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1 Introduction

Let T be a positive constant, J = [0,7] and R = (—00,0), R, = (0,00),
Ry =R\ {0}.

We will consider two types of singular boundary value problems for the nth
order differential equations, where n > 2. The first one is the singular Sturm-
Liouville boundary value problem (BVP for short)

—z"(t) = f(t, (), ..., 2" D(t)), (1.1)
zD(0)=0, 0<i<n-—3,
az™=2(0) — Bz~ (0) = 0, (1.2)

v =2(T) + 62"=(T) = 0,
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where o,y > 0, 5,0 > 0 and f satisfies the local Carathéodory conditions on
Jx D (f € Car(J x D)) with

D =R"" x Ry.
The second one is the singular (p, n — p) right focal BVP
()" Pat™ () = f(t,x(t), ..., 2" (@), (1.3)

2D(0)=0,0<i<p—1, 29(T)=0,p<i<n—1, (1.4)
where p € Nis fixed, 1 <p<n—1,and f € Car(J x X) with

REFEX RO X Ry xR x-- xRy ifn—pisodd

— n
X = ptl if n —pi
RET" x R x Ry x R_ x xR ifn—piseven.

n

In the both cases the function f(¢,xo, ..., z, 1) may be singular at the points
x; =0,0 <7 <n—1,of all its phase variables g, ..., x,_1.

The aim of this paper is to give conditions for the existence of solutions to
problems (1.1),(1.2) and (1.3), (1.4).

Definition1.1. By a solution of BVP (1.1),(1.2) we understand a function
x € AC"'(J) which is positive on (0,7, satisfies conditions (1.2) and for a.e.
t € J fulfils (1.1).

Similarly, by a solution of BVP (1.3),(1.4) we understand a function z €
AC™Y(J) which is positive on (0, 7], satisfies conditions (1.4) and for a.e. t € J
fulfils (1.3).

From now on, ||z|| = max{|z(t)] : 0 < t < T}, |z|, = f) |«(t)]dt and
|z]|o = essmax{|z(t)| : 0 < ¢t < T} stands for the norm in C°(J), L;(J) and
L (J), respectively. For a subset €2 of a Banach space, cl(£2) and 0% stands for
the closure and the boundary of €2, respectively. Finally, for any measurable set
M, u(M) denotes the Lebesgue measure of M.

The fact that a BVP is singular means that the right hand side f of the
considered differential equation does not fulfil the Carathéodory conditions on a
region where we seek for solutions, i.e. on J x¢l(D) if we work with equation (1.1)
or on .J x cl(X) if we study equation (1.3). In singular problems the Carathéodory
conditions can be broken in the time variable ¢ or in the phase variables or in
the both types of variables. The first type of singularities where f need not be
integrable on J for fixed phase variables was studied by many authors. For BVPs
of the n-th order differential equations such problems were considered for the first



time by Kiguradze in [16]. The second type of singularities i.e. the case where
f is unbounded in some values of its phase variables xy, x1,...,2,_1 for fixed
t € J was mainly solved for BVPs of the second order differential equations, but
during the last decade papers dealing with higher order BVPs having singularities
in phase variables have been appeared, as well. We can refer to the papers [2]-[7],
[9]-[14] and [19]-[23]. Some of them (see [3]-[7]) concern the higher order singular
Sturm-Liouville or the right focal BVPs.

In this paper we extend results in the cited papers on the case of a general
Carathéodory right-hand side f which may depend on higher derivatives up to
the order n — 1 and which may have singularities in all its phase variables. The
proofs are based on a construction of a proper sequence of regular problems and
in limiting processes. The correctness of such processes is warrantable by the
Lebesgue dominated converegence theorem in the case of problem (1.3),(1.4).
As concerns problem (1.1),(1.2) note that conditions (1.2) imply that for any
solution « of this problem its derivative 2"~ 1 is a sign-changing function on J.
Therefore this derivative goes through the singularity of f somewhere inside of J,
which makes impossible to find a Lebesgue integrable majorant function to any
auxiliar sequence of regular functions { f,,} relevant to problem (1.1), (1.2). This
implies that in this case instead of the Lebesgue theorem the Vitali convergence
theorem it is used.

The proofs of the existence results to auxiliary regular BV Ps considered in Sec-
tion 3 are based on the Nonlinear Fredholm Alternative (see e.g. [17], Theorem 4
or [21], p. 25) which we formulate in the form convenient for the application to
the problems mentioned above. Particularly, we consider the differential equation

n—1
g™ @)+ 3 a; )z () = h(t,z(t),...,2" V(1) (1.5)

1=0

and the corresponding homogeneous equation
d™ )+ 3 a;(t)x(t) = 0, (1.6)

where a; € Li(J), 0 < i <n—1, h € Car(J x R"). Further we deal with the
boundary conditions
Li(x)=r;, 1 <j<n, (1.7)

with 7; € R and continuous linear functionals £; : C"'(J) = R, 1 < j < n.

Definition1.2. By a solution of BVP (1.5),(1.7) we understand a function
xr € AC"!(J) which satisfies conditions (1.7) and for a.e. ¢t € J fulfils (1.5).

Theorem 1.3. (Nonlinear Fredholm Alternative) Let problem (1.6),(1.7) has
only the trivial solution and there exist a function g € Li(J) such that

|h(t,zo, ..., xn 1) < g(t) forae teJ and all zy,...,x, ; €R.
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Then problem (1.5), (1.7) has a solution.
The following assumptions will be used in the study of problem (1.1),(1.2) :
(Hy) f € Car(J x D) and there exist positive constants ¢, r such that
et" < f(t,xo, ..., Tp 1)
for a.e. t € J and each (zo,...,z, 1) € D;

(H,) For a.e. t € J and for each (xy,...,2z, 1) € D,

n—1
f(t, Loy .oy Tp— 1 < ¢ + Z Qz wz |xz| Z hi(t)|xi|aia (18)
i=0
where «; € (0,1), ¢, h; € L1(J), ¢; € Loo(J) are nonnegative, w; : Ry — R
are nonincreasing, 0 <7 <n — 1, and

T T )
/ wn 1 (") dt < oo, / wit" N dt <o for0<i<n—2; (1.9)
0 0

(H3) Fora.e. t € J and for each (zg,...,2,-1) € D, the function f satisfies (1.8)
where a; € (0,1), ¢, hi,¢u—2 € L1(J), ¢j,qn—1 € Loo(J) are nonnegative,
w; : Ry — R are nonincreasing, 0 <i<n—1,0<j<n—3,and !

