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Abstract. The paper deals with the second-order non-autonomous difference
equation

z(n+1) =z(n) + ( )2 (x(n) —xz(n—1)+ h2f(x(n))>, n €N,

n-+1

where h > 0 is a parameter and f is Lipschitz continuous and has three real zeros
Lo<0< L.

We provide conditions for f under which for each sufficiently small A > 0 there
exists a homoclinic solution of the above equation. The homoclinic solution is a
sequence {x(n)}>, satisfying the equation and such that {z(n)}$°, is increasing,
x(0) = z(1) € (Lo,0) and lim,_,o x(n) = L. The problem is motivated by some
models arising in hydrodynamics.
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1 Introduction

In hydrodynamics or in the nonlinear field theory we can find differential models
which can be reduced, after some substitution, to the form

(t*u) = 4Nt (u + Du(u — €), (1.1)

uw'(0) =0, wu(oo)=E¢, (1.2)
where A € (0,00) and £ € (0,1) are parameters. See e.g. [5], [6], [8], [10], [11].

Consider the following generalization of equation (1.1)
() = £*f (u) (1.3)
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and construct a discretization of problem (1.3), (1.2). Choose h > 0 and a
sequence {t,}>°, C [0, 00) such that

to=0, typiy1—ty,=h, neN, nh_g)lotn = 0. (1.4)

Denote x(0) = w(0) and z(n) = u(t,) for n € N. Then the discrete analogy of
problem (1.3), (1.2) has the form of the following difference problem

};A(tiAaz(n —1)) = £ f(z(n)). n €N, (1.5)
Az(0) =0, lim z(n) =& (1.6)

Here Az(n—1) = z(n) —x(n—1) is the forward difference operator and ¢,, = hn,
n € N.

2 Formulation of problem

Equation (1.5) has an equivalent form

z(n+1) = xz(n) + ( )2 (z(n) = 2(n = 1)+ K2 f(2(n))), neN. (21)

n+1
We will investigate equation (2.1) under the assumption that f fulfils

Ly<0<L, feLipo(R), f(Lo)=/f(0)=f(L)=0, (2:2)
xf(x) <0 for x € (Lo, L)\ {0}, (2.3)
3B € (Ly,0) such that /BL f(z)dz =0. (2.4)

Let us note that f € Lip,.(R) means that for each [Ay, A] C R there exists
K > 0 such that |f(x) — f(y)| < K|z — y| for all z,y € [Ag, A]. We see that
the function f(z) = 4\?(x + 1)z(x — &) of equation (1.1) with A € (0,00) and
¢ € (0,1) satisfies conditions (2.2)—(2.4) for Ly = —1 and L = &.

A sequence {x(n)}>, which satisfies (2.1) is called a solution of equation
(2.1). For each values B, By € [Lg,o0) there exists a unique solution {z(n)},
of equation (2.1) satisfying the initial conditions

z(0) =B, z(1) = B;. (2.5)

Then {z(n)}5°, is called a solution of problem (2.1), (2.5).

Strictly increasing solutions with just one zero play a fundamental role in
the differential models (1.1), (1.2). According to this we search for solutions
{z(n)}32, of equation (2.1) satisfying

z(0) =2(1), lim z(n)=L, {z(n)},2, is increasing. (2.6)

n—oo
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To this aim (see Lemma 3.1) we will study solutions of problem (2.1), (2.7), where
z(0) =B, xz(1)=B, B e (Ly0). (2.7)

Using our results of [17] and [18], we will prove that for each sufficiently small
h > 0 there exists at least one B € (L, 0) such that the corresponding solution
of problem (2.1), (2.7) fulfils (2.6). Note that an autonomous case of (2.1) was
studied in [16]. We mention also some recent papers investigating the solvability
of other second-order discrete boundary value problems, for example [1], [2], [9],
[13]-[15], [20].

3 Four types of solutions

Lemma 3.1 shows that it suffices to consider B € (L, 0) in order to find a solution
fulfilling (2.6).

Lemma 3.1 Let B € [Lo, L] and {x(n)};>, be the corresponding solution of
equation (2.1) satisfying ©(0) = x(1) = B. If B ¢ (Lo,0), then {x(n)} 2, is not
increasing for any ng € N, ng > 1.

