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ensuring the existence of nonconstant possibly nonsmooth lower and upperfunctions to the periodic boundary value problemu00 = f(t; u); u(0) = u(2�); u0(0) = u0(2�) (1.1)and �nd estimates for them. This enables us to prove the existence theoremfor the periodic problem for the Du�ng equation with a repulsive singularitywhich extends the classical result of Lazer & Solimini [10] and supplementsthe results obtained by some of their followers (see e.g. [2], [13] or [21]). Inparticular, our result is closely related to that of Omari & Ye [13].Throughout the paper we assume: f : [0; 2�]�R 7! R ful�ls the Carathéodoryconditions on [0; 2�]�R ; i.e. f has the following properties: (i) for each x 2 Rthe function f(:; x) is measurable on [0; 2�]; (ii) for almost every t 2 [0; 2�]the function f(t; :) is continuous on R ; (iii) for each compact set K� R thefunction mK(t) = sup x2K jf(t; x)j is Lebesgue integrable on [0; 2�]:The set of functions f : [0; 2�]�R 7! R satisfying the Carathéodory conditionson [0; 2�]�R is denoted by Car([0; 2�]�R): Furthermore, we keep the followingnotation:As usual, for a subset M of R ; �M denotes the characteristic function of M(�M(t) = 1 for t 2M; �M(t) = 0 for t 2 R nM).For a given subinterval J of R (possibly unbounded), C (J) denotes the set offunctions continuous on J: Furthermore, L [0; 2�] stands for the set of functionsLebesgue integrable on [0; 2�]; L2 [0; 2�] is the set of functions square Lebesgueintegrable on [0; 2�]; A C [0; 2�] denotes the set of functions absolutely contin-uous on [0; 2�] and BV [0; 2�] is the set of functions of bounded variation on[0; 2�]: If x 2 BV [0; 2�]; s 2 (0; 2�] and t 2 [0; 2�); then the symbols x(s�);x(t+) and �+x(t) are de�ned respectively byx(s�) = lim�!s� x(�); x(t+) = lim�!t+ x(�) and �+x(t) = x(t+)� x(t)while xac and xsing stand for the absolutely continuous part of x and thesingular part of x; respectively. We suppose xsing(0) = 0: For a given � 2[0; 2�); A C ([0; 2�] n f�g) is the set of functions x 2 BV [0; 2�] such thatx��+x(�)�(�;2�] 2 A C [0; 2�]: For x 2 C [0; 2�]; y 2 L [0; 2�] and z 2 L2 [0; 2�]we denote kxkC = supt2[0;2�] jx(t)j; y = 12� Z 2�0 y(s)ds;kyk1 = Z 2�0 jy(t)jdt and kzk2 = � Z 2�0 z2(t)dt� 12 :Finally, for a given function � 2 L [0; 2�]; �+ denotes its nonnegative part(�+(t) = maxf�(t); 0g for a.e. t 2 [0; 2�]) and �� stands for its nonpositive2



part (��(t) = maxf��(t); 0g for a.e. t 2 [0; 2�]).By a solution of (1.1) we understand a function u : [0; 2�] 7! R such thatu0 2 A C [0; 2�]; u(0) = u(2�); u0(0) = u0(2�) andu00(t) = f(t; u(t)) for a.e. t 2 [0; 2�]:The following de�nition generalizes most of the earlier ones and is taken from[15].1.1. De�nition. Functions (�1; �1) 2 A C [0; 2�] � BV [0; 2�] are said to belower functions of the problem (1.1), if the singular part �sing1 of �1 is nonde-creasing on [0; 2�];�01(t) = �1(t); �01(t) � f(t; �1(t)) for a.e. t 2 [0; 2�]and �1(0) = �1(2�); �1(0) = �1(2�): (1.2)Similarly, functions (�2; �2) 2 A C [0; 2�]�BV [0; 2�] are said to be upper func-tions of the problem (1.1), if the singular part �sing2 of �2 is nonincreasing on[0; 2�]; �02(t) = �2(t); �02(t) � f(t; �2(t)) for a.e. t 2 [0; 2�]and �2(0) = �2(2�); �2(0) = �2(2�): (1.3)For the existence results obtained in this paper we will need the followingtheorem which is contained in [15, Theorems 4.1 and 4.2].1.2. Theorem. Let (�1; �1) and (�2; �2) be respectively lower and upper func-tions of the problem (1.1).(I) Suppose �1(t) � �2(t) on [0; 2�]: Then there is a solution u of the problem(1.1) such that �1(t) � u(t) � �2(t) on [0; 2�]:(II) Suppose �1(t) � �2(t) on [0; 2�] and there is m 2 L [0; 2�] such thatf(t; x) � m(t) (or f(t; x) � m(t)) for a.e. t 2 [0; 2�] and all x 2 R :Then there is a solution u of the problem (1.1) such that ku0kC � kmk1 and�2(tu) � u(tu) � �1(tu) for some tu 2 [0; 2�]:3