T T )
/ w1 () dt < oo, / wi(t"7?)dt < oo for 0<j<n—3. (1.10)
0 0

In the study of problem (1.3),(1.4) we will work with assumptions:
(Hy) f € Car(J x X) and there exist positive constants €, such that
e(T —t)" < f(t,xo, ..., Tn_1)
for a.e. t € J and each (zq,...,z,_1) € X;

(Hs) For a.e. t € J and for each (xy,...,z, 1) € X, the function f satisfies (1.8)
where ; € (0,1), ¢, h; € L1(J), ¢; € Loo(J) are nonnegative, w; : Ry — R
are nonincreasing, 0 < <n — 1, and

T .
/ Wit dt < oo for0<i<n—1. (1.11)
0

! Throughout the paper conditions and statements depending on j with 0 < j <n — 3 are
realized only in the case when n > 3.



Remark 1.4. Since w; : Ry — R, in (H;) are nonincreasing, the assumption
(1.9) implies that

% % ,
/ Wnot ("1 dt < oo, / Wit dt <00, 0<i<mn—2
0 0

for each V' € R;. The same is true for all integrals in (1.10) and (1.11).

Remark 1.5. After substituting ¢ = 7" — s in (1.3),(1.4), we get the singular
(n —p,p) left focal BVP

(1P (s) = f(s,2(s),...,a" D(s)), (1.12)
2D0)=0,p<i<n—1,29(T)=0,0<i<p—1, (1.13)

where pis fixed, 1 <p < n—1,and f € Car(JxY) fulfils f(s,z¢, 1, ..., %0 1) =
f(— s, w9, —x1,...,(=1)""'2,_1). Here

Ry xR xRy x--- xR RY? ifpis even

e

Y = "
Ry xR_ xRy x--- xRy xR"7?” if pisodd.

n

By a solution of BVP (1.12), (1.13) we understand a function x € AC™~1(J)
which is positive on [0,7), satisfies conditions (1.13) and for a.e. s € J fulfils
(1.12).

The corresponding assumptions for problem (1.12), (1.13) have the form:
(Hg) f € Car(J x Y) and there exist positive constants ¢, 7 such that
es” < f(s,20, .., Tn_1)
for a.e. s € J and each (zg,...,x, 1) € Y;

(H7) For a.e. s € J and for each (xq,...,#,_1) € Y the function f satisfies

n—1

f(S,.’L’o,.. y Lp— 1 < ¢ + Z(b S)Wi |xz| Zhi(5)|xi|ai;

1=0

where «; € (0,1), ¢, h; € L1(J), ¢; € Loo(J) are nonnegative, w; : Ry — Ry
are nonincreasing, 0 < i <n — 1, and w; fulfil (1.11).



2 Green’s functions and a priori estimates

2.1 Problem (1.1),(1.2)

From now on, G(t, s) denotes the Green’s function of BVP
—2"(t) =0,
az(0) — f2'(0) =0, ~z(T)+ 02'(T) = 0.
Then (see, e.g., [1])

l(5+as)(5—|—7(T—t)) for0<s<t<T
G(t,s) =1 ¢

1

S(B+at)(0+7(T—s)) for0<t<s<T,

where
d=ayT + ad + By > 0.

Let us choose positive constants € and r and define the set
A(r,e) = {o € AC™'(J) : x fulfils (1.2) and (2.4)}

where
—zM(t) > et” forae. t € J

2.1.1 Problem (1.1),(1.2) with min{3,6} =0

(2.1)
(2.2)

(2.3)

(2.4)

In this Subsection we assume that at least one constant from £ and ¢ appearing

in (1.2) is equal to zero.

Lemma2.1. Let x € A(r,¢) and set

B € (g)r+1‘

C(r+1D(r+2)

Then =Y is decreasing on J,
(=1 >
¢ ()= r+1

el —
v ®) r+1

(5 - t)r+1 fOT te [075]7
(t=&™* forte (&1

where £ € (0,T) is the unique zero of x("_l),

At fort e [0, g]

x(n—2)(t) Z
A(T —t) forte (g,T]
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and

. A .
Dy > — = yn—j-1 teJ 0<j<n-3. 2.8
o0 2 ot forted 0<j<n (28)

Proof. From the equality

T
00 = [ Gl e () s, v,
0

(2.3) and (2.4), we deduce that

n— B r n
2"=2(0) = / s)ds = _E/o (6 4+ (T = 5))x™(s) ds )
2.9
> 667/ )s"ds >0,
T § /T
2 (T) = — /0 G(L, )2 (s)ds = —5 [ (5 + as)a™ (s) ds
. (2.10)
> — | s"ttds >0,
z ) >
2(0) = /T 8G 3) (”)(s) ds = —% /T((5 + (T — 5))z"™(s) ds
0
> 6OW/ —5)s"ds >0
and

z=(T) = —/OT %L:T ")(s) ds = %/OT(B + as)z™(s) ds

T
—ﬂ/ s"Thds < 0.
d Jo

Since 2"~ is decreasing on J by (2.4) and "~V (0) > 0, 2™~ (T) < 0, we see
that 2"~ has a unique zero ¢ € (0,7). Then

13 §
V() = /t 2™ (s)ds < —¢ /t s ds = —r%(?“ -1, telo,¢],

and so

(n—1) & ey
d () 2 -0 telog

since £ — ¢ > (€ — ¢)™! for t € [0,£]. Analogously using the inequality
L — gt > (1 — &) for t € (€, T, we obtain