Proof. Due to (2.1), {z(n)}2, fulfils

n
n+1

2
Ax(n) = ( ) (A;E(n —-1)+ hzf(x(n))>, n € N. (3.1)
(i) Let B € (0,L). By (2.3) and (2.7) we have f(z(1)) = f(B) <0, and (3.1)
yields Az(1) < 0. Hence z(1) > x(2) and {z(n)}, 2, is not increasing for any
ng > 1.

(ii) Let B € {Lo,0,L}. Then (2.1) and (2.2) imply that {z(n)}°, is the
constant sequence with z(n) = B, n € N. Hence {z(n)}, 2, is not increasing for
any ng > 1. ]

Definition 3.2 Let {z(n)}22, be a solution of problem (2.1), (2.7) such that

{z(n)}>2, is increasing, lim x(n) = 0. (3.2)

n—o0

Then {z(n)}52, is called a damped solution.

Remark 3.3 The differential equation (1.3) for ¢t € (0,00) corresponds to the
difference equation (2.1). If we consider equation (1.3) for ¢ € (—o0,0), then its
discrete analogy can have the form (compare with (1.5))

iA(zf2

h2 —n—1

Az(—n —1)) =12, f(z(-n)), n €N, (3.3)



where Az(—n —1) = 2(—n —1) —x(—n), t_, = —hn, n € N. Then (3.3) has an
equivalent form
2
r(—n—1)=z(-n) + (#J (x(—n) —z(—n+1)

3.4
+h2f(x(-n))), neN. (34)

Assume that B* € (L, 0) is such that the solution {z*(n)}°, of problem (2.1),
(2.7) with B = B* satisfies lim, o 2*(n) = L. Now, consider the sequence
{z*(—n)}>, which fulfils (3.4) and z*(—1) = 2*(0) = B*. Comparing (2.1) and
(3.4) we see that x*(n) = 2*(—n) for n € N. Therefore

lim 2*(—n) = lim 2*(n) = L. (3.5)

n—oo n—oo

Motivated by (3.5) we will use the following definition.
Definition 3.4 Let {z(n)}22, be a solution of problem (2.1), (2.7) which fulfils

{z(n)}7Z, is increasing,  lim x(n) = L. (3.6)

Then {z(n)}5°, is called a homoclinic solution.
Lemma 3.7 needs next two definitions.

Definition 3.5 Let {z(n)}2, be a solution of problem (2.1), (2.7). Assume that

there exists b € N, such that {z(n)}’t} is increasing and

z(b) < L <z(b+1). (3.7)
Then {z(n)}5°, is called an escape solution.

Definition 3.6 Let {z(n)}2, be a solution of problem (2.1), (2.7). Assume that
there exists b € N, b > 1, such that {z(n)}’_, is increasing and

0<z(b) <L, x(b+1)<uzb). (3.8)
Then {z(n)}5°, is called a non-monotonous solution.
We present some results of [17] and [18] which we use in next sections.

Lemma 3.7 [17] (On four types of solutions)
Let {z(n)}°, be a solution of problem (2.1), (2.7). Then {x(n)}2, is just one
of the following four types:

(I) {z(n)}2, is an escape solution;
{z(n)}>2, is a homoclinic solution;

(n)
{z(n)}2, is a damped solution;
(n)

—
8

1)}, is a non-monotonous solution.

4



Lemma 3.8 [17] (On the existence of non-monotonous or damped solutions)
Let B € (B,0), where B is defined by (2.4). There exists hg > 0 such that if
h € (0, hg], then the corresponding solution {x(n)}%, of problem (2.1), (2.7) is
non-monotonous or damped.

Remark 3.9 Our main task is to prove the existence of B € (Lg,0) such that
{z(n)}°, a homoclinic solution of problem (2.1), (2.7) with this B. Such solution
fulfils Ly < B < z(n) < L for n € NU {0}. Therefore we may assume without
loss of generality that

f(x) =0 forxz € (—o0, L) U (L,0). (3.9)

By Remark 3.9, we assume that, in addition to (2.2)—(2.4), f fulfils moreover
(3.9) in Lemma 3.10.

Lemma 3.10 [18] (On the existence of escape solutions)
There exists h* > 0 such that for any h € (0, h*] there exists an escape solution
{ze(n)}5° of problem (2.1), (2.7) for some B = B, € (Ly, B).

