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Abstract

The paper investigates singular initial problems

(p(t)u′)′ = p(t)f(u), u(0) = B, u′(0) = 0,

on the half–line [0,∞). Here B < 0 is a parameter, p(0) = 0 and p′(t) > 0
on (0,∞), f(L) = 0 for some L > 0 and xf(x) < 0 if L0 < x < L and
x 6= 0. The existence of a strictly increasing solution to the problem for
which there exists finite c > 0 such that u(c) = L is discussed. This
is fundamental for the existence of a strictly increasing solution of the
problem having its limit equal to L as t→∞, which has great importance
in applications.
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1 Introduction

Assume that L > 0 is a given parameter. A goal of this paper is to prove that
for some B < 0 there exist c > 0 and a solution u ∈ C1([0, c]) ∩ C2((0, c]) of an
initial problem

(p(t)u′)′ = p(t)f(u), (1)
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u(0) = B, u′(0) = 0 (2)

satisfying moreover
u(c) = L, u′ > 0 on (0, c]. (3)

Definition 1 A solution of (1) – (3) will be called an escape solution of problem
(1), (2).

The existence of an escape solution is fundamental in order to get a ho-
moclinic solution which plays an important role in hydrodynamics (see [4]-[7],
[9]) and which is defined as a function u ∈ C1([0,∞)) ∩ C2((0,∞)) satisfying
equation (1) on (0,∞) and fulfilling

u′(0) = 0, u(∞) = L, u′ > 0 on (0,∞). (4)

See [9] for analytical investigation and [7], [8] for numerical simulations.
Problem (1), (4) can be transformed onto a problem about the existence of

a positive solution on the half–line. For p(t) = tk, k ∈ N and for p(t) = tk,
k ∈ (1,∞), such problem was solved by variational methods in [1] and [2],
respectively. Related problems were solved e.g. in [3] and [10]. Here we deal
with a more general function p and we omit some assumptions for f . In the
paper we assume

L0 < 0, f ∈ Lip([L0, L]), f(L0) = f(0) = f(L) = 0, (5)

xf(x) < 0, x ∈ (L0, L) \ {0}, (6){
there exists B̄ ∈ (L0, 0) such that F (B̄) = F (L),
where F (x) = −

∫ x
0
f(z) dz, x ∈ [L0, L], (7)

p ∈ C ([0,∞)) ∩ C1((0,∞)), p(0) = 0, (8)

p′ > 0 on (0,∞), lim
t→∞

p′(t)
p(t)

= 0. (9)

Note that equation (1) is singular because p(0) = 0. In [13] we have studied
problem (1), (2) provided f ∈ Liploc((−∞, L]) has a sublinear behaviour near
−∞ and has just two zeros in (−∞, L]. In particular, we have assumed

f ∈ Liploc((−∞, L)), f(0) = f(L) = 0, lim
x→−∞

|x|
f(x)

=∞. (10)

Under assumption (6) – (10) we have obtained an escape solution by means
of differential and integral inequalities. The lower and upper functions approach
has been used in [11] and [12], where the existence of an escape solution has
been reached under assumptions (5) – (9) and an additional assumption{

f ∈ C1((−δ, 0)) and limx→0− f
′(x) = f ′−(0) < 0,

p ∈ C2((0,∞)) and limt→∞
p′′(t)
p(t) = 0.

(11)

Here, modifying some assertions of [13], we can omit assumption (11) and pro-
vide a new existence result for problem (1) – (3). Having an escape solution
provided (5) – (9) is assumed, we can use some arguments of [13] and get a
homoclinic solution, as well.
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2 Auxiliary initial problem

We work with an auxiliary equation

(p(t)u′)′ = p(t)f̃(u), (12)

where

f̃(x) =
{
f(x) x ∈ [L0, L],
0 x ∈ R \ [L0, L]. (13)

Definition 2 Let c > 0. A function u ∈ C1([0, c]) ∩ C2((0, c]) satisfying (12)
on (0, c] and fulfilling (2) is called a solution of problem (12), (2) on [0, c]. If u is
a solution of problem (12), (2) on [0, c] for all c > 0, then it is called a solution
of problem (12), (2) on [0,∞).

Remark 3 Let c > 0. A function u ∈ C ([0, c]) is a solution of problem (12),
(2) on [0, c] if and only if it satisfies

u(t) = B +
∫ t

0

1
p(s)

∫ s

0

p(τ)f̃(u(τ)) dτ ds (14)

for t ∈ [0, c].

Lemma 4 Let (5), (6), (8), (9), (13) be satisfied and B ∈ [L0, 0]. Problem (12),
(2) has a unique solution on [0,∞). Moreover, for B ∈ (L0, 0) the solution is
strictly increasing on each interval [0, b] (b > 0) on which is negative. If B = L0

or B = 0, the solutions are constant functions.