€
r+1

¢ ¢

(n—1) ¢ :/ (n) ds < — / "ds = _L tr—f—l_ r+1 < — t— r+1
s = [Ty ds < e [ ds =S — g t-8)
for t € (£, T]. We have proved that (2.6) holds.
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We are going to verify (2.7). From the assumption min{3,d} = 0, (2.9) and
(2.10), we have z(»=2(0) > 0, 2®=2(T) > 0 and min{z»=2(0), z*~2(T)} = 0.
In addition, 2("~? is concave on J which follows from (2.4). Hence to prove (2.7)

it suffices to show that 7 AT
(n=2)(~_ el
@ (2) > = (2.11)
where A is given by (2.5). From (2.6) it follows that

t
- 7"—1-1/0(5_5)T+1d8

- g€ €0, e

t
2(1) = 2D(0) + / 2D () ds > —-
0
£

—am=2 () = —z=2(T) + /t ' 2"V (s) ds < —T% /t T(S — &) ds
(T eyt ()2
- (r+1)(r+2)((T I T, re ]
and since §'?—({—)"? > " for t € [0,&] and (T—£)™?— (=€) > (T'—1)"**
for t € (&, T], we have

(r+1)(r+2)
(r+1)(r+2)

We know that max{z"=2(t) : t € J} = 2D (§). If £ > T/2, then (2.12) gives
(2.11) and if £ < T'/2 then from (2.13) we obtain (2.11), as well.
It remains to prove (2.8). By (2.7) and (*~3)(0) = 0, we have

¢ ¢ A
23 () = / " (s) ds > A/ sds = 5752
0 0

22 () > % for t €]0,¢&], (2.12)

"D () > (T —t)"% forte (&7 (2.13)

for t € [0,7/2]. Hence 2"~ (T/2) > (A/2)(T/2)? and since ("~ is increasing
on J and (t/2)* < (T/2)? for t € J, we see that

. A

Then using the equalities

. t .
2 (t) :/ 2 (s)ds, teJ 0<i<n-—4
0

we can verify that the inequalities (2.8) are satisfied. O



Lemma?2.2. For0<i<n-—1, let ¢, h; € Ly(J), g € Loo(J) be nonnegative,
wi : Ry — Ry be nonincreasing and satisfy (1.9) and o; € (0,1). Then there
exists a positive constant M such that for each x € A(r, ) satisfying

—gzm ) )+ Z i (t)w; |x )+ Z hi(t @i (2.14)
for a.e. t € J, the estimates
2@ <M for0<i<n-—1 (2.15)

are valid.

Proof. Let © € A(r,¢) satisfy the inequalities (2.14) a.e. on J. By Lemma 2.1,
2"~V has a unique zero ¢ € (0,7) and x satisﬁes the inequalities (2.6)—(2.8) with
A given by (2.5). From z(*=2(0) = (8/a)z™Y(0) > 0 (see (1.2)) it follows that

=2 (0] < Lo 0) 4 [ V() ds < (24 D)0, re s
(0% 0 (0%

Hence 3
n=2)| < (7 4+ 2 (n—1)
|27 < ( + a)llx |

and then the equalities

. 1 t .
O _ i3 ,(n2) i _
x](t)_(n—j—?))!/o(t s)" 0k (s)ds, telJ, 0<j<n-—3,
give
Tn— 7j—2 (n—2) Tnf]fZ " B )
" 0<j<n-3
(e ||_( i )||x I < =73 (T+ =)=, 0<j<n
Setting
V=(T+ é) max{1,V;} (2.16)
a Y
where —
Vlzmax{i. :OSJ'STL—?)},
(n—j—3)
we see that _
|29 < V]2 V|| for0<j<n—2. (2.17)
Now (2.14) yields
t
Y] = ‘/ 2 (s ds
< [' 130+ T a0 + T moO 0] a (2.18)

n—1

< 10l + 3 Nl [ e OO de+ 3 v e
=0 i=0

Qg




Set K = "/e/(r+1) and R; = "*j*\l/A/(él(n—j — 1), 0 <35 <n-—3. Since
(cf. (2.6)—(2.8))

[} nerlla 00y

< (e 0 e [ (-0
1

K¢ K(T'-§)
_ r+1 r+1
= F[/o wn_1(t )dt+/0 w1 (711 dit

2 KT r+1
< = [ et d,

(2.19)

/0 o (lE D@ dt < /0 2 (At dt + /T 2 wn o (A(T — 1)) dt

2 (AT)/2
= Z[) wn,g(t) dt

and (for 0 < j <n-—3)
T . T A . 1 RrR;T .
(10 < / . n—j—1 — / (4n—3—1
/0 wi(lz2 @) dt < | w;(4(n_j_1)!t ) dt 7 w; ("1 dt,

we deduce from (1.9) and Remark 1.4 that there is a positive constant ) inde-
pendent of x such that

n—1 T )

> llglls [ wille® @)y dt < Q.

=0

Then (2.18) yields

n—1

eI < 10l + Q@ + X el =Y (2.20)

1=0

Setting z(u) = (|¢llz + Q)/u + i hallLV*u~" for u € (0,00), we have
lim, o0 2(u) = 0, and so there is a positive constant P such that z(u) < 1 for all
u > P. Then from (2.20) it follows that ||#("~1|| < P and, by (2.17), ||zV|| < VP
for 0 < j <n — 2. Hence (2.15) is true with M = max{P, V P}. O

2.1.2 Problem (1.1),(1.2) with min{3,d} >0

Throughout this Subsection we assume that the constants 5 and ¢ in (1.2) are
positive.
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Lemma2.3. Let x € A(r,¢) and set

B = —mln 67/ —s)s" ds, a&/ rt ds} > 0. (2.21)

Then ™Y is decreasing on J, satisfies the inequalities (2.6) where &€ € (0,T) is
1ts unique zero,

"Dty > B forteld (2.22)
and B
() = yn=i=2 ; _
xj(t)Z(n—j—Q)!t J forteJ 0<j<n-3. (2.23)

Proof. The properties of 2"~ follow immediately from Lemma 2.1 and its
proof. Next, by (2.9) and (2.10),

T § [T
R (1) I ey (T —s)s"ds >0, 2"2(T)> éji/ s"Thds > 0.
d Jo d Jo
Since 2("=?) is concave on .J, we see that z(*=2)(¢) > B for t € J. Now from the
last inequality and the equalities z()(0) = 0, 0 < j < n—3, it follows the validity
of (2.23). 0

Lemma2.4. For0<i<n—1and0<j<n—3,let ¢ hiqgus € Li(J),
¢j,n-1 € Loo(J) be nonnegative, w; : Ry — Ry be nonincreasing and satisfying
(1.10) and «; € (0,1). Then there exists a positive constant V' such that

2@ <V for0<i<n-—1 (2.24)

whenever © € A(r,e) satisfies the inequality (2.14) for a.e. t € J.
Proof. Let x € A(r, ¢) satisfy the inequality (2.14) for a.e. ¢t € J. By Lemma 2.3,
the inequalities (2.6), (2.22) and (2.23) are true where £ € (0,7) is the unique
zero of "9 and B is given by (2.21). From 2™ 2(0) = (3/a)x™D(0) (see
(1.2)) and using the same procedure as in the proof of Lemma 2.2 we see that
(2.17) holds where L is defined by (2.16).

