) :=

∫ 1

t

∣∣∣∣∣
(
t

s

)M(0)
∣∣∣∣∣ sγ−1 ds

is bounded and for γ > 0, limt→0 u(t) = 0. Therefore, there exists a
sufficiently small δ such that

max
t∈[0,δ]

u(t)‖D‖δ =: LS < 1, (18)

and hence, the operator K is contracting for a sufficiently small δ. Ac-
cording to the Banach fixed point theorem, there exists a unique fixed
point of K in C[0, δ]. Thus, there exists a unique continuous solution y of
problem (17). Since y(δ) = z(δ), we have y = z on (0, δ]. If, we choose
z(0) := y(0), y ∈ C[0, 1] follows and this completes the proof of Step 1.

Step 2. Smoothness of the solution.
Let f ∈ Cr+1[0, 1], r ≥ 1, let M satisfy condition (16) with γ > r, and let
D ∈ Cr[0, 1]. Finally, let σ+ > r. By arguments similar to those used in
Theorem 2 and Remark 3, it follows that K : Cr[0, δ]→ Cr[0, δ].

Let us first assume r = 1 and show that K is a contraction on C1[0, δ].
Choose y1, y2 ∈ C1[0, δ]. Then, we can write (Ky1 − Ky2)(t) as shown
below, after integration by parts was used. With the shorthand notation
N(t) := tγD(t)(y1(t)− y2(t)), we have for any t ∈ [0, δ],

(Ky1 −Ky2)(t) = −tM(0)M(0)−1t−M(0)N(t)

+ tM(0)

(
M(0)−1δ−M(0)N(δ) +M(0)−1

∫ t

δ

s−M(0)N ′(s) ds

)
= M(0)−1

(
−N(t) + tM(0)δ−M(0)N(δ) + tM(0)

∫ t

δ

s−M(0)N ′(s) ds

)
.
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We now differentiate both sides of the above equality and use N(δ) = 0
to obtain

((Ky1)′ − (Ky2)′)(t) =

= −M(0)−1N ′(t) + tM(0)−Iδ−M(0)N(δ) + tM(0)−I
∫ t

δ

s−M(0)N ′(s) ds

+ M(0)−1tM(0)t−M(0)N ′(t) = tM(0)−I
∫ t

δ

s−M(0)N ′(s) ds

=

∫ t

δ

(
t

s

)M(0)−I

sγ−2 (γD(s) + sD′(s)) (y1(s)− y2(s)) ds

+

∫ t

δ

(
t

s

)M(0)−I

sγ−1D(s)(y′1(s)− y′2(s)) ds.

Since γ > 1 and σ+ > 1, Lemma 7 [11] implies that the function

u(t) :=

∫ 1

t

∣∣∣∣∣
(
t

s

)M(0)−I
∣∣∣∣∣ sγ−2 ds

is bounded and limt→0 u(t) = 0. Therefore, for y1, y2 ∈ C1[0, δ] and for a
sufficiently small δ > 0, we conclude using (18),

‖Ky1 −Ky2‖C1[0,δ] = ‖Ky1 −Ky2‖δ + ‖(Ky1)′ − (Ky2)′‖δ ≤ LS‖y1 − y2‖δ
+ max
t∈[0,δ]

{u(t) ((γ‖D‖δ + ‖D′‖δ) ‖y1 − y2‖δ + ‖D‖δ‖y′1 − y′2‖δ)} .

Therefore K is a contraction on C1[0, δ] for a sufficiently small δ. For
r > 1, we can use similar arguments to show that K is a contraction on
Cr[0, δ]. Now the Banach fixed point theorem yields the existence and
uniqueness of a solution y ∈ Cr[0, δ] of problem (17).

The classical theory implies that for the solution z of TVP (6), derived
in Step 1, z ∈ Cr(0, 1] holds. Since z(δ) = y(δ), y = z on [0, 1] and
y ∈ Cr[0, 1] follows.