Proof. First we will prove the local existence and uniqueness of solution of
problem (12), (2). For this purpose we consider the operator F : C ([0, η]) →
C ([0, η]) defined by

(Fu)(t) = B +
∫ t

0

1
p(s)

∫ s

0

p(τ)f̃(u(τ)) dτ ds.

whose fixed point is the solution of (12), (2) on [0, η], η > 0. From (5), (13)
and (9) we deduce that the operator F is a contraction for sufficiently small
η > 0, and therefore it has the unique fixed point. Due to (5), (8) and (13), this
solution can be uniquely extended onto the whole half–line [0,∞). The rest of
the Lemma follows from (5), (6) and (13). �

Remark 5 In what follows, by a solution of problem (12), (2) we mean a
solution on [0,∞).

Lemma 6 Let (5)–(9), (13) be satisfied. Let u be a solution of problem (12),
(2) for B ∈ (L0, 0), let u be increasing on [0,∞) and u(t) ∈ [L0, L] for each
t ∈ [0,∞). Then

lim
t→∞

u(t) ∈ {0, L} and lim
t→∞

u′(t) = 0.
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Proof. Let us denote l = limt→∞ u(t). From the assumptions of Lemma 6 we
see that l ∈ (B,L] and from (12), (13) it follows

u′′(t) = −p
′(t)
p(t)

u′(t) + f(u(t)), t ∈ (0,∞). (15)

Multiplying this equality by u′(t) and integrating over interval (0, t) we get from
(2) that

u′2(t)
2

= −
∫ t

0

p′(s)
p(s)

u′2(s) ds+
∫ t

0

f(u(s))u′(s) ds, t ∈ (0,∞).

According to (7) we have

u′2(t)
2

= −
∫ t

0

p′(s)
p(s)

u′2(s) ds+ F (B)− F (u(t)), t ∈ (0,∞).

From (8), (9) it follows that the right–hand side of the last equality has limit
for t → ∞, thus there exists limt→∞ u′2(t). Since u is increasing on [0,∞) we
have u′(t) ≥ 0 for each t ∈ [0,∞) and consequently there exists nonnegative
limt→∞ u′(t). If limt→∞ u′(t) > 0 then limt→∞ u(t) =∞, which contradicts the
boundedness of the function u. Thus, limt→∞ u′(t) = 0. From this fact, (9) and
(15) for t→∞, it follows that

lim
t→∞

u′′(t) = f(l).

This yields f(l) = 0, and thus from (5) and (6) we get l = 0 or l = L. �

Lemma 7 Let (5), (8), (9), (13) be satisfied. For each b > 0 and ε > 0, there
exists δ > 0 such that for any B1, B2 ∈ [L0, 0]

|B1 −B2| < δ =⇒
(
|u1(t)− u2(t)|+ |u′1(t)− u′2(t)| < ε, t ∈ [0, b]

)
.

Here ui is a solution of problem (12), (2) with B = Bi, i = 1, 2.

Proof. Choose b > 0, ε > 0. Let K > 0 be the Lipschitz constant for f̃ on R.
Let B1, B2 ∈ [L0, 0] and u1, u2 be corresponding solutions of problem (12), (2)
on [0,∞). From (14), (9) it follows

|u1(t)− u2(t)| ≤ |B1 −B2|+Kb

∫ t

0

|u1(τ)− u2(τ)|dτ, t ∈ [0, b].

From the Gronwall inequality, we get

|u1(t)− u2(t)| ≤ |B1 −B2|eKb
2
, t ∈ [0, b].

Similarly

|u′1(t)− u′2(t)| ≤ K 1
p(t)

∫ t

0

p(s)|u1(s)− u2(s)|ds

≤ Kb|B1 −B2|eKb
2
, t ∈ [0, b].
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It suffices to take δ > 0 such that

δ <
ε

(1 +Kb)eKb2
. �

The following lemma is a direct consequence of Lemma 7.

Lemma 8 Let (5), (8), (9), (13) be satisfied. Let {Bn}∞n=1 ⊂ [L0, 0], B0 ∈
[L0, 0] be such that limn→∞Bn = B0. Let un be the corresponding solution of
(12), (2) with B = Bn for each n ∈ N ∪ {0}. Then {un}∞n=1 converges to u0

locally uniformly on [0,∞).

3 Escape solution

Note that if u is a solution of problem (12), (2) and fulfils condition (3) for some
c > 0, it is an escape solution of problem (1), (2). Therefore it suffices to search
for escape solutions of problem (12), (2).

First we provide some auxiliary conditions which guarantee the existence of
an escape solution of problem (12), (2).

