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Abstract

In this article we gain solvability to a nonlinear, second-order difference equation
with discrete Neumann boundary conditions. Our methods involve new inequalities
on the right-hand side of the difference equation and Schaefer’s theorem in the finite-
dimensional space setting.
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1 Introduction

This paper investigates the following discrete Neumann boundary value problem (BVP)

∇∆y(k) = f(k, y(k), ∆y(k)), k = 1, . . . , n− 1;(1.1)

∆y(0) = 0 = ∆y(n);(1.2)

where: f is a continuous, scalar-valued function; n ≥ 2; and the differences are given by:

∆y(k) :=

{
y(k + 1)− y(k), for k = 0, . . . , n− 1,
0, for k = n;

∇∆y(k) :=

{
y(k + 1)− 2y(k) + y(k − 1), for k = 1, . . . , n− 1,
0, for k = 0 or k = n.

This paper addresses a question of interest regarding the discrete BVP (1.1), (1.2):

• Under what conditions does the discrete BVP (1.1), (1.2) have at least one solution?

Particular significance in the above question lies in the fact strange and interesting
distinctions can occur between the theory of differential equations and the theory of dif-
ference equations. For example, properties such as existence, uniqueness and multiplicity
of solutions may not be shared between the theory of differential equations and the theory
of difference equations [1, p.520], even though the right hand side of the equations under
consideration may be the same. Moreover, when investigating difference equations, as op-
posed to differential equations, basic ideas from calculus are not necessarily available to
use, such as the intermediate value theorem; the mean value theorem and Rolle’s theorem.
Thus, new challenges are faced and innovation is required.

The paper is organised as follows.
Section 2 contains the main results of the paper. There, some sufficient conditions are

presented, in terms of difference inequalities involving f , such that (1.1), (1.2) will admit
at least one solution. The main ideas of the proof involve a priori bounds on solutions to
a certain family of problems, and also involves Schaefer’s Theorem [8, Theorem 4.4.10] in
the finite-dimensional space setting.

In Section 3 an example is presented to illustrate how to apply the new theory.
For recent and classical results on difference equations and their comparison with dif-

ferential equations, including existence, uniqueness and spurious solutions, the reader is
referred to: [1]-[7], [9]-[15].

A solution to problem (1.1) is a vector y = (y(0), . . . , y(n)) ∈ Rn+1 satisfying (1.1) for
k = 1, . . . , n− 1.

We will need the following identity in the proof of our main theorem, obtained from
the discrete product rule. If r(t) := [y(t)]2, t ∈ Z then

(1.3) ∇∆r(t) = 2y(t)∇∆y(t) + [∆y(t)]2 + [∇y(t)]2.
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2 Main Results

In this section we present and prove the main results of the paper. The main ideas involve
new difference inequalities (on f) and Schaefer’s Theorem [8, Theorem 4.4.10] in the finite-
dimensional space setting.

Theorem 2.1 Let f be continuous. If there exist non-negative constants α and K such
that

(2.1) |f(t, p, q)− p| ≤ α
[
2pf(t, p, q) + q2

]
+ K, ∀(t, p, q) ∈ {1, . . . , n− 1} × R× R;

the the discrete BVP (1.1), (1.2) has at least one solution.

Proof We consider the following discrete BVP that is equivalent to (1.1), (1.2), namely

∇∆y(k)− y(k) = f(k, y(k), ∆y(k))− y(k), k = 1, . . . , n− 1;(2.2)

∆y(0) = 0 = ∆y(n).(2.3)

We will prove that (2.2), (2.3) has at least one solution and thus, so will (1.1), (1.2).
We may reformulate (2.2), (2.3) as an equivalent summation equation, namely

y(k) =
n−1∑
i=1

G(t, i) [f(i, y(i), ∆y(i))− y(i)] , k = 0, . . . , n,

where G is the unique, continuous Green’s function associated with the discrete BVP

∇∆y(k)− y(k) = 0, k = 1, . . . , n− 1;

∆y(0) = 0 = ∆y(n).

Introduce the operator (defined componentwise below) T : Rn+1 → Rn+1 by

(2.4) Tk(y) =
n−1∑
i=1

G(k, i) [f(i, y(i), ∆y(i))− y(i)] , k = 0, . . . , n,

Thus, we want to show that there exists at least on y ∈ Rn+1 such that

(2.5) y = Ty.

To do this, we will use Schaefer’s Theorem [8, Theorem 4.4.10] in the finite-dimensional
space setting.

Since f and G are continuous, see that T is a continuous map (and thus compactness
of T in the finite-dimensional space setting is guaranteed).

It remains to show that all possible solutions to

(2.6) y = λTy, λ ∈ [0, 1].
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are bounded a priori, with the bound being independent of λ. With this in mind, let x be
a solution to (2.6) and denote

G0 := max{|G(k, s)| : (k, s) ∈ [0, n]2}.