�

6 Zero eigenvalues of M(0)

Finally, we consider the case, when all eigenvalues of M(0) are zero. It turns
out that additional structure in the function f and in the variable coefficient
matrix M is necessary for the solution y to be continuous. Let us recall the
notation used in this section. By R̃, we denote the matrix consisting of the

linearly independent columns of the projection matrix R onto X
(e)
0 , which is

the space spanned by the eigenvectors of M(0) associated with zero eigenvalues.
Finally, Ω is the set of continuous functions on [0, 1] satisfying condition (12).

Theorem 7. Let all eigenvalues of the matrix M(0) be zero. Let M satisfy

condition (16) and m := dimX
(e)
0 . Assume that f ∈ Ω, B0 ∈ Rm×n is such

that the matrix B0R̃ ∈ Rm×m is nonsingular, and β ∈ Rm. Then there ex-
ists a unique solution y ∈ C[0, 1] of IVP (5). This solution satisfies the initial
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condition M(0)y(0) = 0, which is necessary and sufficient for y ∈ C[0, 1]. More-
over, if α ≥ r + 1, γ ≥ r + 1, r ≥ 1, f, D ∈ Cr[0, 1], and h ∈ Cr[0, δ], then
y ∈ Cr+1[0, 1].

Proof: By Theorem 4, any continuous solution of IVP (5) satisfies

y(t) = (L3g)(t) = R̃(B0R̃)−1β +

∫ 1

0

s−M(0)s−1g(st, y(st)) ds, t ∈ [0, 1],

where g(t, y(t)) = f(t) + tγD(t)y(t). Consequently, we have to study the follow-
ing fixed point equation:

y = Ky, y ∈ C[0, δ],

to prove the existence and uniqueness of solution of IVP (5). In particular, we
choose δ ∈ (0, 1] and define

(Ky)(t) = R̃(B0R̃)−1β +

∫ 1

0

s−M(0)s−1f(st) ds

+ tγ
∫ 1

0

s−M(0)sγ−1D(st)y(st) ds, t ∈ [0, δ].

Step 1. Existence and uniqueness of a solution y.
We use the Banach fixed point theorem in order to prove the first part of
the statement. From Theorem 4, we see that

R̃(B0R̃)−1β +

∫ 1

0

s−M(0)s−1f(st) ds,

is continuous on [0, δ]. For y ∈ C[0, δ] the function tγD(t)y(t) belongs to
Ω, cf. (13). Using Theorem 4 we see that

tγ
∫ 1

0

s−M(0)sγ−1D(st)y(st) ds ∈ C[0, 1]

follows. Thus, K : C[0, δ] → C[0, δ]. Moreover, K is a contraction due to
the following estimates. Let y1, y2 ∈ C[0, δ], then

‖Ky1 −Ky2‖δ = max
t∈[0,δ]

∣∣∣∣tγ ∫ 1

0

s−M(0)sγ−1D(st) (y1(st)− y2(st)) ds

∣∣∣∣
≤ max

t∈[0,δ]

{
tγ
∫ 1

0

∣∣∣s−M(0)
∣∣∣ sγ−1 ds max

s∈[0,1]
|D(st)| max

s∈[0,1]
|y1(st)− y2(st)|

}
≤ max

t∈[0,δ]

{
tγ
∫ 1

0

∣∣∣s−M(0)
∣∣∣ sγ−1 ds max

s∈[0,t]
|D(s)| max

s∈[0,t]
|y1(s)− y2(s)|

}
≤ δγconst. ‖D‖δ‖y1 − y2‖δ.

Note that for γ > 0,
∫ 1

0
|s−M(0)|sγ−1 ds = const. holds, see Lemma 3 [11].

