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We use the lower and upper functions method to prove the existence of a solution of the Dirichlet problem

DðpðtÞDuðt2 1ÞÞ þ f ðt; uðtÞÞ ¼ gðtÞ; t [ ½1;T�; uð0Þ ¼ 0; uðT þ 1Þ ¼ 0;

where T [ N, ½1; T� ¼ {1; 2; . . . ;T}, p : ½1; T þ 1�! R is positive and f : ½1; T� £ R! R is
continuous. Provided f fulfils certain sign conditions we get the solvability of the problem for each
g : ½1;T�! R.
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1. Introduction

For fixed T [ N we define the discrete interval ½1; T� ¼ {1; 2; . . . ; T}. We will study the

Dirichlet problem

DðpðtÞDuðt2 1ÞÞ þ f ðt; uðtÞÞ ¼ gðtÞ; t [ ½1; T�; ð1:1Þ

uð0Þ ¼ 0; uðT þ 1Þ ¼ 0: ð1:2Þ

where

p : ½1; T þ 1�! R is positive; g : ½1; T�! R

f : ½1; T� £ R! R is continuous:

)
ð1:3Þ

Here D denotes the forward difference operator with the step size 1, i.e.

Duðt2 1Þ ¼ uðtÞ2 uðt2 1Þ. Recall that f ðt; xÞ is continuous on ½1; T� £ R if for each

t [ ½1; T�, f ðt; xÞ is a continuous function of x.

Definition 1.1. By a solution u of problem (1.1), (1.2) we mean u : ½0; T þ 1�! R,

u satisfies the difference equation (1.1) on ½1; T� and the boundary conditions (1.2).

Discrete boundary value problems arise in the study of solid state physics, chemical reaction,

population dynamics and in many other areas, see [1,13,27]. Discrete second order nonlinear

boundary value problems have been investigated in several monographs (e.g. [1,5,6,17]) and
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papers (e.g. [8–10,14,16,19–21,23,24,26]). Particularly we can refer to papers [2–

4,7,11,12,15,18,22,25], which deal with various difference equations subjected to Dirichlet

conditions. Yongjin Li in Ref. [18] used variational approach and proved the existence of a

solution of equations (1.1) and (1.2) under the assumptions

’r . 0 such that xf ðt; xÞ # 0 for t [ ½1; T� and jxj $ r; ð1:4Þ

XTþ1

t¼1

jgðtÞj
2
,

m

2
; where m ¼ min{pðtÞ : t [ ½1; T þ 1�}: ð1:5Þ

In this paper, we use a completely different approach based on the lower and upper functions

method. By means of this we prove that equation (1.4) yields the solvability of problem (1.1)

and (1.2) for each g½1; T�! R, i.e. that equation (1.5) can be omitted.

2. Green’s function

Consider the linear homogeneous equation

DðpðtÞDuðt2 1ÞÞ ¼ 0; t [ ½1;T�; ð2:1Þ

where p satisfies equation (1.3). Define

PðtÞ ¼
Xt

i¼1

1

pðiÞ
; t [ ½1; T þ 1� and Pð0Þ ¼ 0; ð2:2Þ

and denote

Mp ¼ max
1

pðtÞ
: t [ ½1; T þ 1�

� �
. 0: ð2:3Þ

Remark 2.1. The general solution of equation (2.1) has the form uðtÞ ¼ c1 þ c2PðtÞ,

t [ ½0; T þ 1�, where c1; c2 [ R. Therefore equations (1.2) and (1.3) yield c1 ¼ c2 ¼ 0 and

hence problem (2.1) and (2.2) has only the trivial solution.

Lemma 2.2. Let p satisfy equation (1.3). Then the Green’s function of problem (2.1) and

(1.2) has the form

Gðt; sÞ ¼ 2

PðsÞ

PðT þ 1Þ
ðPðT þ 1Þ2 PðtÞÞ if 0 # s # t # T þ 1

PðtÞ

PðT þ 1Þ
ðPðT þ 1Þ2 PðsÞÞ if 0 # t # s # T þ 1:

8>>><
>>>:

ð2:4Þ

Proof. The proof can be done similarly as in Ref. [17], Example 6.12. A

Due to equations (2.2)–(2.4) we see that

Gð0; sÞ ¼ 0; GðT þ 1; sÞ ¼ 0 for s [ ½0; T þ 1�; ð2:5Þ

2TMp , Gðt; sÞ , 0 for t; s [ ½1; T�: ð2:6Þ
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Further, we have

DGðt2 1; sÞ ¼
1

pðtÞPðT þ 1Þ

PðsÞ for sþ 1 # t

PðsÞ2 PðT þ 1Þ for t # s

(

and

DðpðtÞDGðt2 1; sÞÞ ¼
0 for t # sþ 1 and t $ sþ 1

1 for t ¼ s:

(

Therefore, according to Remark 2.1 and Lemma 2.2, we get the following lemma for the non-

homogeneous linear equation

DðpðtÞDuðt2 1ÞÞ ¼ gðtÞ; t [ ½1; T�; ð2:7Þ

where p and q satisfy equation (1.3).

