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Summary. This paper provides existence results for the nonlinear impulsive periodic boundary
value problem

u′′ =f(t, u, u′),(1.1)

u(ti+) = Ji(u(ti)), u′(ti+) = Mi(u′(ti)), i = 1, 2, . . . ,m,(1.2)

u(0) = u(T ), u′(0) = u′(T ),(1.3)

where f ∈ Car([0, T ] × R2) and Ji, Mi ∈ C(R). The basic assumption is the existence of
lower/upper functions σ1/σ2 associated with the problem. Here we generalize and extend the
existence results of our previous papers.
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0. Introduction

This paper deals with the solvability of the nonlinear impulsive boundary value
problem (1.1)–(1.3) and provides conditions for f, Ji and Mi, i = 1, 2, . . . , m,
which guarantee the existence of at least one solution. Boundary value problems
of this kind have received a considerable attention, see e.g. [1]–[7], [10], [12]. The
results of these papers rely on the existence of a well-ordered pair σ1 ≤ σ2 of
lower/upper functions associated with the problem under consideration. In [11] we
extended these results to the case that σ1/σ2 are not well-ordered, i.e.

(0.1) σ1(τ) > σ2(τ) for some τ ∈ [0, T ].
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The goal of this paper is to generalize the main existence results of [11], where we
restricted our attention to impulsive functions Mi, i = 1, 2, . . . , m, fulfilling the
conditions

(0.2) y Mi(y) ≥ 0 for y ∈ R, i = 1, 2, . . . , m.

Here we prove existence criteria without restriction (0.2).
Throughout the paper we keep the following notation and conventions:
For a real valued function u defined a.e. on [0, T ], we put

‖u‖∞ = sup
t∈[0,T ]

|u(t)| and ‖u‖1 =

∫ T

0

|u(s)| ds.

For a given interval J ⊂ R, by C(J) we denote the set of real valued functions which
are continuous on J. Furthermore, C1(J) is the set of functions having continuous
first derivatives on J and L(J) is the set of functions which are Lebesgue integrable
on J.

Let m ∈ N and let 0 = t0 < t1 < t2 < · · · < tm < tm+1 = T be a division of
the interval [0, T ]. We denote D = {t1, t2, . . . , tm} and define C1

D[0, T ] as the set of
functions u : [0, T ] 7→ R of the form

u(t) =





u[0](t) if t ∈ [0, t1],
u[1](t) if t ∈ (t1, t2],
. . . . . .
u[m](t) if t ∈ (tm, T ],

where u[i] ∈ C1[ti, ti+1] for i = 0, 1, . . . , m. Moreover, AC1
D[0, T ] stands for the

set of functions u ∈ C1
D[0, T ] having first derivatives absolutely continuous on each

subinterval (ti, ti+1), i = 0, 1, . . . , m. For u ∈ C1
D[0, T ] and i = 1, 2, . . . , m + 1 we

define

(0.3) u′(ti) = u′(ti−) = lim
t→ti−

u′(t), u′(0) = u′(0+) = lim
t→0+

u′(t)

and ‖u‖D = ‖u‖∞ + ‖u′‖∞. Note that the set C1
D[0, T ] becomes a Banach space

when equipped with the norm ‖.‖D and with the usual algebraic operations.
We say that f : [0, T ]×R2 7→ R satisfies the Carathéodory conditions on [0, T ]×

R2 if (i) for each x ∈ R and y ∈ R the function f(., x, y) is measurable on
[0, T ] ; (ii) for almost every t ∈ [0, T ] the function f(t, ., .) is continuous on
R2 ; (iii) for each compact set K ⊂ R2 there is a function mK(t) ∈ L[0, T ] such
that |f(t, x, y)| ≤ mK(t) holds for a.e. t ∈ [0, T ] and all (x, y) ∈ K. The set of
functions satisfying the Carathéodory conditions on [0, T ]× R2 will be denoted by
Car([0, T ]× R2).
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Given a Banach space X and its subset M, let cl(M) and ∂M denote the
closure and the boundary of M, respectively.

Let Ω be an open bounded subset of X. Assume that the operator F : cl(Ω) 7→ X
is completely continuous and F u 6= u for all u ∈ ∂ Ω. Then deg(I− F, Ω) denotes
the Leray-Schauder topological degree of I − F with respect to Ω, where I is the
identity operator on X. For the definition and properties of the degree see e.g. [8].

1. Formulation of the problem and main assump-

tions

Here we study the existence of solutions to the problem

u′′ =f(t, u, u′),(1.1)

u(ti+) = Ji(u(ti)), u′(ti+) = Mi(u
′(ti)), i = 1, 2, . . . , m,(1.2)

u(0) = u(T ), u′(0) = u′(T ),(1.3)

where u′(ti) are understood in the sense of (0.3), f ∈ Car([0, T ]× R2), Ji ∈ C(R)
and Mi ∈ C(R).

