Asymptotic properties of homoclinic
solutions of some singular nonlinear
differential equation®

IRENA RACHUNKOVA

Department of Mathematics,
Faculty of Science, Palacky University,
17. listopadu 12, 771 46 Olomouc, Czech Republic
e-mail: irena.rachunkova@upol.cz

Dedicated to the memory of Professor Temuri Chanturia

Abstract

We investigate an asymptotic behaviour of homoclinic solutions of the
singular differential equation (p(t)u’)’" = p(t)f(u). Here f is Lipschitz
continuous on R and has at least two zeros 0 and L > 0. The function
p is continuous on [0, 00), has a positive continuous derivative on (0, o)
and p(0) = 0.
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1 Introduction
We investigate the differential equation
(p()u') = p(t) f(u), € (0,00),
and during the whole paper we assume that f satisfies
f € Lipoe(R), 3L € (0,00) : f(L) =0,

ILg € [-00,0):  zf(x) <0, z € (Ly,0)U (0, L),
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3B € (Lo,0) : F(B) = F(L), where F(z)= —/OI f(z)dz, zeR, (4)

and p fulfils
p € C[0,00) N C*(0,00), p(0) =0, (5)
t

/ .
p'(t) >0, t€(0,00), lim o)

Due to p(0) = 0, equation (1) has a singularity at t = 0.

Definition 1 A function u € C'[0,00) N C?(0, 00) which satisfies equation (1)
for all ¢ € (0, 00) is called a solution of equation (1).

Consider a solution u of equation (1). Since u € C'[0, 00), we have u(0),u'(0) €
R and the assumption p(0) = 0 yields p(0)u'(0) = 0. We can find M > 0 and
d > 0 such that |f(u(t))] < M for ¢t € (0,9). Integrating equation (1) and using
the fact that p is increasing, we get

I M [t
ol = |t [ soneenas| < 25 [agas<an, e
p(t) Jo p(t) Jo
Consequently the condition «’(0) = 0 is necessary for each solution u of equation
(1). Therefore the set of all solutions of equation (1) forms a one-parameter

system of functions u satisfying u(0) = A, A € R.

Definition 2 Let u be a solution of equation (1) and let L be of (2) and (3).
Denote ugyp = sup{u(t) : t € [0,00)}. If ugyp = L (usup < L or ugyp, > L), then
u is called a homoclinic solution (a damped solution or an escape solution).

The existence and properties of these three types of solutions have been inves-
tigated in [19]-[23]. In particular, we have proved that if «(0) € (0, L), than u
is a damped solution ([22], Theorem 2.3). Clearly, for u(0) = 0 and u(0) = L,
equation (1) has a unique solution v = 0 and u = L, respectively.

In this paper we focus our attention on homoclinic solutions. According to
the above considerations such solutions have to satisfy the initial conditions

w(0) =B, 4 (0)=0, B<O. (7)

Note that if we extend the function p(t) in equation (1) from the half-line onto
R (as an even function), then a homoclinic solution of (1) has the same limit L
as ¢ — —oo and ¢ — oo. This is a motivation for Definition 2.

We have proved in [21], Lemma 3.5, that a solution u of equation (1) is
homoclinic if and only if w is strictly increasing and lim; o u(t) = L. If such
homoclinic solution exists, many important physical properties of corresponding
models (see below) can be obtained. In particular, equation (1) is a generaliza-
tion of the equation

u” + %u’ = f(u), te€(0,00), (8)



and we can find in [16] that equation (8) with k& > 1 and special forms of f
arises in many areas. For example: In the study of phase transitions of Van der
Waals fluids [3], [10], [24], in population genetics, where it serves as a model for
the spatial distribution of the genetic composition of a population [8], [9], in the
homogeneous nucleation theory [1], in relativistic cosmology for description of
particles which can be treated as domains in the universe [18], in the nonlinear
field theory, in particular, when describing bubbles generated by scalar fields of
the Higgs type in the Minkowski spaces [7]. Numerical simulations of solutions
of (8), where f is a polynomial with three zeros have been presented in [6], [14],
[17]. Close problems about the existence of positive solutions are investigated
in [2], [4], [5].