Lemma 2.3. Problem (2.7) and (1.2) has the unique solution of the form

u0ðtÞ ¼
XT
s¼1

Gðt; sÞgðsÞ; t [ ½0; T þ 1�: ð2:8Þ

3. Lower and upper functions

Lower and upper functions are important tools for the investigation of solvability of

boundary value problems. Here, we bring their definition for problem (1.1) and (1.2).

Definition 3.1. a : ½0; T þ 1�! R is called a lower function of problem (1.1) and (1.2) if

DðpðtÞDaðt2 1ÞÞ þ f ðt;aðtÞÞ $ gðtÞ for t [ ½1; T�; ð3:1Þ

að0Þ # 0; aðT þ 1Þ # 0: ð3:2Þ

b : ½0; T þ 1�! R is called an upper function of problem (1.1) and (1.2) if

DðpðtÞDbðt2 1ÞÞ þ f ðt;bðtÞÞ # gðtÞ for t [ ½1; T�; ð3:3Þ

bð0Þ $ 0; bðT þ 1Þ $ 0: ð3:4Þ

Theorem 3.2 (Lower and upper functions method). Assume equation (1.3). Let a and

b be a lower and an upper function of equations (1.1), (1.2) and a # b on [1,T]. Then

problem equations (1.1) and (1.2) has a solution u satisfying

aðtÞ # uðtÞ # bðtÞ for t [ ½0; T þ 1�: ð3:5Þ

Theorem 3.2 is a slight modification of Theorem 9.7 in Ref. [17], where p(t) ; 1.

However for the reader’s convenience we will prove Theorem 3.2 here.
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Proof. Step 1. For t [ ½1; T�, x [ R, define function

~fðt; xÞ ¼

f ðt;bðtÞÞ2 x2bðtÞ
x2bðtÞþ1

if x . bðtÞ

f ðt; xÞ if aðtÞ # x # bðtÞ

f ðt;aðtÞ þ aðtÞ2x
aðtÞ2xþ1

if x , aðtÞ:

8>>><
>>>:

Since ~f is continuous on ½1; T� £ R, there exists M . 0 such that

j~fðt; xÞj # M for t [ ½1; T�; x [ R: ð3:6Þ

We will study the auxiliary difference equation

DðpðtÞDuðt2 1ÞÞ þ ~fðt; uðtÞÞ ¼ gðtÞ; t [ ½1; T�; ð3:7Þ

and we will prove that problem (3.7) and (1.2) has a solution (see Steps 2 and 3).

Step 2. We define the space

E ¼ {u : ½0; T þ 1�! R; uð0Þ ¼ 0; uðT þ 1Þ ¼ 0}

with the norm kuk ¼ max{juðtÞj : t [ ½1; T�}. Then E is a Banach space with dimE ¼ T .

Further, we define an operator F : E! E by:

ðFuÞðtÞ ¼
XT
s¼1

Gðt; sÞðgðsÞ2 ~fðs; uðsÞÞÞ; t [ ½0; T þ 1�: ð3:8Þ

Due to equation (1.3), F is a continuous operator. Denote BðrÞ ¼ {u [ E : kuk , r} and

Mg ¼ max{jgðtÞj : t [ ½1; T�}: ð3:9Þ

Let us choose r * $ T 2MpðMg þMÞ, whereMp andM are given by equations (2.6) and (3.6),

respectively. Then by equations (2.5) and (3.8) we get F ðBðr *ÞÞ , Bðr *Þ. Therefore, the

Brouwer fixed point theorem yields the existence of at least one point u [ Bðr *Þ such that

u ¼ Fu. According to Lemma 2.3 we see that if u is a fixed point of F , then u satisfies

equations (3.7) and (1.2).

Step 3. We prove that the solution u of equations (3.7) and (1.2) satisfies equation (1.1). Put

vðtÞ ¼ aðtÞ2 uðtÞ for t [ ½0; T þ 1� and assume thatmax{vðtÞ : t [ ½0; T þ 1�} ¼ vð‘Þ . 0.

Conditions (1.2) and (3.2) imply ‘ [ ½1; T�. Thus, we have vð‘þ 1Þ # vð‘Þ,

vð‘2 1Þ # vð‘Þ, and consequently Dað‘Þ # Duð‘Þ, Dað‘2 1Þ $ Duð‘2 1Þ. This leads to

pð‘þ 1ÞDað‘Þ # pð‘þ 1ÞDuð‘Þ, pð‘ÞDað‘2 1Þ $ pð‘ÞDuð‘2 1Þ and

Dðpð‘ÞDuð‘2 1ÞÞ $ Dðpð‘ÞDað‘2 1ÞÞ: ð3:10Þ

On the other hand, we get by equations (3.1) and (3.7)