4 Estimates of solutions
In this section, f is supposed to fulfil (2.2)—(2.4) and (3.9).

Lemma 4.1 Let {x(n)}>, be an escape solution of problem (2.1), (2.7). Then
{z(n)}2, is increasing and

lim x(n) € (L, 00). (4.1)

n—oo

Proof. According to Definition 3.5 there exists b € N, such that {x(n)}’t} is
increasing and (3.7) holds. By (3.9) we get f(x(b+ 1)) = 0. Consequently, by

(3.1) and (3.7), Az(b+ 1) = (252) Az(b) > 0 and f(2(b+2)) = 0. Similarly

b+2
Aw(b+j) = ({242)" Ax(b+j — 1) and
. b+1 1\’ .

This yields that {x(n)}52, is increasing.
Summing (4.2) for j = 1,...,k, we obtain

k

rb+k+1)=xz(b+1)+(b+ Z k € N.

= b+1+j)



Consequently

Jim z(n) =x(b+1)+ (b+ 1)2Az(b) i (b+11—|—])2

We have - s < 00 and (4.1) follows.

00 1
n=1 (b+1+n)

O

Lemma 4.2 [18] Let {x(n)}:2, be a solution of problem (2.1), (2.7). Then there

exists a mazimal b € NU {oo} satisfying
xz(n) € [B,L) forn=1,...,b,
and, if moreover b > 1, then
{x(n)}¥o_, is increasing.
In addition
Az(n) < hy/(L —2Lo)My + h*My, n=1,...,b—1,

where

My = max{|f(x)|: = € [Lg, L]}.

(4.3)

(4.4)

(4.5)

(4.6)

Corollary 4.3 Let h € (0,1). If {z(n)}>, is a damped solution of problem

(2.1), (2.7), then

Ax(n
h() < \/2|L0’M0, n € N.

If {x(n)}e2, is an escape solution of problem (2.1), (2.7), then

A
xh(") < (L —2Lo)My +2My, neN,

Proof. Equation (2.1) has an equivalent form

2n +1

Az(n) — Az(n —1) +

Multiplying (4.9) by Az(n) + Az(n — 1), we obtain

2n + 1
n2

= f(z(n))(z(n+1) —x(n—1)), neN.

(Az(n))* — (Az(n — 1)) +

Az(n)(Az(n) + Az(n — 1))

Summing (4.10) from 1 to n € N, we have

() + 3 2 A (Ae) + Ar(j — 1)
=13 S+ 1)~ 2~ 1), nEN.

o Az(n) = h*f(z(n)), n€N.

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)



If {z(n)}22, is a damped solution of problem (2.1), (2.7), then by (3.2) and (4.6)

we get
Az(n) < hy/2|B|My < hy/2|Lo|My, n € N. (4.12)

Let {z(n)}°, be an escape solution. By Definition 3.5, {x(n)}22, is increasing
and there exists b € N such that z(b) < L < z(b+ 1). By (4.5) we have

Az(b—1) < hy/(L — 2Lo) Mg + h* My, (4.13)

and, by (3.1) and (4.6),

2
Ax(b) = <b—|b—1> (Ax(b - 1)+ h2f(x(b))) < Az(b—1) + h* M. (4.14)
Further, z(n) > L for n > b+ 1 and hence, due to (3.9), f(z(n)) = 0. Therefore
n—1\2
Ax(n) = ( ) Ar(n—1) < Az(n—1), n>b+1.  (4.15)
n
Consequently (4.13)-(4.15) give (4.8). O

Lemma 4.4 [18] Choose an arbitrary ¢ > 0. Let By,By € (Ly,0) and let
{z(n)}22, and {y(n)}>2, be solutions of problem (2.1), (2.7) with B = By and

n=0

B = By, respectively. Let K by the Lipschitz constant for f on [Lg, L]. Then

[2(n) = y(n)| < |By = Bafe?™, (4.16)

< |B1 — By|oK ¥, (4.17)

‘ Az(n) — Ay(n)
h

where n € N, n < %.