The main result of this paper is contained in Section 3 in Theorem 12, where
we provide an asymptotic formula for homoclinic solutions of equation (1). Let
us note that many important results about asymptotic properties of various
types of differential equations can be found in the monograph by I. Kiguradze
and T. Chanturia [12].

2 Existence of homoclinic solutions

Here we bring theorems about the existence of homoclinic solutions. Remind
that assumptions (2)—(6) are common for all these theorems. For a given B < 0
we will denote the solution of problem (1), (7) by ug.

Theorem 3 Assume that problem (1), (7) has an escape solution and let B be
of (4). Then there exists B* < B such that up~ is a homoclinic solution of
problem (1), (7) with B = B*.

Proof. Theorem 2.3 in [22] yields that for any B € [B,0) there exists a unique
solution up of problem (1), (7) and up is damped. So, if we denote by My
the set of all B < 0 such that up is a damped solution of problem (1), (7),
we have My # 0. Moreover, M, is open in (—c0,0), due to Theorem 14 in
[19]. Further, denote by M. the set of all B < 0 such that up is an escape
solution of problem (1), (7). By our assumption, we have M, # () and, by
Theorem 20 in [19], the set M, is open in (—00,0), as well. Therefore the set
M = (—00,0) \ (Mg U M.,) is nonempty. Let us choose B* € Mj. Then,
B* < B, and by virtue of Definition 2, the supremum of the solution up- on
(0,00) cannot be less than L and cannot be greater than L. Consequently this
supremum is equal to L and up+ is a homoclinic solution of problem (1), (7)
with B = B*. 0

Theorem 4 Assume that Lo of (3) satifies

Ly € (—O0,0), f(LO) =0. (9)

Then there exists B* € (Lg, B) such that up- is a homoclinic solution of problem
(1), (7) with B = B*.



Proof. Define

v | fle) for z<L,
f(z) = { 0 for x> 1L,
and consider the auxiliary equation
(p(tu') = p(t)f(u), t € (0,00). (10)

By Theorem 10 and Lemma 9 in [20], there exists B € (Lo, B) such that up is
an escape solution of problem (10), (7). If we modify the proof of Theorem 3
working on (Lo, 0) instead of on (—o00,0), we get a homoclinic solution up- of

problem (10), (7) having its starting value B* in (Lo, B). Since up~ is increasing
on (0,00) (see e.g. Lemma 3.5 in [21]), we have

B* <up-(t) < L, tel0,00), (11)
and up- is also a solution of equation (1). O

Theorem 4 assumes that f has the negative finite zero Ly. The following two
theorems concern the case that Ly = —oo and f is positive on (—o0,0). Then
a behaviour of f near —oo plays an important role. Equations with f having
sublinear or linear behaviour near —oco are discussed in the next theorem.

Theorem 5 Assume that f(z) > 0 for x € (—00,0) and

0< limsup@ < 00. (12)

T——00 |(E

Then there exists B* < B such that up- is a homoclinic solution of problem
(1), (7) with B = B*.

Proof. In the linear case, that is if we assume

0< limsupM < 00,
xr——00 |$|
the assertion follows from Theorem 5.1 in [21]. Consider the sublinear case,
when we work with the condition
f(x) _ 0.

limsup =—= =
r——co |7

Assumption f > 0 on (—o0,0) gives

lim M =0,
Yoo 2]
and Theorem 19 in [19] guarantees the existence of B < B such that ug is
an escape solution of problem (10), (7) . Theorem 3 and estimate (11) yield
B* < B such that up~ is a homoclinic solution of problem (1), (7) with B = B*.
O



Theorem 6 Assume that f(z) > 0 for x € (—00,0) and that there exists k > 2
such that

- p(t)
t£%1+ 2 € (0,00). (13)
Further, let r € (1, %) be such that f fulfils
lim @) € (0,00). (14)

T— —00 |;L'|7’

Then there exists B* < B such that up~ is a homoclinic solution of problem
(1), (7) with B = B*.