Dðpð‘ÞDað‘2 1ÞÞ2 Dðpð‘ÞDuð‘2 1ÞÞ ¼ Dðpð‘ÞDað‘2 1ÞÞ2 ðgð‘Þ2 ~fð‘; uð‘ÞÞÞ

¼ Dðpð‘ÞDað‘2 1ÞÞ þ f ð‘;að‘ÞÞ

þ
vð‘Þ

vð‘Þ þ 1
2 gð‘Þ

$
vð‘Þ

vð‘Þ þ 1
. 0;
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which contradicts equation (3.10). So, we have proved aðtÞ # uðtÞ for t [ ½0; T þ 1�. The

inequality uðtÞ # bðtÞ for t [ ½0; T þ 1� can be proved similarly. Therefore, u satisfies

equation (3.5) and hence u is a solution of problems (1.1) and (1.2). A

4. Main results

Our main result is contained in the next theorem, which provides sufficient conditions for the

solvability of problems (1.1) and (1.2). The proof is based on the lower and upper functions

method from Theorem 3.2.

Theorem 4.1. Assume that equations (1.3) and (1.4) hold. Then problem (1.1) and (1.2)

has at least one solution.

Proof. By Lemma 2.3, problem (2.7) and (1.2) has the unique solution u0 given by equation

(2.8). Using equations (3.9), (2.5) and (2.6) we have

ju0ðtÞj # T 2MpMg for t [ ½0; T þ 1�:

Choose A;B [ R such that

A # 2T 2MpMg 2 r; B $ T 2MpMg þ r

and define functions

aðtÞ ¼ u0ðtÞ þ A; bðtÞ ¼ u0ðtÞ þ B; t [ ½0; T þ 1�:

Then aðtÞ # 2r, bðtÞ $ r for t [ ½0; T þ 1�. This implies that a and b satisfy equations (3.2)

and (3.4), respectively. Moreover, by equation (1.4),

DðpðtÞDaðt2 1ÞÞ þ f ðt;aðtÞÞ ¼ DðpðtÞDu0ðt2 1ÞÞ þ f ðt;aðtÞÞ $ DðpðtÞDu0ðt2 1ÞÞ

¼ gðtÞ for t [ ½1; T�:

Similarly

DðpðtÞDbðt2 1ÞÞ þ f ðt;bðtÞÞ # gðtÞ for t [ ½1; T�:

Therefore, a and b are a lower and an upper function of equations (1.1) and (1.2),

respectively, and a # b on ½1; T�. Hence, Theorem 3.2 guarantees the existence of at least

one solution u of equations (1.1) and (1.2) satisfying equation (3.5). A

Example. Assume k [ N, c [ R, aðtÞ : ½1; T�! R, bðtÞ : ½1; T�! ð21; 0Þ and consider

the equation

Dðt 3Duðt2 1ÞÞ þ aðtÞ þ bðtÞu2k21ðtÞ ¼ ct 2et; t [ ½1; T�: ð4:1Þ

By Theorem 4.1, problem (4.1) and (1.2) has a solution.
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Corollary 4.2. Assume that equation (1.3) holds. Let

gðtÞ , 0; f ðt; 0Þ $ 0 for t [ ½1; T�; ð4:2Þ

’r . 0 such that f ðt; xÞ # 0 for t [ ½1; T� and x $ r: ð4:3Þ

Then problem (1.1) and (1.2) has a solution u such that

uðtÞ . 0 for t [ ½1; T�: ð4:4Þ

Proof. Condition (4.2) implies that if we put aðtÞ ; 0, we have

DðpðtÞDaðt2 1ÞÞ þ f ðt;aðtÞÞ ¼ f ðt; 0Þ $ 0 . gðtÞ; t [ ½1; T�:

If bðtÞ is the same as in the proof of Theorem 4.1, we get a solution u of problem (1.1), (1.2)

such that

0 # uðtÞ # bðtÞ for t [ ½0; T þ 1�:

Since f ðt; 0Þ . gðtÞ on ½1; T�, we obtain equation (4.4). A

Corollary 4.3. Assume that equation (1.3) holds. Let

gðtÞ . 0; f ðt; 0Þ # 0 for t [ ½1; T�; ð4:5Þ

’r . 0 such that f ðt; xÞ $ 0 for t [ ½1; T� and x # 2r: ð4:6Þ

Then problem (1.1) and (1.2) has a solution u such that:

uðtÞ , 0 for t [ ½1; T�: ð4:7Þ

Proof. We argue similarly as in the proof of Corollary 4.2 putting aðtÞ as in the proof of

Theorem 4.1 and bðtÞ ; 0. A

Example. If aðtÞ $ 0 on ½1; T� and c , 0, then by Corollary 4.2, problem (4.1) and (1.2) has

a solution, which is positive on ½1; T�.

If aðtÞ # 0 on ½1; T� and c . 0, then by Corollary 4.3, problem (4.1) and (1.2) has a

solution, which is negative on ½1; T�.
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