Since 2("=2)(t) > B for t € J and 21(0) =0, 0 < j < n — 3, we have

. B .
Dty > ——— " 772 forteJ 0<j<n-S3. 2.25
x (t)_(n—j—2)! orteJ, 0<j<n (2.25)
Hence
W 2@ (1) S wno(B), teJ
and
T _ T B ) 1 T )
(WD (¢ dt</ (— T ) gt = — ("I72) dt
fy ey s [Fei (gt ) de= o [T )

11



for 0 < j < n—3, where m; = "¢/B/(n—j—2)!. Then (see (2.14), (2.17)
and (2.19))

2] = | [ o
/0[ +Zqz wi(|z® )|)+Zhi(t)|x(i)(t)

11l +Z“ql”°° [ == 4 alsua(B)

IN

ai] dt

IN

n—1

2 n— o0 i - i
+7”qu“ [ ey 3l L e

i=0
where K = "{/e/(r + 1). Consequently,
n—1
|2V < Dy + 3 ||l L]V ||, (2.26)
i=0
where
= ||qz||oo
= 16l + = [ e

2[|gn—1lloo KT 1
+ ||qn72||LWn72(B) + T . wn,l(t )dt

is independent of . Since limy, (D, /u + Z o ]l L¥u®=1t) = 0, there is a
positive constant P, such that D, /u + " ||h; ||LLa1u0” b <1 for u € [P,,00).
Therefore (2.26) gives ||~ V| < P,. Novv (2.17) leads to (2.24) with V =

max{P,, LP,}. O

2.2 Problem (1.3), (1.4)

Let us choose positive constants € and r and define the set
B(r,e) = {x € AC"'(J) : « fulfils (1.4) and (2.28)}, (2.27)

where
(=1)"P2™ () > (T — t)" forae. tc.J. (2.28)
Section 2.2 is devoted to the study of the set B(r,e). Properties of B(r,¢)
obtained here (Lemma 2.5-Lemma 2.7) will be used in the proof of Theorem 4.3.

Lemma 2.5. There exists ¢ > 0 such that the inequalities

gD (t) > et for 0<i<p-—1,
- | (2.29)
(=) P2 (t) > (T — )™ for p<i<n-—1

are true for t € J and each x € B(r, ).

12



Proof. Let us put
€

C(r+D(r+2).. (r+n)
Then, using (1.4) and integrating (2.28), we get step by step that (2.29) holds on
J for p <i<n—1 and that

£ (8) > (TP (T — )P fort € . (2.30)

Put r+n —p+ 1 = v and consider a function ¢(t) =T% — (T'—t)” — t” on J.
Since v > 2, ¢(0) = ¢(T) = 0 and ¢ is concave on J, we have ¢ > 0 on (0,7)

and thus
prn—p+l _ (T _ t)r+n—p+1 > ¢rtn-ptl

holds on (0,7") which together with (2.30) yields

2 PV(t) > ettt fort e . (2.31)

Now, using (1.4) again and integrating (2.31), we successively obtain (2.29) for
0<i<p—1landteJ. O

Lemma2.6. Let o; € (0,1), ¢*, h; € L1(J), ¢; € Loo(J), 0 < i <n—1. Further,
suppose that w; : Ry — Ry are nonincreasing and fulfil (1.11). Then there exists
r* > 0 such that for each function x € B(r,e) satisfying

n—1
(1) Pz ™ (¢ ) + Z i (O)wi (|2 (@)]) + 3 hy(t) |2 (2] (2.32)
i=0
for a.e. t € J, the estimate
|2 Y| < r* (2.33)

s valid.
Proof. Having a function = € B(r, <) which satisfies (2.32) we put ||z~ V|| = p.
Then we integrate the inequality

|z V(@)| < p forte
and due to (1.4), we successively get
2@ < pT™"t, 0<i<n-—2 (2.34)

Further, we integrate (2.32) on [¢t,7] C J and in view of (2.34) we see that the
inequality

n—1 T ) n—1 )
p< gl + 2 ||qz~||oo/0 wi(|29(@®))dt + 3 [hillu(pT" )™ (2.35)
i=0 i=0
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holds. In order to find r* fulfilling (2.33) we need to estimate the integrals
T )
/'meuma,ogign—L
0

To this aim we distinguish two cases.
Case (). Let 0 < ¢ < p— 1. Then, by Lemma 2.5, there exists ¢ > 0 such
that

[0t < [ eyt = [ sy s,

where ¢ 7"~ = ¢. Therefore, having in mind Remark 1.4, we conclude that
T .
| il @t < (2:36)
0
with
1 ra?l .
a:—/ Wit dt € R, (2.37)
C; JO

Case (B). Let p < i < n—1. Then, by virtue of Lemma 2.5 and (2.37) we get

. T .
/ wi (|29 (¢)])dt </ wi(c(T — )" ")dt :/ wi(ct™™ ") dt = Cj,
0 0

i.e. (2.36) holds for p < i <n—1, as well.
After inserting (2.36) in (2.35), we obtain

o < 16% e+ 3 NalloaCi+ 3 all () (2.38)

i=0 i=0
Now, suppose that r* fulfilling (2.33) does not exist. Then we can find a sequence
of functions {x,,} such that z,, € B(r,¢) satisfy (2.32) for m € N and

”1||—oo.

lim ||z
m—o0

If we put ||z»~V|| = p,,, then p,, satisfy (2.38) for m € N which yields

n—1

1< —(A+> Bipd), (2.39)
Pm i=0
where
n—1
A=10*l + D NaillCis By = (T 1) || h]| for 0 < i <m— 1.
1=0

Since a; € (0,1) for 0 < i < n — 1, the inequality (2.39) implies

n—1
1<%1_r>%op— A-l—%Bme =0,

14



a contradiction. Therefore a positive constant r* satisfying (2.33) must exist. O

Lemma2.7. Suppose that w; : Ry - R, 0 <1 < n—1, are nonincreasing and
fulfil (1.11). Then for each n > 0 there exists 6 > 0 such that the condition

t2 .
ty — 1] < 0 = \/ wil|e (1) et < 1 (2.40)
t1

holds for all ty,ty € J, v € B(r,e), 0 <i<n-—1.
Proof. Let us choose t1,ty € J and x € B(r,e). Similarly to the proof of
Lemma 2.6 we consider two cases.