Corollary 4.5 Let the assumptions of Lemma 4.4 be fulfilled and let by € N,
bo > 1, h € (0,1). Then for n € N, n < by, the following inequalities hold:

|2(n) — y(n)| < |By — Byle"*, (4.18)

< |By — By|byK %% (4.19)

Ax(n) - Ay(n)
h

Az(n)  Az(n)+Az(n=1)  Ay(n) = Ay(n)+Ay(n—1)

h 2h h 2h (420)
< |B1 — By|A,

A=2 (,/(L — 2Lo) My + M0> boK "5 (4.21)

where



Proof. Inequalities (4.18) and (4.19) follow directly from (4.16) and (4.17).
Inequality (4.20) is based on (4.7), (4.8), (4.19) and on the inequality

|Aa:(n) CAz(n) +Az(n—1)  Ay(n) Ay(n) + Ay(n — 1)|

h 2h h 2h
< |A:I;(n) — Ay(n)| |Ay(n) + Ay(n — 1)|
- h 2h
N ‘Axh(n) . ’Am(n)Q—hAy(n) N ‘Axh(n) . ‘Am(n - 1)2—hAy(n - 1) ‘ .

5 Further properties of solutions

In order to prove the existence of a homoclinic solution we will need the following
lemmas. Here f fulfils (2.2)-(2.4) and (3.9).

Lemma 5.1 Let {z4(n)}>2, be a non-monotonous (an escape) solution of prob-
lem (2.1), (2.7) with B = By € (Lo,0). Then there exists € > 0 such that for each
B € (By —¢€, By +¢) the corresponding solution {x(n)}2, of problem (2.1), (2.7)
is also a non-monotonous (an escape) solution.

Proof. Let K be the Lipschitz constant for f on [Lg, L] and let {x(n)}2, be
a solution of problem (2.1), (2.7) with B # B;. For b € N put o = h(b + 2).
According to Lemma 4.4,

z4(n) — z(n)| < |By — Ble?™, n<b+2. (5.1)

(i) Assume that {z4(n)}>2, is a non-monotonous solution. By Definition 3.6
there exists b € N, b > 1, such that {z;(n)}>_, is increasing and

0 <zy(b) < L, wx3(b+1) < a4(b).
We can find 41, 95 > 0 such that
0 < a4(b) — 01, w3(b)+ 01 < L, (5.2)
and forn <b—1
5y < ;(xﬁ(n +1) = 24(n)). (5.3)
Let 24(b+ 1) = 4(b). Then z4(b+ 2) < x4(b+ 1) because, by (3.1),

b+1

b 2) (Azy(b) + B f(ay(b +1))) <O,

Azy(b+1) = (
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We choose d3 > 0 such that
1
93 < i(xﬁ(b—i-l) —x4(b+2)). (5.4)
Let 24(b+ 1) < z4(b). Then we choose d3 > 0 such that

5y < ;(xﬁ(b) —n(b+1)). (5.5)

Now, for @4(b + 1) < 24(b), put § = min{d;,d2,d3}, € = e¢K§ and assume
that |By — B| < e. Then, by (5.1), we get

lzg(n) —x(n)| < 4§, n<b+2. (5.6)

Therefore, by (5.2), 0 < x4(b) — 9 < z(b) and z(b) < x4(b)+J < L. So 0 < z(b) <
L. Further, by (5.3) and (5.6), for n < b — 1,

z(n) <zy(n)+60 <xy(n+1) —6 <z(n+1).

Therefore {z(n)}%_, is increasing.

Let 4(b+ 1) = x4(b). If (b + 1)
monotonous. So assume that (b + 1)
Further, by (5.4) and (5.6),

x(b), we see that {z(n)}>°, is non-

z(b). Then {z(n)}°T! is increasing.

<
>

r(b+2) <ay(b+2)+6 <ay(b+1)—d <z(b+1).

Hence z(b+2) < z(b+ 1) which yields that {z(n)}>2, is non-monotonous in this
case, as well.

If 24(b+1) < x4(b), we deduce by (5.5) and (5.6) that x(b+ 1) < x(b) and get
that {z(n)}2, is non-monotonous.