2. Construction of lower and upper functionsLet us consider an auxiliary boundary value problem�0 = �; �0 = �(t); (2.1)�(0) = �(2�) = c; �(0) = �(2�); �+�(�) = �2��; (2.2)where � 2 L [0; 2�] and c 2 R :2.1. De�nition. Let � 2 [0; 2�); c 2 R and � 2 L [0; 2�] be given. By a so-lution of the problem (2.1), (2.2) we mean a couple of functions (�; �) 2A C [0; 2�]� A C ([0; 2�] n f�g) satisfying (2.2) and�0(t) = �(t); �0(t) = �(t) a.e. on [0; 2�]: (2.3)2.2. Proposition. Let c 2 R ; � 2 [0; 2�) and � 2 L [0; 2�]: Then the problem(2.1), (2.2) possesses a unique solution (�; �): Moreover, �sing = �2���(�;2�]and � is given by�(t) = c� g(t; �)(2��) + Z 2�0 g(t; s)�(s)ds on [0; 2�]; (2.4)where g(t; s) = 8>>>><>>>>: t(s� 2�)2� if 0 � t � s � 2�;(t� 2�)s2� if 0 � s < t � 2�: (2.5)Proof. For c; c1 2 R ; put�(t) = 8>>><>>>: c+ c1 t+ Z t0 (t� s)�(s)ds if 0 � t � � � 2�;c+ c1 (t� 2�)� Z 2�t (t� s)�(s)ds if 0 � � < t � 2� (2.6)and �(t) = 8>>><>>>: c1 + Z t0 �(s)ds if 0 � t � � � 2�;c1 � Z 2�t �(s)ds if 0 � � < t � 2�: (2.7)Then � and � belong to A C ([0; 2�] n f�g) and satisfy (2.3) and (2.2). Fur-thermore, �+�(�) = 0 (i.e. � is absolutely continuous on [0; 2�]) if and onlyif c1 = � Z 2�0 � � s2� �(s)ds; (2.8)4



while c 2 R may be arbitrary. Inserting (2.8) into (2.6) we can check that �veri�es (2.4). Finally, in virtue of (2.7) we have�(t) + 2���(�;2�](t) = c1 + Z t0 �(s)ds;i.e. �ac = �+ 2���(�;2�] and �sing = �2���(�;2�]:2.3. Remark. Notice that if the couple (�; �) is determined by Proposition2.2, then � 2 A C [0; 2�] whenever � = 0: Furthermore, if � = 0 or � = 0; thenthe formula (2.4) reduces to�(t) = c+ Z 2�0 g(t; s)�(s)ds on [0; 2�]:The following lemma will be often used in this paper.2.4. Lemma. Let u 2 A C [0; 2�] and u0 2 L2 [0; 2�]: Thenkuk2 � 2ku0k2 (2.9)holds whenever u(0) = u(2�) = 0 andkuk2 � ku0k2 (2.10)and kukC � r�6 ku0k2 (2.11)are true whenever u(0) = u(2�) and u = 0:Proof. The inequality (2.9) is due to Schee�er [18, p. 207] (see also [12, II.2]).For (2.10) (Wirtinger's inequality) and (2.11) (Sobolev's inequality) see e.g.[11, Proposition 1.3]).2.5. Proposition. Assume that there are a; A 2 R ; � 2 [0; 2�) and b 2L [0; 2�] such thata � 0; b = 0 (2.12)and f(t; x) � a+ b(t) for a.e. t 2 [0; 2�] and all x 2 [A(t); B(t)]; (2.13)where A(t) = A + a h(t; �); B(t) = A(t) + �3kbk1 for t 2 [0; 2�] (2.14)and 5