Case («). Let 0 < i < p—1. Then, by Lemma 2.5, there is a positive constant

¢ such that if we put ¢/ ™" = ¢, we have

‘/ wi (| ( dt‘ ‘/t wi(et™ dt‘ = ‘/t wi(cis T+”’ids‘.
1

Therefore, we conclude that

to ; 1
[ anlla®@))ae] <
t1 C

cit2 .
' / (£ 7)) | (2.41)

i1

Case (). Let p <i <mn — 1. Then Lemma 2.5 yields

[ e nmﬂsy[ZAdT— yeear] = | [ e
1

and so
‘/ w;(Ja®( dt‘

with ¢; given by Case ().
Now, let us choose an arbitrary n > 0 and ¢ € {0,...,p—1},j € {p,...,n—1}.
Then, according to Remark 1.4, there exists 6 > 0 such that

c; (T—tz)

wi (#7771 )t (2.42)
(T tl)

1 cila .
Ity — 1] <6 = — / Wit )] <,
city

C;

]_ C'(Tftz) .
ty — 1] < 6 = — / oy ()| <

Cj ' Jej(T—t1)
is valid for all ¢;,t, € J. So the inequalities (2.41) and (2.42) imply that (2.40)
is true for all ¢1,t, € J, x € B(r,e),0<i<n-—1. O
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3 Auxiliary regular BVPs

The aim of this section is to prove the existence of solutions to auxiliary regular
BVPs corresponding to singular problems (1.1),(1.2) and (1.3), (1.4). Construc-
tions of regular BVPs are based on a priori estimates reached in Section 2. The
existence of their solutions will be proved by means of the Nonlinear Fredholm
Alternative.

3.1 Problem (1.1),(1.2)
For any positive constant S and each m € N, define g, s € C°(R), 75 € C°(R)
and fns € Car(J x R") by

1 1

— for |u| < —

m m

Om,s(u) = 1

m, |l for — <|u| < S+1
m

S+1 for|ul>S5+1,

u for [u] < S+1
Ts(u) =
(S+1)sgnu for |u| > S+1
and
fm,S(tJ Zo,y .- 'an—Qan—l) —
( f(t, Qm,S(xO); ey Qm,S(xn—2); TS(xn—l))
_ 1 1
for (t,xq,..., Tp_0,Tpn_1) € J x R" ! x ((_OO’_E] U [E’OO))
m 1 1
5 |:fm,S(t7 Loy -y Tp—2, E)(xnfl + E)"‘
1 1
m t) ey —2y T T — T 4n—
+ Fms(t 20, Tz = —)) (= )]
1 1
for (thOJ .- -axn—2;xn—1) €JxR"*!x (——, —)
\ m o m

Then we have under assumption (H;) that
et" < fs(t,xo, ..., 2,—1) forae.t e Jand each (zg,...,z,-1) € R (3.1)

and under assumption (Hs) or (Hj) that

n—1

Fms(t, Ty Tn 1) < b +Zqz wi(Jz:]) + D hi(?)

1=0

(3.2)
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for a.e. t € J and each (zy,...,z, 1) € RYy, where

~

3(t) = o(t) + z a(twi(1) + 2 ha(t) (3.3)

since wj(oms(®) < wi(1) +w(lul), wnr(7s(@)]) < wna(1) + woi(ful),
(om,s(w)® <1+ Ju|¥, |rg(uw)]|* <1+ |u|* ' forue Rand 0 < j<n—2.

?

3.1.1 Problem (1.1),(1.2) with min{3,6} =0

Let assumptions (H,) and (H) be satisfied and let M be a positive constant
given by Lemma 2.2 with ¢ defined by (3.3). Consider the auxiliary family of
regular differential equations

—a™(t) = £, g(tat),....a" V(1) (3.4)

depending on m € N.

Lemma 3.1. Let assumptions (H,) and (Hy) be satisfied. Then, for each m € N,
BVP (3.4), (1.2) has a solution x,, € A(r,e) and

@ <M for0<i<n-—1. (3.5)
Proof. Fix m € N and set
gnlt) = sup{ S, (6 %0,y u ) ¢ @0y .oy 1) € R"}

1
—<xl<M+1for

:sup{f(t,xo,..., ) :
0<i<n-—2, l§|acn_1|§ZT4\+1}.

m

Since f € Car(J x D) we see that g, € L1(J). Using the fact that the problem

—z™(t) = 0, (1.2) has only trivial solution, the Nonlinear Fredholm Alternative

guarantees the existence of a solution z,, of BVP (3.4),(1.2). Besides, (3.1) and

(3.2) with S = M give

n—1
et” < —af) (1) < o(t) + Z q(t ') + > k()] ()]
i=0
for a.e. t € J. Therefore x,, € A(r,¢) and ||z@| < M for 0 < i < n—1 by
Lemmas 2.1 and 2.2. O

Lemma 3.2. Let assumptions (Hy) and (Hy) be satisfied and let x,, be a solution
of BVP (3.4), (1.2), m € N. Then the sequence

(£t am(),... a5~V ()} € Li(d) (3.6)

15 uniformly absolutely continuous on J.
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Proof. By Lemmas 2.1 and 3.1, we have (for m € N)

V() 2 (G — 1) fort € [0,
1 r —i; 1 1 (3.7)
() < = (&)™ fort € (€, T]

where &, € (0,7) is the unique zero of z("~1)