Consequently, there exists a sufficiently small δ such that

δγconst.‖D‖δ =: LZ < 1, (19)

and the operator K is a contraction. The Banach fixed point theorem
yields the existence of a unique continuous solution of (5) on [0, δ]. This
solution can be uniquely extended to the point t = 1. The initial condition
M(0)y(0)=0 follows from the form of K and Theorem 4.
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Step 2. Smoothness of the solution.
Let α ≥ r + 1, γ ≥ r + 1, r ≥ 1, f, D ∈ Cr[0, 1], and h ∈ Cr[0, δ]. Then,
in follows from Theorem 4 that K : Cr[0, δ] → Cr[0, δ]. We again use
the Banach fixed point theorem, and thus we need to show that K is a
contraction on Cr[0, δ] for a sufficiently small δ.

Let r = 1. Then for y1, y2 ∈ C1[0, δ] we have

‖Ky1 −Ky2‖C1[0,δ] = ‖Ky1 −Ky2‖C[0,δ] + ‖ (Ky1)
′ − (Ky2)

′ ‖C[0,δ],

where (Ky)′ is given by

(Ky)′(t) =

∫ 1

0

s−M(0)f ′(st) ds+ γtγ−1
∫ 1

0

s−M(0)sγ−1D(st)y(st) ds

+ tγ
∫ 1

0

s−M(0)sγD′(st)y(st) ds+ tγ
∫ 1

0

s−M(0)sγD(st)y′(st) ds, t ∈ [0, δ].

Moreover, by (19), the following estimate holds:

‖Ky1 −Ky2‖C1[0,δ] = ‖Ky1 −Ky2‖δ + ‖(Ky1)′ − (Ky2)′‖δ ≤ LZ‖y1 − y2‖δ

+ max
t∈[0,δ]

{
γtγ−1

∫ 1

0

∣∣∣s−M(0)
∣∣∣ sγ−1 ds max

s∈[0,1]
|D(st)| max

s∈[0,1]
|y1(st)− y2(st)|

}
+ max

t∈[0,δ]

{
tγ
∫ 1

0

∣∣∣s−M(0)
∣∣∣ sγ ds max

s∈[0,1]
|D′(st)| max

s∈[0,1]
|y1(st)− y2(st)|

}
+ max

t∈[0,δ]

{
tγ
∫ 1

0

∣∣∣s−M(0)
∣∣∣ sγ ds max

s∈[0,1]
|D(st)| max

s∈[0,1]
|y′1(st)− y′2(st)|

}
≤
(
LZ + γδγ−1const. ‖D‖δ + δγconst. ‖D′‖δ

)
‖y1 − y2‖δ

+ δγconst. ‖D‖δ‖y′1 − y′2‖δ.

Therefore, for a sufficiently small δ, K is a contracting operator on C1[0, δ].
Now, let r ≥ 2. By similar arguments we obtain a contraction on Cr[0, δ].
This yields a unique solution y ∈ Cr[0, δ] of (5) on [0, δ], which can be
uniquely extended to t = 1. For f, D ∈ Cr[0, 1], the classical theory
implies the existence of a unique solution z ∈ Cr(0, 1] of system (4) subject
to the initial condition z(δ) = y(δ). Hence, z = y on [0, 1] and y ∈ Cr[0, 1]
which completes the proof.

�

Remark 8. In the case, when M(0) = 0, (m = n), we can also study the unique
solvability of TVP (6). To obtain the existence and uniqueness results, we have
to investigate equation (4) on [0, δ], δ > 0 subject to the terminal condition
y(δ) = ζ first, where ζ ∈ Rn . Then, we can use the classical theory to extend
the solution to [0, 1]. The corresponding operator K : C[0, δ] → C[0, δ] has in
this case the form

(Ky)(t) = ζ +

∫ t

δ

s−1f(s) ds+

∫ t

δ

sγ−1D(s)y(s) ds.