For each k = 0, . . . , n we have

|y(k)| = λ|Tky(k)|

≤ G0

n−1∑
i=1

λ|f(i, y(i), ∆y(i))− y(i)|

≤ G0

n−1∑
i=1

α
[
2y(i)λf(i, y(i), ∆y(i)) + λ[∆y(i)]2

]
+ λK, from (2.1)

≤ G0

n−1∑
i=1

α
[
2y(i)λf(i, y(i), ∆y(i)) + 2(1− λ)[y(i)]2 + [∆y(i)]2 + [∇y(i)]2

]
+ K

= G0

n−1∑
i=1

α
[
2y(i)∇∆y(i) + [∆y(i)]2 + [∇y(i)]2

]
+ K

= G0

n−1∑
i=1

α∇∆r(i) + K, from (1.3)

= G0 (α[∇r(n)−∇r(1)] + Kn)

= G0 (α [(y(n) + y(n− 1))∇y(n)− (y(1)− y(0))∇y(1)] + Kn)

= G0Kn, from (1.2).

Hence we see that all solutions to the family (2.6) are bounded a priori, with the bound
being independent of λ. Schaefer’s Theorem applies to T, yielding the existence of at least
one fixed point. 2

The following corollary easily follows to Theorem 2.1 when f is bounded.

Corollary 2.2 If f(t, p, q)− p is continuous and bounded on {1, . . . , n− 1} ×R2 then the
discrete BVP (1.1), (1.2) has at least one solution.

Proof The proof follows by choosing α = 0 and K to be larger than the bound on f .
Thus, the conditions of Theorem 2.1 are satisfied and the result follows. 2

If the right-hand side of (1.1) does not depend on ∆y(k) then we obtain the following
discrete Neumann BVP

∇∆y(k) = f(k, y(k)), k = 1, . . . , n− 1;(2.7)

∆y(0) = 0 = ∆y(n);(2.8)

and the following important corollary to Theorem 2.1 follows.
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Corollary 2.3 Let f be continuous. If there exist non-negative constants α and K such
that

(2.9) |f(t, p)− p| ≤ 2αpf(t, p) + K, ∀(t, p) ∈ {1, . . . , n− 1} × R;

the the discrete BVP (2.7), (2.8) has at least one solution.

Proof If (2.9) holds then it is easy to see that

|f(t, p)− p| ≤ α[2pf(t, p) + q2] + K, ∀(t, p, q) ∈ {1, . . . , n− 1} × R× R;

and so the conditions of Theorem 2.1 hold with the result following from there. 2

3 An Example

In this section an example is discussed to highlight how to apply the theory of Section 2.

Example 3.1 Consider the discrete Neumann BVP (2.7), (2.8) where f is given by

f(t, p) = p5 + p + t, t = 1, . . . , 9,

(and n = 10). We claim that for the above f , the discrete BVP (2.7), (2.8) has at least
one solution.

Proof We want to show that there exist non-negative constants α and K such that (2.9)
holds.

See that, for (t, p) ∈ {1, . . . , 9} × R we have

|f(t, p)− p| ≤ |p5|+ 9.

For α and K to be chosen below, for (t, p) ∈ {1, . . . , 9} × R consider

2αpf(t, p) + K = 2α[p6 + p2 + pt] + K

= (p6 + 1) + [p2 + pt + 49], for α = 1/2, K = 50

≥ (|p5|) + [9] ≥ |f(t, p)− p|

and the result follows from Corollary 2.3. 2

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Note. I. The condition (2.9) implies that there exist constant lower and upper
functions (solutions) to problem (2.7), (2.8) . But this implies that there exists at least one
solution between them! Let us prove the existence of constant lower and upper functions:

1. Let p > 0. Then (2.9) yields

f(t, p)− p ≥ −2αpf(t, p)−K,
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f(t, p)(1 + 2αp) ≥ p−K,

f(t, p) ≥ p−K

1 + 2αp
> 0 for each p > K ≥ 0.

2. Let p < 0. Then (2.9) yields

f(t, p)− p ≤ 2αpf(t, p) + K,

f(t, p)(1− 2αp) ≤ p + K,

f(t, p) ≤ p + K

1− 2αp
< 0 for each p < −K ≤ 0.

Therefore we can find r > 0 such that

(3.10) f(t,−r) < 0, f(t, r) > 0 for t ∈ {1, . . . , n− 1}.

So, the constant functions σ1(t) = −r, σ2(t) = r are lower and upper functions of problem
(2.7), (2.8) and if we prove lower and upper functions method for Neumann problem, we
get better result than Cor.2.3. Fortunately it is not the case of Theorem 2.1 - see II
below.

II. We can prove that condition (2.1) implies the existence of constant lower and upper
functions to problem (1.1), (1.2). Similarly as in I, we can find r > 0 such that

(3.11) f(t,−r, 0) < 0, f(t, r, 0) > 0 for t ∈ {1, . . . , n− 1}.

So, the constant functions σ1(t) = −r, σ2(t) = r are lower and upper functions of problem
(1.1), (1.2). If we have fixed step (here it is 1) and (3.11) holds, then for the solvability of
(1.1), (1.2) the monotonicity of f(t, p, q) in q is sufficient. We could prove it for Neumann
problem (in some our further paper) similarly as we did in our second paper for Dirichler
problem.

III. Therefore it is very important to add an example of f(t, p, q) which satisfies (2.1)
and which is not monotonous in q, because in such a way we show that the existence
result based on the condition (2.1) is not completely contained in the lower and upper
functions method. I hope that f in Example 3.2 has this needed properties.
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