T
At fort € [0, —}
(1) > - (3.8)
AT —t) forte (E,T]
and 4
D)y > — g1 <j<n-— .
xm(t)_él(n—j—l)!t orteJ, 0<j<n-—3, (3.9)
where A is defined by (2.5). Besides, by Lemma 3.1,
|29 < M formeN, 0<j<n—1. (3.10)
Since
n—1
0 < fr it am(t),. .2l V(t) < ot +ZQ1 WO + 3 ha(t) M
=0

for a.e. t € J and each m € N by (3.2), we see from the properties of the functions
¢, q; and h;, 0 < i <n—1, given in (Hs) that to prove the assertion of our lemma
it suffices to show that the sequences

{willz @D}, 0<i<n—1,

are uniformly absolutely continuous on J.
Let 0 <¢<n—3. Then

wi|2z5 (D)) < wi € (0,7], meN

A .
(—'t’ﬂ,flfl),
4(n —i—1)!
which follows from (3.9) since w; is nonincreasing on R,. In addition, (1.9)
74(71‘3 o i 1) belong to the class L;(J). Hence

{wi(|z¥(¢)])} is uniformly absolutely continuous on J for 0 < i < n — 3.
Analogously (3.8) gives

implies that the functions wi(

w2l 7 (1)]) S waa(p(t)), t€(0,T), meN,

where
At fort € [0, 7]

(t) =
i’ AT —t) forte (%T]

18



Since wy,_2(¢(t)) € Li(J) which follows from the assumption o wna(t) dt < oo
for each V € R, (see Remark 1.4), the sequence {w, »(|z{"~2(¢)|)} is uniformly
absolutely continuous on J.

It remains to verify the uniform absolute continuity on J of the sequence
{wp—1(|z=D(#)])}. Let {(a;,b;)};ey be a sequence of a mutually disjoint intervals
(aj,bj) C J. Set

- {] ] € J (a’JJ ) C (Oafm)}v J?n = {]] € J, (a’jvbj) C (é-maT)}

for m € N and set k = "{/e/(r + 1). Then for j € J}, and k € J?, we have (see
(3.7))

b; 1 K(&m—aj)
/’wn,l(m;; t</ 1 (K (Em — 1)) dt = /@ b; W (7Y
aj m—bj

b ]_ n(b _gm)

[ (a0 de < / (et =)y dt == [ e (e at
ak R Jr(ar—&m)

If {jo} =J\ (J}, UJ2), that is aj, < &, < bj,, then

[ wnallal ) dt

o
&m

< [ s ((nl6n — 0 e [ (e~ ) )

Gjo
1 [lEm—aj) Albjo—Em)

= | / (Y dt + / O (e d].
KRtJO 0

Hence

Z]:] / W ([ D (1)) di
Z/ﬁ wn, (") dt + Z/ R wn, (¢ dt + E,

jelt jel?,
where
0 ity =1, Ul
E = K(Em—ajq) L K(bjo—E&m) 1 ) ] 1 9
[ ey e [T ) de i (o = 3\ (@, U ).
Since
> [Kn —aj) — &(€ N+ 2 [6(b = &m) = Kla; = &m)] +

jelt, jel?,
=y (b — a;)

jed
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where

CcC =

k(bj, — aj,) if {jo} =T\ (I3, UIZ),
we se that
b,
Z/ j wn_1(|x£r?_1)(t)|) dt < wn_l(tr+1) dt + wn—l(tH_l) dt
jey % M Mo
where u(M;) < 5 X;ep(bj—a;) for i = 1,2. Hence {w,_(|Jz V(1)])} is uniformly

absolutely continuous on J which follows from the fact that f;** w,_;(t"1) dt < oo
by (H:) and Remark 1.4. O

3.1.2 Problem (1.1),(1.2) with min{3,} >0

Let assumptions (H;) and (Hj3) be satisfied and V be a positive constant given
in Lemma 2.4 with ¢ defined by (3.3). Consider the family of regular differential
equations

—aM(t) = [, ot x(t),. .., a" V(1)) (3.11)
depending on m € N.

Lemma 3.3. Let assumptions (Hy) and (H3) be satisfied. Then, for each m € N,
BVP (3.11), (1.2) has a solution x,, € A(r,c) and

|z <V for0<i<n-—1. (3.12)

Proof. Fix m € N. To prove the existence of a solution z,, of BVP (3.11), (1.2)
we can argue as in the proof of Lemma 3.1. The fact that x,, € A(r,e) and z,,
satisfies (3.12) now follows from Lemmas 2.3 and 2.4. O

Lemma 3.4. Let assumptions (Hy) and (H3) be satisfied and let x,, be a solution
of BVP (3.11), (1.2), m € N. Then the sequence

{fp ot am(®),....al~ ()} € Li(J)

s uniformly absolutely continuous on J.
Proof. By Lemma 2.3, the inequalities (3.7) are satisfied for each m € N where
& is the unique zero of z»~Y) and (for m € N)

s () > B forte J (3.13)

) B .
Dty > ——— "2 forteJ 0<j<n—3 3.14
xm(L_m_j_@! orteJ, 0<j<n-3, (3.14)
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where B is a positive constant defined by (2.21). In addition, by Lemma 2.4,
129 <V formeN, 0<j<n—1. (3.15)

From the inequalities (for a.e. t € J and each m € N)

n—1
0< £, 5t am(D), ..., 2l (1) < o(t) +Zqz Jwi(|aD (8)]) + Y hi(t)V
=0

which follow from (3.2) and (3.15), from the properties of the function ¢, ¢; and
h;j, 0 < j <n—1given in (H3) and finally from (3.13), we see that to prove our
lemma it suffices to verify that the following sequences

{wnoa(l257 D (0D} (3.16)
and '
{w;(jeP )}, 0<j<n-3 (3.17)

are uniformly absolutely continuous on J. The uniform absolute continuity on
J of the sequence (3.16) was proved in the proof of Lemma 3.2 and for the
sequences (3.17) this fact follows immediately from the inequalities (see (3.14))
wi([#@(#)]) < wi(GEgyt™ 7 ?) for t € (0,77 and m € N since (1.10) and

Remark 1.4 imply that w; (mt” = 2) € Ly(J)for0<j<n-3. O

3.2 Problem (1.3), (1.4)

We present an existence principle for (p, n—p) right focal BVPs which are regular.
Assume that (H4) and (Hj) are satisfied. Put

¢*(t) = o(t) + Sqi(t)wi(l) + Shi(t) for a.e. t € J.