The proof of contractivity of K is analogous to the case when M(0) 6= 0.
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7 General IVPs, TVPs and BVPs

In this section, we discuss general IVPs (5) and TVPs (6), where all conditions
which are necessary and sufficient to specify a unique solution y ∈ C[0, 1] are
posed at only one point, either at t = 0 or at t = 1. According to the results
derived above, restrictions on the spectrum of M(0) need to be made.

A.1 For IVP (5) we assume that the matrix M(0) has only eigenvalues with
nonpositive real parts and if σ = 0 then λ = 0.

A.2 For TVP (6) we assume that the matrix M(0) has only eigenvalues with
nonnegative real parts and if σ = 0 then λ = 0. Additionally, if zero is an
eigenvalue of M(0), then the associated invariant subspace is assumed to
be the eigenspace of M(0).

For the subsequent discussion, we introduce the following notation:

X+ is the invariant subspace associated with the eigenvalues with positive real parts;

X
(e)
0 is the space spanned by the eigenvectors associated with eigenvalues λ = 0;

X− is the invariant subspace associated with the eigenvalues with negative real parts;

X
(h)
0 is the space spanned by the generalized eigenvectors associated with the eigenvalue λ = 0;

S is the orthogonal projection onto X+;

R is the orthogonal projection onto X
(e)
0 ;

P := R+ S is the projection onto X+ ⊕X(e)
0 ;

Q := I − P is the projection onto X− ⊕X(h)
0 ;

Z is the orthogonal projection onto X
(e)
0 ⊕X(h)

0 ;

N is the orthogonal projection onto X−;

H is the orthogonal projection onto X
(h)
0 .

All projections are constructed using the generalized eigenbasis of M(0).

Theorem 9. Let us assume that A.1 holds, the m×m matrix B0R̃ is nonsin-
gular, and β ∈ Rm. Then, for any f ∈ C[0, 1] such that Zf satisfies (12) and
ZM satisfies (16), there exists a unique solution y ∈ C[0, 1] of IVP (5).

Proof: The existence of a unique continuous solution follows from Theorems
5 and 7 by applying the Banach fixed point theorem to the linear operator
K : C[0, δ]→ C[0, δ], δ > 0, defined by

(Ky)(t) := R̃(B0R̃)−1β +

∫ 1

0

s−Ms−1f(st) ds+ tγ
∫ 1

0

s−Msγ−1D(st)y(st) ds.

For a sufficiently small δ, operator K is a contraction and the Banach fixed
point theorem yields the existence of a unique continuous solution of (5) on the
interval [0, δ]. This solution can be uniquely extended to t = 1.

�

Theorem 10. Let us assume that A.2 holds, B1 ∈ Rn×n is nonsingular, and
β ∈ Rn. Then, for any f ∈ C[0, 1] such that Rf satisfies (12), Sf ∈ C1[0, 1],
and M satisfies condition (16), there exists a unique solution y ∈ C[0, 1] of TVP
(6).
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Proof: The existence and uniqueness of a solution z ∈ C(0, 1] of problem (6)
follows from the classical theory. Therefore, we investigate (4) on [0, δ], δ ∈ (0, 1],
subject to y(δ) = z(δ). The result follows from Theorems 6 and 7, when the
Banach fixed point theorem is applied to the operator K : C[0, δ] → C[0, δ],
δ ∈ (0, 1], defined by

(Ky)(t) := tMδ−Mz(δ) + tM
∫ t

δ

s−M−If(s) ds+ tM
∫ t

δ

s−Msγ−1D(s)y(s) ds.

Since for a sufficiently small δ the operator K is contracting, there exists a
unique continuous solution y of system (4) on [0, δ]. Since y(δ) = z(δ), y = z
on [0, 1] follows and this completes the proof.