h(t; �) = 8>><>>: t(2� � 2� + t)2 if 0 � t � � � 2�;(2� � t)(2� � t)2 if 0 � � � t � 2�: (2.15)Then there exist lower functions (�; �) of (1.1) such thatA(t) � �(t) � B(t) on [0; 2�] and � 2 A C ([0; 2�] n f�g): (2.16)Proof. By Proposition 2.2, the problem (2.1), (2.2) with �(t) = a + b(t) a.e.on [0; 2�] has a unique solution (�; �) for any c 2 R : Moreover, with respectto (2.4), (2.5) and (2.15), � has the form�(t) = c� 2�a g(t; �) + a2 t (t� 2�) + Z 2�0 g(t; s)b(s)ds= c+ a h(t; �) + Z 2�0 g(t; s)b(s)ds on [0; 2�]:Let us put c0 = � 12� Z 2�0 � Z 2�0 g(t; s)b(s)ds�dtand �0(t) = c0 + Z 2�0 g(t; s)b(s)ds for t 2 [0; 2�]:Then �0 = 0 and �000 (t) = b(t) a.e. on [0; 2�]: Multiplying the last relation by�0; integrating it over [0; 2�] and using the Hölder inequality we get k�00k22 �kbk1k�0kC : Further, the Sobolev inequality (2.11) (see Lemma 2.4) yieldsk�00k22 � r�6 kbk1k�00k2;and so k�00k2 � q�6 kbk1; wherefrom using again (2.11) we getk�0kC � �6 kbk1: (2.17)This implies thata h(t; �)� �6 kbk1 � a h(t; �) + �0(t) � a h(t; �) + �6 kbk1 on [0; 2�]:Now, if we choose c = c0 + �6 kbk1 + A; then we get�(t) = c+ a h(t; �) + Z 2�0 g(t; s)b(s)ds= �6 kbk1 + A+ a h(t; �) + �0(t) for t 2 [0; 2�];6



i.e., with respect to (2.17), we haveA + a h(t; �) � �(t) � A+ a h(t; �) + �3 kbk1 on [0; 2�];which means that (2.16) holds. According to (2.12) and (2.13) this impliesthat �0(t) = a+ b(t) � f(t; �(t)) for a.e. t 2 [0; 2�]:Furthermore, with respect to (2.2) we have �(0) = �(2�) and �(0) = �(2�) andhence, by De�nition 1.1 the functions (�; �) are lower functions of (1.1).2.6. Remark. Notice that the function h de�ned in (2.15) ful�ls the estimates��22 � �(� � �)22 � h(t; �) � �(2� � �)2 � �22on [0; 2�]� [0; 2�]:The following assertion is dual to Proposition 2.5 and its proof can be omitted.2.7. Proposition. Assume that there are a; A 2 R ; � 2 [0; 2�) and b 2L [0; 2�] such that a � 0; b = 0;f(t; x) � a+ b(t) for a.e. t 2 [0; 2�] and all x 2 [A(t); B(t)];where A(t) and B(t) are de�ned by (2.14) and (2.15).Then there exist upper functions (�; �) of (1.1) ful�lling (2.16).Theorems 2.8 and 2.11 and Corollary 2.9 are simple examples of existenceresults which follow immediately from Theorem 1.2 and Propositions 2.5 and2.7.2.8. Theorem. Assume that there are A1; A2; a1; a2 2 R ; �1; �2 2 [0; 2�] andb1; b2 2 L [0; 2�] such thata1 � 0; b1 = 0; (2.18)f(t; x) � a1 + b1(t) (2.19)for a.e. t 2 [0; 2�] and all x 2 [A1 + a1 h(t; �1); B1 + a1 h(t; �1)];a2 � 0; b2 = 0; (2.20)f(t; x) � a2 + b2(t) (2.21)for a.e. t 2 [0; 2�] and all x 2 [A2 + a2 h(t; �2); B2 + a2 h(t; �2)]and 7