1.1. Definition. A solution of the problem (1.1)–(1.3) is a function u ∈ AC1
D[0, T ]

which satisfies the impulsive conditions (1.2), the periodic conditions (1.3) and for
a.e. t ∈ [0, T ] fulfils the equation (1.1).

1.2. Definition. A function σ1 ∈ AC1
D[0, T ] is called a lower function of the prob-

lem (1.1)–(1.3) if

σ′′1(t) ≥ f(t, σ1(t), σ
′
1(t)) for a.e. t ∈ [0, T ],(1.4)

σ1(ti+) = Ji(σ1(ti)), σ′1(ti+) ≥ Mi(σ
′
1(ti)), i = 1, 2, . . . , m,(1.5)

σ1(0) = σ1(T ), σ′1(0) ≥ σ′1(T ).(1.6)

Similarly, a function σ2 ∈ AC1
D[0, T ] is an upper function of the problem (1.1)–

(1.3) if

σ′′2(t) ≤ f(t, σ2(t), σ
′
2(t)) for a.e. t ∈ [0, T ],(1.7)

σ2(ti+) = Ji(σ2(ti)), σ′2(ti+) ≤ Mi(σ
′
2(ti)), i = 1, 2, . . . , m,(1.8)

σ2(0) = σ2(T ), σ′2(0) ≤ σ′2(T ).(1.9)
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1.3. Assumptions. In the paper we work with the following assumptions:

{
0 = t0 < t1 < · · · < tm < tm+1 = T < ∞, D = {t1, t2, . . . , tm},
f ∈ Car([0, T ]× R2), Ji ∈ C(R), Mi ∈ C(R), i = 1, 2, . . . , m;

(1.10)

σ1 and σ2 are respectively lower and upper functions of (1.1)–(1.3);(1.11)

{
x > σ1(ti) =⇒ Ji(x) > Ji(σ1(ti)),

x < σ2(ti) =⇒ Ji(x) < Ji(σ2(ti)), i = 1, 2, . . . , m;
(1.12)

{
y ≤ σ′1(ti) =⇒ Mi(y) ≤ Mi(σ

′
1(ti)),

y ≥ σ′2(ti) =⇒ Mi(y) ≥ Mi(σ
′
2(ti)), i = 1, 2, . . . ,m.

(1.13)

1.4. Operator reformulation of (1.1)–(1.3). By G(t, s) we denote the Green
function of the Dirichlet boundary value problem u′′ = 0, u(0) = u(T ) = 0, i.e.

(1.14) G(t, s) =





t (s− T )

T
if 0 ≤ t ≤ s ≤ T,

s (t− T )

T
if 0 ≤ s < t ≤ T.

Furthermore, we define the operator F : C1
D[0, T ] 7→ C1

D[0, T ] by

(F x)(t) = x(0) + x′(0)− x′(T ) +

∫ T

0

G(t, s) f(s, x(s), x′(s)) ds(1.15)

−
m∑

i=1

∂G

∂s
(t, ti) (Ji(x(ti))− x(ti)) +

m∑
i=1

G(t, ti) (Mi(x
′(ti))− x′(ti)).

As in [9, Lemma 3.1], where m = 1, we can prove (see Proposition 1.6 below) that
F is completely continuous and that a function u is a solution of (1.1)–(1.3) if and
only if u is a fixed point of F . To this aim we need the following lemma which
extends Lemma 2.1 from [9].

1.5. Lemma. For each h ∈ L[0, T ], c, di, ei ∈ R, i = 1, 2, . . . ,m, there is a unique
function x ∈ AC1

D[0, T ] fulfilling

{
x′′(t) = h(t) a.e. on [0, T ],

x(ti+)− x(ti) = di, x′(ti+)− x′(ti) = ei, i = 1, 2, . . . , m,
(1.16)

x(0) = x(T ) = c.(1.17)
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This function is given by

(1.18) x(t) = c+

∫ T

0

G(t, s) h(s) ds−
m∑

i=1

∂G

∂s
(t, ti) di+

m∑
i=1

G(t, ti) ei for t ∈ [0, T ],

where G(t, s) is defined by (1.14) .