Then ¢* € Ly(J) and, by Lemma 2.6, a positive constant r* satisfying (2.33) can
be found. Forme N, 0<i<n—-1, x € R, put

pi = 14Tt (3.18)
and
1 1
—sgnz  for x| < —
1 m 1 m
Ui(a’x) Y for — < |z| < p;
m

pisgnz  for p; < |x|.
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Extend f on J xRy as an even function in each its phase variable z;, 0 <7 < n—1,

and for a.e. t € J and for all (zg,...,x, 1) € R" define auxiliary functions
fm(t )= [f(t (_1 ) (_1 ) (3.19)
m(t, Loy .o, Ty , O s L0)y ey Ope s Tn—1)). .
0 1 0 0 1 1

In such a way we get the family of differential equations

(=) Pz (t) = fo(t, (1), ..., 2" D(t)) (3.20)
depending on the parameter m € N. Now, we will study BVPs (3.20), (1.4).

Lemma 3.5. Let assumptions (Hy) and (Hs) be satisfied, let B(r,e) be given by
(2.27) and r* be from Lemma 2.6. Let f,,, m € N, be defined by (3.19). Then,
for each m € N, BVP (3.20), (1.4) has a solution u,, € B(r,e) such that

g, | <™. (3.21)

Proof. Fix an arbitrary m € N. (H,) and (3.19) yield f,, € Car(J x R"). Now,
put

1 )
gm(t) = sup{|f(t,:r0,. .. an—l) : E S |xz| S Pi, 0 S [ S n— 1}7

where p;,0 < ¢ < n — 1, are given by (3.18). We see that g,, € Li(J) and
|fn(t, 20, T 1)| < gm(t) for ae. t € J and all (xg,...,z, 1) € R". Since
the problem (—1)""Px(™(¢) = 0, (1.4) has only the trivial solution, the Nonlinear
Fredholm Alternative implies that (3.20), (1.4) has a solution wu,,.

Further, by virtue of (H,) and (Hs), we see that for a.e. ¢ € J and all
(g, ..., T, 1) € R" the inequalities

(T —t)" < fult,zoy. .oy xn 1), (3.22)
n—1

fn(t oy @y 1) < @F(t —|—ZqZ wi(|x;]) +Zh (3.23)
=0

are true. Note, that inequality (3.23) follows from relations

o1
azé(a)z+|xz

Qg

Y

|Ui(aa$z’)

and
wi(|ai(%,xi)|) < wi(pi) +wi(lzi]) < wi(1) + wi(lzil),

which are valid for 0 < i < n — 1. In view of (3.22), we have u,, € B(r,¢) and
therefore using (3.23) and Lemma 2.6, we get (3.21). O
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4  Main results, examples

4.1 Sturm-Liouville boundary value problems

Theorem4.1. Let assumptions (Hy) and (Hs) be satisfied and let min{S,d6} =0
n (1.2). Then BVP(1.1), (1.2) has a solution.

Proof. By Lemma 3.1, there is a solution z,, of BVP (3.4), (1.2) for each m € N.
Consider the sequence {x,,}. Then the inequalities (3.7)—(3.10) are satisfied by
Lemmas 2.1 and 3.1, where &,, € (0,7") denotes the unique zero of "V, A is
given by (2.5) and M is a positive constant. Besides,

{f it 2 (), 2l V()

is uniformly absolutely continuous on J by Lemma 3.2, which implies among
others that {z("~Y(#)} is equicontinuous on J. Without loss of generality we can
assume that {x,,} is convergent in C"1(J) and {&,,} is convergent in R. Let
limy,, 00 T = @, limy, 00 &, = € Then z satisfies the boundary conditions (1.2)
and from (3.7)—(3.9) we deduce that

€

(n—1) > _ 4\r+l f
) > (e forrelog] .
(D) < ——S (=) fort T '
PN < (e 1y forte (6T]
T
At fort € [0, —]
AT —t) forte (E,T]
and 4
D) > —————t" 771 teJ 0<j<n-3.
From the construction of the auxiliary functions f = € Car(J x R") it follows
the existence of a set U C J, p(U) = 0, such that f =(t,-,...,-) is continuous

on R" for ¢t € J\ U and m € N. Hence

lim f ot on(t), ..., al V(1) = ftx(t), ..., 2" V(1))

m—o0

fort € J\ (UU{0,£,T}). Now the Vitali’s convergence theorem gives

Ft,z(t),. .., 2" () € Li(J)

and

t t
lim / fmﬁ(s,xm(s),...,xgg’l)(s)ds:/ f(s,2(s),...,2" V(s))ds, te..
m—oo Jo > 0



Taking the limit as m — oo in the equalities

we obtain

¢
g D(t) =2 V0) + | f(s,a(s),. .., 2™V (s))ds, te
0
Consequently, z € AC™"(J) and z satisfies (1.1) a.e. on J. We have proved that
x is a solution of BVP (1.1),(1.2). O

Theorem 4.2. Let assumptions (Hy) and (Hs) be satisfied and let min{3,0} > 0
n (1.2).Then BVP (1.1), (1.2) has a solution.

Proof. By Lemma 3.3, there exists a solution z,, of BVP (3.11),(1.2) for each
m € N. Consider the sequence {z,,}. Then the inequalities (3.7) and (3.13)—
(3.15) are satisfied for each m € N which follows from Lemmas 2.3 and 2.4, where
&m € (0,T) is the unique zero of x%‘l) and B, V are positive constants indepen-
dent of z,,. In addition, by Lemma 3.4, the sequence {fmﬁ(t, Ty - 27D (1))}
is uniformly absolutely continuous on J which yields among others that {z{"~1)(¢)}
is equicontinuous on J. Without restriction of generality we can assume that
{zm} and {&,,} is convergent in C"~!(J) and R, respectively. Let lim,, ;o 2, = 7,
lim,;, 00 &m = €. Then z satisfies the boundary conditions (1.2) and from (3.7),
(3.13) and (3.14) we conclude that (4.1) holds and

"Dy > B, tel,

. B .
sD(t) > ————" 772 tecJ 0<j<n-—3.
(n—j—2)!
The next part of the proof is the same as that of the proof of Theorem 4.1 and
therefore it is omitted. U

4.2 Focal boundary value problems

First, we consider the singular (p, n — p) right focal BVP (1.3), (1.4) with 1 <
p<n-—1.