(ii) Assume that {z4(n)}72, is an escape solution. By Definition 3.5 there exists
b € N such that {zy(n)}"t} is increasing and L < z4(b+ 1). Then we can find
01,02 > 0 such that

L < J]ﬁ(b + 1) — 01, (57)

and inequality (5.3) holds for n < b. Put § = min{0y, &}, € = e ¢4 and assume
that | By — B| < e. Then, (5.6) holds and using (5.7) and (5.3) we deduce as in
part (i) that {z(n)}?} is increasing and L < 2(b + 1). Consequently, {x(n)}>,
is an escape solution. [l

Lemma 5.2 There exists h* > 0 such that if h € (0,h*], By € (Lo,0) and
{zo(n)}2, is a damped solution of problem (2.1), (2.7) with B = By, then there
exists 0p, > 0 such that for each B # By, B € (By — dp,, Bo + 05,) N (Lo, 0),
the corresponding solution {x(n)}>2, of problem (2.1), (2.7) cannot be an escape
solution.



Proof. By (2.2), f is integrable on [Ly, L] and we can choose ¢y, ¢ and 1* such

that
1 L Co
0<co<f/f(z)dz, 0<e< —, (5.8)
3 |Jo 3
By
|B — By| < 2n* = |/ f(2)dz| <e, B,Bye€ [Ly,0]. (5.9)
B

Step 1. By (2.2) and (3.9), for each B € [Ly, 0] there exists dg > 0 such that
cach increasing sequence {x(j)};=, n € N, fulfils the following implication: If
z(l) € (B—190p,B+0p), z(0)=z(1), —dp<z(n+1)<0,

z(j+1)—a(j—1

| (5.10)
3 )<5B: 7=1,...,n,

then
- W +1) —z(j—1)

ICTENE R - [ fe

j=1

Let M = Ugepy,0/(B—0p, B+6p). Then [Lgy, 0] C M and since [Ly, 0] is compact,
we can choose a finite number v of intervals (B — 05, , By + dp, ) such that

<e. (5.11)

[Lo,0] € | J(Bi — b5y, Bi + 0p,). (5.12)

k=1

Consider My of (4.6) and choose hj, > 0 such that
hk\/2’L0’M0 <5Bk7 k= 1,...,v. (513)

Step 2. Consider n* of (5.9). By (2.2) and (3.9), for each B € [Lo,0] there
exists 7 € (0,7*) such that each increasing sequence {z(j)}}%}, n € N, fulfils
the following implication: If

z(l) e (B—np,B+ns), x(0)==2z(1), L<z(n+1),
z(j+1)—x(j—1)
2

(5.14)
<7737 j:17"'7n7

then

> Sy 2D [ ez << (5.15)

2 1)

As in Step 1 we deduce that there is a finite number u of intervals (B, —ng,, Be+

npg,) such that
I

(Lo, 0] € U (Be — 15, Be +13,), (5.16)
/=1
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and we choose iNu > () such that

iL[ ( (L - 2L0)M0 + QMO) < 77Bga é - 1, e ,,LL. (517)

In what follows we assume that

he(0,h, h*=min{l,hy,...,hy, hi,... 5} (5.18)

Step 3. Let By € (Lo,0) be such that {z¢(n)}>2, is a damped solution of
problem (2.1), (2.7) with B = By. By (5.12), By € (B — dp,, Br + 05, ) for some
k€ {1,...,v}. Therefore, by (4.7), (5.13) and (5.18), {z(j)}72{, n € N, satisfies
(5.10) for By, in place of B, and consequently

i:lf(xo(j))xo(j *+h) ; w1 _ B(: f(2)dz| < e.
Letting n — oo we get
if(wo(j))%(j 1) ;IOU —1) - /B(; f(z)dz| <e. (5.19)

Further, {zo(n)}52, satisfies (4.11) and hence

1 ( Awo(n) 2+i2j+1_Aaio(j)_A$o(j)+A33o(j—1)
2\ h = h 2h

WZo(j+1) —xo(j — 1)
= Zlf(a?o(J)) 5 7

Jj=

n € N.

Letting n — oo and having in mind that lim, ., Azg(n) = 0, we get

i 2j+1 Awzo(j) Awzo(j) + Azo(j — 1)
= 0 oh

& L To(j +1) —ae(j — 1)
- Zf(%(])) 9 .