Proof. It is easy to check that x ∈ AC1
D[0, T ] fulfils (1.16) together with x(0) = c

if and only if there is c̃ ∈ R such that

x(t) = c + t c̃ +
m∑

i=1

χ(ti, T ](t) di +
m∑

i=1

χ(ti, T ](t) (t− ti) ei(1.19)

+

∫ t

0

(t− s) h(s) ds for t ∈ [0, T ],

where χ(ti,T ](t) = 1 if t ∈ (ti, T ] and χ(ti,T ](t) = 0 if t ∈ R \ (ti, T ]. Furthermore,
x(T ) = c if and only if

(1.20) c̃ = −
m∑

i=1

di

T
−

m∑
i=1

T − ti
T

ei −
∫ T

0

T − s

T
h(s) ds.

Inserting (1.20) into (1.19), we get

x(t) =
∑
ti<t

ti (t− T )

T
ei +

∑
ti≥t

t (ti − T )

T
ei −

∑
ti<t

(t− T )

T
di −

∑
ti≥t

t

T
di

+

∫ t

0

s (t− T )

T
h(s) ds +

∫ T

t

t (s− T )

T
h(s) ds, t ∈ [0, T ].

Hence, taking into account (1.14), we conclude that the function x given by (1.18)
is the unique solution of (1.16), (1.17) in AC1

D[0, T ].

1.6. Proposition. Assume that (1.10) holds. Let the operator F : C1
D[0, T ] 7→

C1
D[0, T ] be defined by (1.14) and (1.15). Then F is completely continuous and

a function u is a solution of (1.1)– (1.3) if and only if u = F u.

Proof. Choose an arbitrary y ∈ C1
D[0, T ] and put

(1.21)





h(t) = f(t, y(t), y′(t)) for a.e. t ∈ [0, T ],

di = Ji(y(ti))− y(ti), ei = Mi(y
′(ti))− y′(ti), i = 1, 2, = . . . ,m,

c = y(0) + y′(0)− y′(T ).
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Then h ∈ L[0, T ], c, di, ei ∈ R i = 1, 2, . . . , m. By Lemma 1.5, there is a unique
x ∈ AC1

D[0, T ] fulfilling (1.16), (1.17) and it is given by (1.18). Due to (1.21), we
have

x(t) = (F y)(t) for t ∈ [0, T ].

Therefore, u ∈ C1
D[0, T ] is a solution to (1.1)–(1.3) if and only if u F u. Define an

operator F1 : C1
D[0, T ] 7→ C1

D[0, T ] by

(F1y)(t) =

∫ T

0

G(t, s) f(s, y(s), y′(s)) ds, t ∈ [0, T ].

As F1 is a composition of the Green type operator for the Dirichlet problem u′′ = 0,
u(0) = u(T ) = 0, and of the superposition operator generated by f ∈ Car([0, T ]×
R2), making use of the Lebesgue Dominated Convergence Theorem and the Arzelà-
Ascoli Theorem, we get in a standard way that F1 is completely continuous. Since
Ji, Mi, i = 1, 2, . . . , m, are continuous, the operator F2 = F−F1 is continuous, as
well. Having in mind that F2 maps bounded sets onto bounded sets and its values
are contained in a (2m+1)-dimensional subspace of C1

D[0, T ], we conclude that the
operators F2 and F = F1 + F2 are completely continuous.

In the proof of our main result we will need the next proposition which concerns
the case of well-ordered lower/upper functions and which follows from [10, Corollary
3.5].

1.7. Proposition. Assume that (1.10) holds and let α and β be respectively lower
and upper functions of (1.1)– (1.3) such that

α(t) < β(t) for t ∈ [0, T ] and α(τ+) < β(τ+) for τ ∈ D,(1.22)

α(ti) < x < β(ti) =⇒ Ji(α(ti)) < Ji(x) < Ji(β(ti)), i = 1, 2, . . . , m(1.23)

and {
y ≤ α′(ti) =⇒ Mi(y) ≤ Mi(α

′(ti)),

y ≥ β′(ti) =⇒ Mi(y) ≥ Mi(β
′(ti)), i = 1, 2, . . . , m.

(1.24)

Further, let h ∈ L[0, T ] be such that

(1.25) |f(t, x, y)| ≤ h(t) for a.e. t ∈ [0, T ] and all (x, y) ∈ [α(t), β(t)]× R

and let the operator F be defined by (1.15). Finally, for γ ∈ (0,∞) denote

Ω(α, β, γ) = {u ∈ C1
D[0, T ] : α(t) < u(t) < β(t) for t ∈ [0, T ],(1.26)

α(τ+) < u(τ+) < β(τ+) for τ ∈ D, ‖u′‖∞ < γ}.
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Then deg(I− F, Ω(α, β, γ)) = 1 whenever F u 6= u on ∂Ω(α, β, γ) and

(1.27) γ > ‖h‖1 +
‖α‖∞ + ‖β‖∞

∆
, where ∆ = min

i=1,2,...,m+1
(ti − ti−1).