�
Finally, we study the general linear BVPs (3), where the matrix M(0) may

have an arbitrary spectrum,

y′(t) =
M(t)

t
y(t) +

f(t)

t
, B0y(0) +B1y(1) = β. (20)

Lemma 11. Consider the following BVP:

y′(t) =
M(t)

t
y(t) +

f(t)

t
, (21)

Hy(0) = 0, M(0)Ny(0) = −Nf(0), Sy(1) = Sγ, Ry(0) = Rγ. (22)

Let us assume that f ∈ C[0, 1] is such that Zf satisfies (12) and Sf ∈ C1[0, 1].
Moreover, let M ∈ C[0, 1] be given in such a way that the projections SM and
ZM satisfy condition (16), and γ ∈ Rn. Then, there exists a unique solution
y ∈ C[0, 1] of the BVP (21), (22).

Proof: According to the previous results, the solution y of (21), (22) consists
of three contributions which depend on the real parts of eigenvalues of M(0),

y = Ny + Sy + Zy.

First, we consider system (21) posed on an interval [0, δ], δ ∈ (0, 1], subject to
the following boundary conditions:

Hy(0) = 0, M(0)Ny(0) = −Nf(0), Sy(δ) = Sζ, Ry(0) = Rγ, (23)

where ζ ∈ Rn will be specified later. In order to prove the existence of a unique
continuous solution of (21), (23), we apply the Banach fixed point theorem to

y = Ky, y ∈ C[0, δ].

The operator K : C[0, δ]→ C[0, δ] is now defined as

(Ky)(t) := N(Ky)(t) + S(Ky)(t) + Z(Ky)(t),
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where

N(Ky)(t) := N

∫ 1

0

s−M(0)s−1f(st) ds+N

∫ 1

0

s−M(0)s−1 (M(st)−M(0)) y(st) ds,

S(Ky)(t) :=

(
t

δ

)M(0)

Sγ + StM(0)

∫ t

δ

s−M(0)−If(s) ds

+ tM(0)S

∫ t

δ

s−M(0)sγ−1D(s)y(s) ds,

Z(Ky)(t) := tM(0)Rγ + Z

∫ 1

0

s−M(0)s−1f(st) ds

+ tγZ

∫ 1

0

s−M(0)sγ−1D(st)y(st) ds.

According to Theorems 5, 6 and 7, operator K maps C[0, δ] into itself. Moreover,
we can choose δ sufficiently small for

LN <
1

3
, LS <

1

3
, LZ <

1

3

to hold. Therefore, L := LN + LS + LZ < 1 and

‖Ky1 −Ky2‖δ ≤ ‖N (Ky1 −Ky2) ‖δ + ‖S (Ky1 −Ky2) ‖δ + ‖Z (Ky1 −Ky2) ‖δ
≤ (LN + LS + LZ) ‖y1 − y2‖δ = L‖y1 − y2‖δ.

Consequently, K is a contracting operator on C[0, δ]. According to the Banach
fixed point theorem, there exists a unique continuous solution y of problem
(21), (23) on [0, δ]. Since there is no singularity on [δ, 1], we can use the classical
theory to extend the solution contributions Ny and Zy to [0, 1]. Moreover,
the existence and uniqueness of a solution contribution Sz ∈ C[δ, 1] of regular
equation (21) subject to Sz(1) = Sγ follows from the classical theory. Therefore,
we choose ζ such that Sζ = Sz(δ) and we put Sy := Sz on [δ, 1]. Altogether,
Sy(δ) = Sz(δ) and Sy is the second solution contribution defined on [0, 1]. This
completes the proof.