A2 + a2 h(t; �2) � B1 + a1 h(t; �1) for all t 2 [0; 2�]; (2.22)whereB1 � A1 = �3kb1k1; B2 � A2 = �3 kb2k1 (2.23)and h(t; �) is given by (2.15).Then the problem (1.1) possesses a solution u such thatA1 + a1 h(t; �1) � u(t) � B2 + a2 h(t; �2) on [0; 2�]:2.9. Corollary. Assume that there are A1; A2 2 R ; a1 < 0 and �1 2 [0; 2�]such thatf(t; A1 + a1 h(t; �1)) � a1; f(t; A2) � 0 for a.e. t 2 [0; 2�]and A2 � A1 + a1 h(t; �1) for all t 2 [0; 2�];where h(t; �) is given by (2.15).Then the problem (1.1) possesses a solution u such thatA1 + a1 h(t; �1) � u(t) � A2 on [0; 2�]:2.10. Example. Let " > 0; � > 0; � > 0; k1 > 0; A1 > 0; a1 < 0;q(t) = 8><>:A1 � k1 t if t 2 [0; �];A1 + k1 (t� 2 �) if t 2 (�; 2 �]and let f(t; x) for t 2 [0; 2�] be given by
f(t; x) =

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
" if x � q(t)� �;a1 � "� a1� (x� q(t)) if x 2 (q(t)� �; q(t)];a1 if x 2 (q(t); q(t) + �];a1 + "� a1� (x� q(t)� �) if x 2 (q(t) + �; q(t) + � + �];" if x > q(t) + � + �:Then f 2 Car([0; 2�] � R) ful�ls the assumptions of Corollary 2.9 e.g. forA1 = 6; a1 = �1; � = 0:5; k1 = A1 � h(�; �)� ; � = 1:28; " arbitrary positiveand A2 � A1 + �: 8



2.11. Theorem. Assume that there are A1; A2; a1; a2 2 R ; �1; �2 2 [0; 2�] andb1; b2 2 L [0; 2�] such that (2.18)-(2.21) and (2.23) are true andA1 + a1 h(t; �1) � B2 + a2 h(t; �2) for all t 2 [0; 2�]: (2.24)Furthermore, let there exist m 2 L [0; 2�] such thatf(t; x) � m(t) (or f(t; x) � m(t)) (2.25)for a.e. t 2 [0; 2�] and all x 2 R :Then the problem (1.1) possesses a solution u such that ku0kC � kmk1 andA2 + a2 h(tu; �2) � u(tu) � B1 + a1 h(tu; �1) for some tu 2 [0; 2�]:3. Periodic problems with strong singularityWe will consider the following singular Du�ng equation with periodic condi-tions u00 � g(u) = e(t); u(0) = u(2�); u0(0) = u0(2�); (3.1)where g 2 C (0;1) and e 2 L [0; 2�] (3.2)and g has strong singularity at 0, i.e.limx!0+ Z 1x g(�)d� =1: (3.3)Classical Lazer and Solimini's considerations [10] concerning the problem (3.1)have been extended by several authors (see e.g. [2], [3], [5], [9], [13], [16], [17]and [21]). Provided g 2 C (0;1); e is essentially bounded on [0; 2�] and underthe assumptions (3.3),limx!0+ g(x) =1; (3.4)lim infx!1 g(x)x � �14 ; lim infx!1 1x2 Z x1 g(�)d� > �18 ;there is d > 0 such that g(x) � �e for all x 2 [d;1);Omari and Ye proved the existence of a solution to (3.1) in [13, Theorem 1.2].In [16, Theorem 3.2] we showed a related result, where e need not be essentiallybounded and (3.4) need not be ful�lled. Here we generalize the result of [16]for functions g unbounded from below.9



3.1. Theorem. Assume (3.2), (3.3),lim infx!0+ g(x) > �1 (3.5)and lim infx!1 g(x)x > �14 : (3.6)Furthermore, let there exist A1; A2 2 (0;1) such thatg(x) � �e for all x 2 [A1; B1]; (3.7)g(x) � �e for all x 2 [A2; B2]; (3.8)where B1 � A1 = B2 � A2 = �3 ke� ek1 (3.9)and A1 � B2:Then the problem (3.1) has a positive solution.3.2. Remark. Notice that if g 2 C (0;1) satis�es (3.3) thenlim supx!0+ g(x) =1;which implies the existence of a sequence f"ng1n=1 � (0; 1) such thatg("n) > 0 for all n 2 N ; limn "n = 0; limn g("n) =1: (3.10)For the proof of Theorem 3.1 we will need the following two lemmas, wherewe deal with the auxiliary family of problemsu00 = gn(u) + e(t); u(0) = u(2�); u0(0) = u0(2�); (3.11)where n 2 N ; gn(x) = 8>>>>><>>>>>: 0 if x < 0;g("n) x"n if x 2 [0; "n];g(x) if x > "n (3.12)and "n are from (3.10).3.3. Lemma. Assume that g 2 C (0;1) satis�es (3.3), (3.5) and (3.6) andlet gn; n 2 N ; be given by (3.12). Then there exist � 2 (0; 14) and C � 0 suchthat gn(x)x � �(14 � �)x2 � Cjxj for all x 2 R and all n 2 N : (3.13)10