Proof.  Theorem 2.10 in [23] guarantees the existence of B < B such that
up is an escape solution of problem (10), (7) . Theorem 3 and estimate (11)
yield B* < B such that up~ is a homoclinic solution of problem (1), (7) with
B = B*. U

Theorem 6 discusses a superlinear behaviour of f near —oo. Note that if
k = 2, we can take any r € (0, 00). Last existence theorem imposes an additional
assumption on p only.

Theorem 7 Assume that p satifies

Lods
/0 @ < 0. (15)

Then there exists B* < B such that up~ is a homoclinic solution of problem
(1), (7) with B = B*.

Proof.  Using Theorem 18 in [19] instead of Theorem 2.10 in [23], we argue as
in the proof of Theorem 6. O

In the next section, the generalized Matell’s theorem which can be found
as Theorem 6.5 in the monograph by I. Kiguradze [11] will be useful. For our
purpose we provide its following special case.

Consider an interval J C R. We write AC(J) for the set of functions ab-
solutely continuous on J and AC),.(J) for the set of functions belonging to
AC(I) for each compact interval I C J. Choose T' > 0 and a function ma-
trix A(t) = (@i ;(t))i j<2 which is defined on (T, 00). Denote by A(t) and pu(t)
eigenvalues of A(t), t € (T, 00). Further, suppose that

A= tlirgo A(t) and p= tlirgo w(t)
are different eigenvalues of the matrix A = lim; . A(t) and let 1 and m be
eigenvectors of A corresponding to A and p, respectively.



Theorem 8 [11] Assume that
a;; € ACoc (T, 00), ‘/ a;,j(t) dt‘ <oo, 1,j=1,2, (16)
T
and that there exists co > 0 such that

/t Re(A(r) = p(r))dr <o, T <s<t, (17)

or
o) t
/ Re(A(T) —p(r))dr = oo,/ Re(A(T) —p(r))dr > —co, T <s<t. (18)
T s
Then the differential system
X'(t) = A(t)x(t) (19)
has a fundamental system of solutions x(t), y(t) such that

lim x(t)e” Jr MM AT =, lim y(t)e™ Jrmm T — (20)

t—o0

3 Asymptotic behaviour of homoclinic solutions

In this section we assume that B < B is such that the corresponding solution u
of initial problem (1), (7) is homoclinic. Hence u fulfils

uw(0) =B, 4(0)=0, ' (t)>0,te(0,00), limu(t)=L  (21)

t—o0o

Moreover, due to (1),

w0+ 20 = ). ¢>o0 (22)
and, by multiplication and integration over [0, t],
“/2(” + /0 l; ((S; w(s)ds = F(u(0)) — F(u(t)), ¢>0 (23)
Therefore .
0< tim [ 22 ds < pB) - F(L) < o0,

t—oo Jo p(s)
and hence there exists

lim
t—o0 0 p(s)
Consequently, according to (23), limy_. ., u'?(t) exists, as well. Since u is bounded
on [0,00), we get

lim w2(t) = lim «'(t) = 0. (24)

t—o0 t—o0



In order to derive an asymptotic formula for v we need to characterize a
behaviour of p in co and a behaviour of f near L more precisely. In particular

we put
h(z) = xf (_x)L

and we will work with the following assumptions:

r <L,

3e,n>0: heCYL—n,L), lim h(z)=h(L)=c, (25)

r—L—

/
t
p' € ACjo(0,00), In>2: lim ()

t—oo tN—2

€ (0,00). (26)

For simplicity transform L to the origin by the substitution

z(t) =L —u(t), tel0,00), (27)
and put
9(y) = —f(L—-y), y>0. (28)
Then the function z given by (27) is a solution of the equation
(p(1)2") = p(t)g(z), € (0,00), (29)
and satisfies
2(0)=L+|B|, 2(0)=0, 2'(t)<0,te(0,00), (30)
Jim 2(t) =0, Jim Z'(t) = 0. (31)

Lemma 9 Assume that condition (25) holds and let z be given by (27). Then
there exists T' > 0 such that