Theorem 4.3. Let assumptions (Hy) and (Hs) be satisfied. Then there ezists a
solution of BVP (1.3), (1.4).

Proof. Define for m € N functions f,, by (3.19). According to Lemma 3.5 there
is a positive number r* such that for each m € N problem (3.20),(1.4) has a
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solution u,, € B(r, <) satisfying (3.21). By Lemma 2.5, there exists ¢ > 0 such
that for m € N and ¢ € J we have

uld(t) > et tnt for0<i<p-1
(=1 Puld(t) > (T — )™ forp<i<n-—1. 42
Conditions (1.4) and (3.21) yield
D < r* Tt < p;, 0<i<n—1. (4.3)

Moreover, by virtue of (3.23) we have for 0 < ¢, <t, <T

to
t1

to n—1 '
ufi V() —ul )] < [T+ Y il [ el ODat (44)
1 =0

where

h(t) = ¢*(¢) + Spﬁihi(t), he Ly(J).

Since w,, € B(r,e), we can use Lemma 2.7 and conclude that the sequence
{u{"=Y} is equicontinuous on .J. Estimates (4.3) mean that {u,,} is bounded
in C"1(J). Thus, by the Arzela-Ascoli theorem, we can choose a subsequence,
which is denoted by {u} and which converges in C" !(J) to a function u €
C" Y(J). Clearly u satisfies (1.4). Letting k — oo and using (4.2) we get

u®(t) > et for 0<i<p—1
(—=1)"Pu®(t) > (T — )" forp<i<n-—1L.
This yields that
u?(t) >0 on (0,7] for0<i<p-—1
o (4.5)
(=) Pu®(t) >0 on [0,T) forp<i<n—1.

Finally, let us show that u € AC"'(J) and that u fulfils (1.3) a.e. on J.
Consider the sequence of equalities

(n—1) (n—1) t (n—1)
1" () = ol (o)+/0 Fuls,up(s), i V(s))ds forte J.  (4.6)

Denote the set of all ¢ € J such that f(¢,-,..., ) : X — R is not continuous by
U. Then p(U) = 0 and, by virtue of (4.5),

Jim it un(®), o™ (0) = F(6u(D), w7 ()
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forallt € J\ (UU{0,T}). Further, using (Hy), (H;) and (4.2), we see that for
all £ € N and a.e. t € J, the inequalities

| fi(t, u(t), . ug (@) < g(t)

are satisfied, where

g(t ) + Z Py hilt) + Z il oo (2
and .
w; (et for0<i<p-1
w;(t) = '
wi(e(T =)™ ") forp<i<n-—1L1

Since g € Li(J), we can use the Lebesgue dominated convergence theorem by
which f(¢,u(t),...,u" "V (t)) € L1(J) and letting k — oo in (4.6) we have that

WD) = 0(0) + [ (s u(s), o u Ds))ds fort € g

is valid, i.e. w € AC""!(J) and u satisfies (1.3) a.e. on J. O

Theorem 4.3 together with Remark 1.5 yields the existence result for the
singular (n — p,p) left focal BVP (1.12), (1.13) with 1 <p <n —1.

Theorem 4.4. Let assumptions (Hg) and (Hr) be satisfied. Then there ezists a
solution of BVP (1.12), (1.13).

For the continuous function f in equations (1.1) and (1.3) we get immedi-
ately from Theorems 4.1 and 4.3 and our previous considerations the following
corollaries. Similar results could be obtained from Theorems 4.2 and 4.4.

Corollary 4.5. Let f € C°(J x D) satisfy assumptions (H,) and (H,) and let
min{3,d} = 0 in (1.2). Then there exists a solution x of BVP (1.1), (1.2) such
that v € AC" Y (J)NC™(J\{0,T,&}) and (1.1) holds for each t € J\ {0,T,&}
where £ € (0,T) is the unique zero of 2™~ in J.

Corollary 4.6. Let f € C°(J x X) satisfy assumptions (Hy) and (Hs). Then
BVP (1.3), (1.4) has a solution x such that x € AC" 1 (J)NC™(J\{0,T}) and
(1.3) holds for each t € J\{0,T}.

Example4.7. Let n € N, n > 2, 7,4 € (0,1), h; € Li(J) be nonnegative and
Bi, ci € Ry, 0 <4 <n—1. Consider the differential equation

() = (T ) Z |‘*z ! Zh

(4.7)
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If weset r =, e=T7" and w;(z) = 27%, 0 < i < n—1, then assumptions (H;)
and (Hs) are satisfied for

1
n— 1 . ) [ A S.S _27 4'
Br-1 € (0 1+7) ﬁe(on—z—l) 0<i<n (4.8)
and assumptions (H;) and (H3) are satisfied for
Byr€(0,——), BuosER,, Bie(0,—— ) 0<j<n—3 (49)
n— 1, ) n— ) j I e—— >~ S1no—o. .
! I+~ ? o n—j—2 J

Hence, problem (4.7),(1.2) with min{/,6} = 0 has a solution for f; satisfying
(4.8) by Theorem 4.1 and the solvability of problem (4.7), (1.2) with min{f,d} >
0 for f3; satistying (4.9) is guaranteed by Theorem 4.2.

Example4.8. Let n € Nyn > 2and 1 < p <n— 1. Consider the differential
equation

o) = (F) 4 X e+ S RO, (@10

t i=0 |x(z) (t) i=0

where (for 0 <i<mn-—1)

1

7 o € (0,1), ¢; € Ry, B € (0, m)7 (4.11)

h; € Ly(J) is nonnegative.

Then we can see that if we put r =, ¢ =T~ and w;(z) = 277, 0<i<n—1,
the assumptions (H,) and (Hs) are satisfied. Hence, by Theorem 4.3, problem

(4.10), (1.4) has a solution.
Similarly, having the differential equation

a6 = (75) + T patgp S AR (@1

and assuming (4.11), we can easily check that (Hg) and (H7) are fulfilled which
yields, by Theorem 4.4, that problem (4.12), (1.4) is solvable.
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