�
In order to discuss the solvability of (20), we first need to provide an al-

ternative representation of the general solution of (20). Therefore, we rewrite
terms in Zy(t), t ∈ [0, 1],

Zy(t) = Rη̃ + tM(0)R

∫ t

1

s−M(0)−If(s) ds+ tM(0)H

∫ t

0

s−M(0)−If(s) ds

+ tM(0)R

∫ t

1

s−M(0)−IsγD(s)y(s) ds+ tM(0)H

∫ t

0

s−M(0)−IsγD(s)y(s) ds,

where

η̃ = η +R

∫ 1

0

s−M(0)−If(s) ds+R

∫ 1

0

s−M(0)−IsγD(s)y(s) ds.
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Consequently, the general solution y ∈ C[0, 1] of (20) has the integral represen-
tation,

y(t) = tM(0)P η̃ + tM(0)P

∫ t

1

s−M(0)−If(s) ds+ tM(0)Q

∫ t

0

s−M(0)−If(s) ds

+tM(0)P

∫ t

1

s−M(0)−IsγD(s)y(s) ds

+tM(0)Q

∫ t

0

s−M(0)−I (M(t)−M(0)) y(s) ds,

and satisfies the following boundary conditions (note that Sη̃ = Sη):

Hy(0) = 0, M(0)Ny(0) = −Nf(0), Py(1) = P η̃.

By the superposition principle, each solution of system (4) has the form

y(t) = ỹ(t) + Y (t)α, t ∈ [0, 1],

where α ∈ Rm, ỹ is the unique particular solution of (4) subject to boundary
conditions

Hỹ(0) = 0, M(0)Nỹ(0) = −Nf(0), P ỹ(1) = 0,

and Y (t) is the unique continuous fundamental solution matrix of the homoge-
neous system

Y ′(t) =
M(0)

t
Y (t), t ∈ [0, 1],

with Y (1) = P̃ , where P̃ is the n×m matrix consisting of the linearly indepen-
dent columns of P , cf. [11].

Now we turn to the general boundary conditions specified in (20). From the
above solution representation, for details see [11], we conclude

y(0) = (P +N)ỹ(0) + R̃α, y(1) = Qỹ(1) + P̃α.

Substituting y(0) and y(1) into the boundary conditions (20), we obtain

B0y(0) +B1y(1) = B0

(
(P +N)ỹ(0) + R̃α

)
+B1

(
Qỹ(1) + P̃α

)
= β.

Thus, (
B0R̃+B1P̃

)
α = β −B0(P ỹ(0) +Nỹ(0))−B1Qỹ(1),

and the unknown vector α can be uniquely determined if the m×m matrix

B0R̃+B1P̃

is nonsingular.

The following theorem stated without proof is a consequence of the above
results.
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Theorem 12. Consider BVP (20), where the inhomogeneity f is given in such
a way such that f ∈ C[0, 1], Zf satisfies (12), and Sf ∈ C1[0, 1]. Let the coeffi-
cient matrix M ∈ C[0, 1] be such that its projections PM,HM satisfy condition
(16). Moreover, let B0, B1 ∈ Rm×n, β ∈ Rm, m = rankP , and the m × m
matrix B0R̃ + B1P̃ be nonsingular. Then, BVP (20) has a unique continuous
solution y ∈ C[0, 1]. This solution satisfies two sets of initial conditions,

Hy(0) = 0, M(0)Ny(0) = −Nf(0)

which are necessary and sufficient for y ∈ C[0, 1].

8 Conclusions

The first part of the present paper was devoted to the investigation of the
analytical properties of the singular BVP with a variable coefficient matrix

y′(t) =
M(t)

t
y(t) +

f(t)

t
, B0y(0) +B1y(1) = β.

The structure of the correctly posed boundary conditions which guarantee the
existence of a unique solution y ∈ C[0, 1] depends on the spectral properties of
the matrix M(0). Therefore, the detailed three case studies are carried out, the
case of only negative real parts of the eigenvalues of M(0), positive real parts
of the eigenvalues of M(0), and zero eigenvalues of M(0). The analysis heavily
relies on the Banach fixed point theorem which is a suitable tool to overcome the
difficulties caused by the singularity at t = 0. The respective results are stated
for the general initial value, terminal value, and boundary value problems.

The study of the collocation schemes applied to approximate the solution of
the analytical problem is postponed to the second part of the paper.
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