12" (t)] > \/gz(t), t>T. (32)
Proof.  According to (29) the function z fulfils
" o p/(t) /
27(t) Ok () +9(=(1)), t € (0,00). (33)

where



Then, due to (3), (4) and B < B, the function G fulfils

L+|B| L
G(L+|B|):—/ g(s)ds:/ f(s)ds=F(B)— F(L) > 0.
0 B
Thus V(0) = G(L + |B|) > 0. Further, using (33), we have
/ 0 " / o p/(t) 12
Vi) = 2'(1)2"(t) — g(=(1))'(t) = fmz (t) <0, t>0.

So, V is decreasing on (0,00) and, by (31), (34), we get lim; .o, V(¢) = 0.
Consequently V(t) > 0 for ¢ € [0, 00) which yields

Z/Q(t)

2

Let y = L — . Then, using (25) and (28), we deduce that

%— lim M—l lim M—E

> —G(2(t), t>0. (35)

— 1 = = .
yi%lJr y2 y—0-+ 2y 2z2—L—x— L 2

Hence, by (31), there exists T' > 0 such that

G(z(t) _ ¢
20 4

t>1T.

This together with (35) leads to

Consequently we get (32). O

Lemma 10 Assume that condition (25) holds and let z and g be given by (27)
and (28), respectively. Then

R EICI) N
/1 ‘Z(T) ‘d < 0. (36)
Proof. Let us put
h(y) = 9(5), y > 0. (37)
By (25) and (28), we have
ML —y)=h(y), y>0, heC'0], lim hy)=h(0)=c  (38)

and there exists My € (0,00) such that

dh(y)
dy

§M07 y e [Oan]




The Mean Value Theorem guarantees the existence of 6 € (0, 1) such that

dh(0y)
dy ’

hy)=c+y y € (0,n).

By (31), there exists T > 1 such that 0 < z(t) < n for ¢ > T and hence,
according to (37),
9(2(1))
z(t)
Using (2), (28) and z > 0 on [1,7], we can find M; € (0,00) that
/ Tg(z(r)
1 2(7)

and, without loss of generality we may assume that T is chosen in such a way,
that (32) is valid, as well. Therefore, using (32) and (39), we get

/tg(z(ﬂ)

z(7)

—C

< Myz(t), t>T. (39)

—c‘ dr < My,

t 2 t
—c‘ dTSM1+M0/ Z(T)dT<M1+\/:MO/ |Z’(T)|d7':
T T

=M — \/EMO /Tt 2 (r)dr = My +V2cMo(2(T) — 2(t)), t>T.

Letting ¢ — oo and using (31), we get (36). O

Lemma 11 Assume that condition (26) holds. Then

CAGAY
/ < ) dr < o0. (40)
1 p(7)
Proof.  Condition (26) implies that there exists ¢o € (0,00) such that

lim P(t)

t—oo tN—2

t
=cp, lim L( ) =% .
t—oo 1 n—1

i (4g) =0

Hence, we can find T' > 1 such that

P\ n?

and, due to (5) and (6), we can find M3 € (0, 00) such that

ACORSE

Therefore




Consequently,

t / 2 t
d 1 1
/ 2 dr < My+n® [ S =n®(=-=), t>T
1 \p(7) T 7’ r ot

Letting ¢ — oo, we get (40). O

The main result about asymptotic behaviour of homoclinic solutions is con-
tained in the next theorem.

Theorem 12 Assume that (25) and (26) hold. Let B < B be such that the
corresponding solution u of initial problem (1), (7) is homoclinic. Then u fulfils

lim (L — u(t))eY*\/p(t) € (0, 00). (42)

t—o0

Remark 13 A similar asymptotic formula for positive solutions of equation
(8), where k > 1 and f(z) = = — |z|"sign z, r > 1, has been derived in [13],
Theorem 6.1.