—_

Jj=

This together with (5.19) give

$ 21 Anl) M)+ Al —1) _ 9

d
= h 2h g &2

<e. (5.20)

Consequently, there exists by € N such that

i 27+ 1 Axo(j) ' Azo(j) + Axo(j — 1)
R h oh

< co. (5.21)
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Define A by (4.21). By virtue of (5.16), we have By € (By—np,, Bi+np,) for some
¢ € {1,...,u}. Therefore there exists dp, € (0,np,) such that (By — dp,, By +
08y) C (Be =1, Be + 1p,) and

S, < co. (5.22)

Step 4. Assume on the contrary that for some B € (By—0dg,, Bo+05,)N (Lo, 0),
B # By, a sequence {x(n)}2, is an escape solution of problem (2.1), (2.7). Then
{z(n)}°, is increasing and there exists b € N such that z(b) < L < z(b+1). By
(4.8), (5.17) and (5.18), we get that {x(j)}}=, n > b, satisfies (5.14) for By in
place of B, and consequently, inequality (5.15) holds for n € N, n > b.

Let n > max{bo, b}. Using successively (5.15), (4.11), (4.20), (5.21), (5.22),
(5.20) and (5.9), we get

o L st 3ot DU

h Zj?'h 2h

=1

1<A:v(n)>2+ 25+ 1 Az(j) Ax(j) +Azx(j - 1) -
2

bo 25 +1 Ax(j) CAz(j) + Az(j — 1) -

]Z:; P2 h 2h =
i2j+1.Ax0() Axo(j) + Azo(y — )—|B—B0|A:
= h 2h

in—l—l CAzg(j) Amg(j) + Aze(j — 1)

i h 2h
i 2j‘—|—1'A:L'0(j) Azo(j) + Azo(j — )—|B—BO|A>

j=bo+1 J? h 2h B
i 2j+1 Azo(j) Azo(j) + Aze(j —1) 20 >
i h 2h -

0 0
f(z)dz—€—2co>/ f(z)dz — 2 — 2¢y.
Bo B

/ dz>/ z)dz — 3e — 2cq,

and using (2.3) and (5.8) we get

Hence,

/OLf(z)dz

a contradiction. O

> 3¢,

3co>—/0Lf(z)dz:
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6 Existence of homoclinic solutions

Now, we are ready to state and prove the main result provided f fulfils only our
basic assumptions (2.2)—(2.4).

Theorem 6.1 (On the existence of homoclinic solutions)

There exists h* > 0 such that for any h € (0,h*] there exists a homoclinic so-
lution {x*(n)}2y of problem (2.1), (2.7), that is {x*(n)}2, is increasing and
lim,, .o, x*(n) = L.

Proof. First, consider an equation

z(n+1)=uz(n)+ ( >2 (a:(n) —xz(n—1)+ h2f*(m(n))>, neN, (6.1)

n+1
where o) it Lo, L]
" - r) 1x € Lo,
f(m)_{o it v ¢ [Lo, L]
Hence f* fulfils (2.2)—(2.4) and (3.9). Let us choose h} > 0 such that the assertion
of Lemma 5.2 is valid for problem (6.1), (2.7). By Lemma 3.8 and Lemma 3.10,
we can find h* € (0,h]] such that if A € (0,h*], than for some B € (Lo, B),
the solution of (6.1), (2.7) with B = B, is an escape solution, and for some
Bua € (B,0), the solution of (6.1), (2.7) with B = B,q is non-monotonous or
damped.

By Lemma 5.1, there exists ¢ > 0 such that for each B € (Bes, Bes + €),
the corresponding solution of (6.1), (2.7) is an escape solution. Let £* be the
supremum of such epsilons and put B* := By + €*. Then Ly < B* < Byg < 0.
Denote {z*(n)}°, the solution of (6.1), (2.7) with B = Bx.

(i) Let {z*(n)}22, be non-monotonous. Then, by Lemma 5.1, there is &, > 0
such that for each B € (B* — &1, B*), the corresponding solution is also non-
monotonous. This contradicts the definition of *.

(ii) Let {z*(n)}5>, be an escape solution. Then, by Lemma 5.1, there is €5 > 0
such that for each B € (B*, B* 4 &), the corresponding solution is also escape.
This contradicts the maximality of &*.

(iii) Let {z*(n)}32, be a damped solution. Then, by Lemma 5.2, there is €5 > 0
such that for each B € (B* — &3, B*), the corresponding solution cannot be an
escape solution. This contradicts the definition of &*.

By Lemma 3.7, {z*(n)}5°, must be a homoclinic solution. Since Ly < B* <
x*(n) < L for n € N, the homoclinic solution {z*(n)}:°, of problem (6.1), (2.7)
is also a solution of problem (2.1), (2.7). O
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