Proof. By (3.6), there are � 2 (0; 14) and A 2 (1;1) such thatg(x)x � �(14 � �) for all x � A: (3.14)Put p(x) = 8>>>>><>>>>>: 0 if x < 0;g(A) xA if x 2 [0; A];g(x) if x > A (3.15)and qn(x) = gn(x) � p(x) on R : In virtue of (3.5), there is C � 0 such thatqn(x) � �C for all x 2 R and all n 2 N : Thus, since according to (3.14) and(3.15) we also havep(x) � �(14 � �)x for all x 2 [0;1);we deduce that (3.13) is true.3.4. Lemma. Assume that g and gn; n 2 N ; are as in Lemma 3.3. Then forany r > 0 and any e 2 L [0; 2�] there exists R > 0 such thatu(t) � R on [0; 2�] (3.16)holds for all n 2 N and all solutions u of (3.11) with the propertymint2[0;2�] u(t) � r: (3.17)Proof. Assume that (3.16) does not hold. Then we can choose a subsequencefgkg1k=1 of the sequence fgng1n=1 and a sequence of solutions fukg1k=1 of thecorresponding problems (3.11) satisying (3.17) andlimk maxt2[0;2�] uk(t) =1: (3.18)In particular, for any k 2 N ; there is tk 2 [0; 2�] such thatuk(tk) = r:Furthermore, if we extend the functions uk; k 2 N ; and e to functions 2�-periodic on R ; we get thatu00k(t) = gk(uk(t)) + e(t) for a.e. t 2 R (3.19)is true for any k 2 N : 11



On the other hand, if we multiply (3.19) by uk(t); integrate from tk to tk+2�and take into account Lemma 3.3, we get that there exist � 2 (0; 14) and C > 0such that for any k 2 Nku0kk22 = � Z tk+2�tk gk(uk(s)) uk(s)ds� Z tk+2�tk e(s) uk(s)ds� (14 � �) kukk22 + C kukk1 + kek1 kukkCholds. Furthermore,kukkC � juk(tk)j+ Z tk+2�tk ju0k(s)jds = r +p2� ku0kk2: (3.20)Thus,�ku0kk2 � kek1r�2�2 � (14 � �) kukk22 +p2� C kukk2 + kek1 r + �2 kek21:(3.21)Inserting uk(t) � vk(t) + r on R into (3.21), we obtain(kv0kk2 � c)2kvkk22 � 14 � � + akvkk2 + bkvkk22 ; (3.22)where a; b; c 2 R do not depend on k: Now, (3.18), (3.20) and (3.21) yieldlimk kv0kk2 =1 and limk kvkk2 =1: (3.23)Since vk(tk) = v(tk + 2�) = 0; by Schee�er's inequality (2.9) we havekvkk22 � 4 kv0kk22and (kv0kk2 � c)2kvkk22 � (kv0kk2 � c)24kv0kk22 :Therefore by virtue of (3.22) and (3.23) we have14 = limk (kv0kk2 � c)24kv0kk22 � limk �14 � � + akvkk2 + bkvkk22� = 14 � �;a contradiction.Proof of Theorem 3.1. Let R � B1 be constant given by Lemma 3.4 forr = B1: In virtue of (3.2) and (3.5) we have g� := infx2(0;R] g(x) 2 R : PutK = kek1 + jg�j and K� = K kek1 + Z RA2 jg(x)jdx:12