Proof.  Step 1. Construction of an auxiliary linear differential system. Con-
sider the function z given by (27). According to (29), z satisfies

ONINIE0)

pt)” ()

Having this z, we introduce the linear differential equation

w @ g(z(t)

2"+ z(t), te(0,00). (43)

v+ v = v, 44
OO “
and the corresponding linear differential system
t /(¢
] =x9, b= 9 ))xl—p( )xg. (45)

z(t)

Denote

0 1 0 1
A(l) = (aiy(W)ij<e = | seen  vw |» A= . o )

By (6), (31), (37) and (38),

A= tlim A(t).
Eigenvalues of A are numbers A = /c and u = —+/c, eigenvectors of A are
1= (1,/c) and m = (1, —/c), respectively. Denote
2
p’(ﬂ) 9(2(t))
D(t) = + , te€(0,00). 46
0= (20) + 20 e 0,00 (46

10



Then eigenvalues of A(t) have the form

A(t) = —

(1) _ P
2p(t)+\/m, pu(t) = — —/D(t), te(0,00).  (47)

We see that
lim A(t) = A, tlim w(t) = p.

t—o0

Step 2. Verification of the assumptions of Theorem 8. Due to (31) and (38), we
can find T > 1 such that

0<z(t)<n, D) >0, te/(T,o00). (48)

Therefore, by (37) and (38),

an () = LCY) ¢ 4e.(1,00),
and so
00 /
[ (20 o
T 2(t)
Further, by (26), a2 (t) = BAONE AC),c(T, 00). Hence, due to (6),
oo ’ !
NEE
T \pt)
Since a11(t) = 0 and a12(t) = 1, we see that (16) is satisfied. Using (47) we get

Re(A(t) — p(t)) = 24/D(t) > 0 for ¢ € (T,00). Since lim;_,o v/ D(t) = /¢ > 0,

we have

iy 260 _ G|, _ oD

- (T)

2% 20 2(T) ’ =

o0 t
/ Re(A(1) — p(1)) dr = o0, / Re(M7) —u(r))dr >0, T <s<t.
T s
Consequently (18) is valid.
Step 3. Application of Theorem 8. By Theorem 8 there exists a fundamental
system x(t) = (z1(t),z2(¢)), y(t) = (y1(t), y2(t)) of solutions of (45) such that
(20) is valid. Hence
tlim x1(t)e” Jra@dr — tlim y1(t)e” Jrumydr —q, (49)

Using (47) we get for ¢t > T

exp (— /Tt)\(T) dT) = exp (/Tt (;’3((:)) - D(T)) dr)

11




—ow (32 ow (- [ VDE0r) = B (- [ vEGI4r),

T el fowaw) oo ([ (35 o) o)
S )

o / /D dr = Eo(t) + Velt — ),

" Folt) = Tt \/% dr, t>T. (50)

Hence.

ex — t dr | = &e—Eo(t)e—ﬁ(t—T)
p( /T/\()d) \/; , t>T, (51)

exp | — t T)dr | = &eEo(t)e\/E(t—T)
(- [uner) =\ 2T )

Using (36), (40), (46), we can find Ky € (0, 00) such that for ¢t > T,

Flees o= (GR) oo L1255 ) e

Consequently, due to (50),
tlim Eo(t) =FEyeR.

Therefore (49), (51) and (52) imply

p(t) oFo o VE(t=T)

p(t) e’EOe*‘/E(t*T),
T p(T)

1= tlim x1(t) 1= tlim y1(t)

Since, by (26),

t
tlim \/ﬁe*ﬁt = tlim —p( ) tn=1/2e=Vet — g, tlim \/Me‘/a = 00,

oo tn— 1
we obtain

lim xq(t) = oo, tlim y1(t) =0. (53)

t—oo

12



Step 4. Asymptotic formula. According to (43), z is also a solution of (44).
Therefore there are ¢1,co € R such that z(t) = c121(t) + cay1(t), t € (0,00).
Having in mind (30), (31), (49) and (53), we get ¢; = 0, cay1(t) > 0 on (0, 00),
and ¢z € (0,00). Consequently, z(t) = cay1(t) and

1 t
1= lim —z(t) —p( ) eEOe\/E(t*T),

t—00 Co p(T)
which together with (27) yields (42). O
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