Lemma 9 Let (5)–(9), (13) be satisfied. Let C ∈ (L0, B̄) and {Bn}∞n=1 ⊂
(L0, C). Then for each n ∈ N
(i) there exists a solution un of problem (12), (2) with B = Bn,
(ii) there exists bn > 0 such that [0, bn) is the maximal interval on which the
solution un is increasing and its values in this interval are contained in [L0, L],
(iii) there exists γn ∈ (0, bn) satisfying un(γn) = C.
If the sequence {γn}∞n=1 is unbounded, then there exists ` ∈ N such that u` is an
escape solution of problem (12), (2).

Proof. In view of Lemma 4 and Lemma 6 solutions un of (12), (2) with B = Bn
and constants bn, γn exist (bn can be infinite). Let {γn}∞n=1 be unbounded. Then

lim
n→∞

γn =∞, γn < bn for all n ∈ N (16)

(otherwise we take a subsequence). Assume on the contrary that for any n ∈ N,
un is not an escape solution. Choose n ∈ N. If bn = ∞, we write un(bn) =
limt→∞ un(t) and u′n(bn) = limt→∞ u′n(t). If bn is finite, then

un(bn) ∈ [0, L] and u′n(bn) = 0. (17)

In view of Lemma 6, relations (17) are valid for bn = ∞, as well. Due to (17),
(2) and (ii) there exists γ̄n ∈ [γn, bn) satisfying

u′n(γ̄n) = max{u′n(t) : t ∈ [γn, bn)} (18)

By (ii), (12) and (13), un satisfies equation

u′′n(t) +
p′(t)
p(t)

u′n(t) = f(un(t)), t ∈ (0, bn),
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Integrating it over [0, t] we get

u′2n (t)
2

+ F (un(t)) = F (Bn)−
∫ t

0

p′(s)
p(s)

u′2n (s) ds, t ∈ (0, bn). (19)

Put

En(t) =
u′2n (t)

2
+ F (un(t)), t ∈ (0, bn). (20)

Then, by (19),
dEn(t)

dt
= −p

′(t)
p(t)

u′2n (t) < 0, t ∈ (0, bn). (21)

We see that En is decreasing. From (6) and (7) we get that F is increasing on
[0, L] and consequently by (17) and (20) we have

En(γn) > F (un(γn)) = F (C), En(bn) = F (un(bn)) ≤ F (L). (22)

Integrating (21) over (γn, bn) and using (18), we obtain

En(γn)− En(bn) =
∫ bn

γn

p′(t)
p(t)

u′2n (t) dt ≤ u′n(γ̄n)(L− C)Kn,

where

Kn = sup
{
p′(t)
p(t)

: t ∈ [γn, bn)
}
∈ (0,∞).

Further, by (22),

F (C) < En(γn) ≤ F (L) + u′n(γ̄n)(L− C)Kn, (23)

and
F (C)− F (L)

L− C
· 1
Kn

< u′n(γ̄n).

Conditions (9) and (16) yield limn→∞Kn = 0, which implies

lim
n→∞

u′n(γ̄n) =∞. (24)

By (20) and (23),

u′2n (γ̄n)
2

≤ En(γ̄n) ≤ En(γn) ≤ F (L) + u′n(γ̄n)(L− C)Kn,

and consequently

u′n(γ̄n)
(

1
2
u′n(γ̄n)− (L− C)Kn

)
≤ F (L) <∞, n ∈ N,

which contradicts (24). Therefore at least one escape solution of (12), (2) with
B < B̄ must exist. �

The main result is contained in the next theorem.
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Theorem 10 Let (5)–(9) be satisfied. Then there exists at least one escape
solution of problem (1), (2).

Proof. Let us take C ∈ (L0, 0) and a sequence {Bn} ⊂ (L0, C) such that
limn→∞Bn = L0. We consider the corresponding sequence {un} of solutions of
problem (12), (2) with B = Bn, and sequence {γn} from Lemma 9. Lemma 8
and Lemma 4 yield that {un} converges to u ≡ L0 locally uniformly. Conse-
quently, we can find subsequence {γkn

} ⊂ (0,∞) such that

lim
n→∞

γkn
=∞.

Therefore, by Lemma 9 there exists at least one escape solution. �

Example 11 Let us assume problem (1), (2) with

f(x) = A(x− L0)x(x− L), x ∈ R,

such that A > 0, L0 < 0 < L and |L0| > |L| and

p(t) = tk, t ∈ [0,∞),

where k ∈ N. We can check, that the assumptions (5)–(9) are satisfied and by
Theorem 10 the problem (1), (2) has an escape solution. Special case of this
problem has arisen in hydrodynamics, see for example [9].
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