It follows from (3.3) and Remark 3.2 that we can choose " 2 f"ng1n=1 suchthat " 2 (0; A2) and Z A2" g(x)dx > K� and g(") > 0: (3.24)For x 2 R and a.e. t 2 [0; 2�]; put f(t; x) = e(t) + eg(x); whereeg(x) = 8>>>>>>>><>>>>>>>>:
0 if x < 0;g(")x" if x 2 [0; ");g(x) if x 2 ["; R);g(R) if x � R:Then f 2 Car([0; 2�]�R) ful�ls (2.18)-(2.21), (2.23)-(2.25) with a1 = a2 = 0;b1(t) = b2(t) = e(t)�e a.e. on [0; 2�] and m(t) = g�+e(t) a.e. on [0; 2�]: Thus,by Theorem 2.11, the problem (1.1) has a solution u such that u(tu) 2 [A2; B1]for some tu 2 [0; 2�] and ku0kC � K: By Lemma 3.4 we have u(t) � R for allt 2 [0; 2�]: It remains to show that u(t) � " holds on [0; 2�]:Let t0 and t1 2 [0; 2�] be such thatu(t0) = mint2[0;2�] u(t) and u(t1) = maxt2[0;2�]u(t):Clearly, A2 � u(t1) � R: Due to the periodic boundary conditions we haveu0(t0) = u0(t1) = 0: Now, multiplying the di�erential relation u00(t) = e(t) +eg(u(t)) by u0(t) and integrating over [t0; t1], we get0 = Z t1t0 u00(t) u0(t)dt = Z t1t0 e(t) u0(t)dt+ Z t1t0 eg(u(t)) u0(t)dt;i.e. Z u(t1)u(t0) eg(x)dx = � Z t1t0 e(t) u0(t)dt � K kek1:Further, Z A2u(t0) eg(x)dx � K kek1 + Z RA2 jeg(x)jdx = K�which, with respect to (3.24), is possible only if u(t0) � ": Thus, u is a solutionto (3.1).3.5. Theorem. If e is essentially bounded from below on [0; 2�]; then thecondition (3.8) can be omitted in Theorem 3.1.Proof. By (3.10) there is A2 2 (0; A1) such that e(t) + g(A2) � 0 a.e. on[0; 2�]: Taking this A2 we can argue as in the proof of Theorem 3.1 with the13



only di�erence that b2(t) = 0 a.e. on [0; 2�]; which implies A2 = B2 in theapplication of Theorem 2.11.Let us complete the above existence results by an easy consequence of Theo-rem 2.8.3.6. Theorem. Assume that (3.2), (3.7), (3.8) and (3.9) are satis�ed and letA2 � B1: Then (3.1) has a solution u such thatA1 � u(t) � B2 on [0; 2�]: (3.25)Proof. For a.e. t 2 [0; 2�] de�nef(t; x) = e(t) +8><>: g(A1) if x < A1;g(x) if x � A1:Then f 2 Car([0; 2�] � R) ful�ls (2.18)-(2.23) with a1 = a2 = 0; b1(t) =b2(t) = e(t)� e a.e. on [0; 2�]: Hence, by Theorem 2.8, the problem (1.1) hasa solution u satisfying (3.25), which means that u is a solution to (3.1).3.7. Example. Notice that the functiong(x) = �0:24 x+ 1 + sin(�x )x ; x 2 (0;1);veri�es the assumptions (3.2), (3.3), (3.5) and (3.6) of Theorem 3.1, while itdoes not satisfy the condition (3.4) required by Omari and Ye in [13, Theorem1.2]. Since limx!1 g(x) = �1; we can �nd for any e 2 L [0; 2�] and any B2 > 0a number A1 2 [B2;1) such that g ful�ls (3.7) with any B1 2 (A1;1): Thus,by Theorem 3.5, if e is essentially bounded from below, the problemu00 = �0:24 u+ 1 + sin(�u)u + e(t); u(0) = u(2�); u0(0) = u0(2�) (3.26)has at least one positive solution. Provided e is not essentially bounded frombelow, we will use Theorem 3.1 which requires that g ful�l (3.8). Let usrestrict ourselves to e 2 L [0; 2�] such that e = �7: We can show that theequation g(x) = 7 has exactly 5 roots xi; i = 1; 2; : : : ; 5; in the interval[0:12;1): In particular, we have x1 � 0:125587; x2 � 0:142891; x3 � 0:165230;x4 � 0:206177; x5 � 0:236265; g(x) > 7 on (x2; x3) [ (x4; x5) and g(x) < 7 on(x1; x2) [ (x3; x4) [ (x5;1): Let d < x3 � x22 (3.27)14
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