Proof. Using the Mean Value Theorem, we can show that

(1.28) ‖u′‖∞ ≤ ‖h‖1 +
‖α‖∞ + ‖β‖∞

∆

holds for each u ∈ C1
D[0, T ] fulfilling α(t) < u(t) < β(t) for t ∈ [0, T ] and α(τ+) <

u(τ+) < β(τ+) for τ ∈ D . Thus, if we denote by c the right-hand side of (1.28),
we can follow the proof of [10, Corollary 3.5].

2. A priori estimates

In Section 3 we will need a priori estimates which are contained in Lemmas 2.1–2.3.

2.1. Lemma. Let ρ1 ∈ (0,∞), h̃ ∈ L[0, T ], Mi ∈ C(R), i = 1, 2, . . . , m. Then
there exists d ∈ (ρ1,∞) such that the estimate

(2.1) ‖u′‖∞ < d

is valid for each u ∈ AC1
D[0, T ] and each M̃i ∈ C(R), i = 1, 2, . . . , m, satisfying

(1.3),

|u′(ξu)| < ρ1 for some ξu ∈ [0, T ],(2.2)

u′(ti+) = M̃i(u
′(ti)), i = 1, 2, . . . , m,(2.3)

|u′′(t)| < h̃(t) for a.e. t ∈ [0, T ](2.4)

and

sup {|Mi(y)| : |y| < a} < b =⇒ sup {|M̃i(y)| : |y| < a} < b(2.5)

for i = 1, 2, . . . , m, a ∈ (0,∞), b ∈ (a,∞).

Proof. Suppose that u ∈ AC1
D[0, T ] and M̃i ∈ C(R), i = 1, 2, . . . , m, satisfy (1.3)

and (2.2)–(2.5). Due to (1.3), we can assume that ξu ∈ (0, T ], i.e. there is j ∈
{1, 2, . . . , m + 1} such that ξu ∈ (tj−1, tj]. We will distinguish 3 cases: either j = 1
or j = m + 1 or 1 < j < m + 1.

Let j = 1. Then, using (2.2) and (2.4), we obtain

(2.6) |u′(t)| < a1 on [0, t1],

where a1 = ρ1 + ‖h̃‖1. Since M1 ∈ C(R), we can find b1(a1) ∈ (a1,∞) such that
|M1(y)| < b1(a1) for all y ∈ (−a1, a1). Hence, in view of (2.3) and (2.5), we have
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|u′(t1+)| < b1(a1), wherefrom, using (2.4), we deduce that |u′(t)| < b1(a1) + ‖h̃‖1

for t ∈ (t1, t2]. Continuing by induction, we get bi(ai) ∈ (ai,∞) such that |u′(t)| <
ai+1 = bi(ai) + ‖h̃‖1 on (ti, ti+1] for i = 2, . . . , m, i.e.

(2.7) ‖u′‖∞ < d := max{ai : i = 1, 2, . . . , m + 1}.
Assume that j = m + 1. Then, using (2.2) and (2.4), we obtain

(2.8) |u′(t)| < am+1 on (tm, T ],

where am+1 = ρ1 + ‖h̃‖1. Furthermore, due to (1.3), we have |u′(0)| < am+1 which

together with (2.4) yields that (2.6) is true with a1 = am+1 +‖h̃‖1. Now, proceeding
as in the case j = 1, we show that (2.7) is true also in the case j = m + 1.

Assume that 1 < j < m+1. Then (2.2) and (2.4) yield |u′(t)| < aj+1 = ρ1+‖h̃‖1

on (tj, tj+1]. If j < m, then |u′(t)| < aj+2 = bj+1(aj+1)+‖h̃‖1 on (tj+1, tj+2], where

bj+1(aj+1) > aj+1. Proceeding by induction we get (2.8) with am+1 = bm(am)+‖h̃‖1

and bm(am) > am, wherefrom (2.7) again follows as in the previous case.

2.2. Lemma. Let ρ0, d, q ∈ (0,∞) and Ji ∈ C(R), i = 1, 2, . . . , m. Then there
exists c ∈ (ρ0,∞) such that the estimate

(2.9) ‖u‖∞ < c

is valid for each u ∈ C1
D[0, T ] and each J̃i ∈ C(R), i = 1, 2, . . . , m, satisfying (1.3),

(2.1),

u(ti+) = J̃i(u(ti)), i = 1, 2, . . . , m,(2.10)

|u(τu)| < ρ0 for some τu ∈ [0, T ](2.11)

and

sup {| Ji(x)| : |x| < a} < b =⇒ sup {|J̃i(x)| : |x| < a} < b(2.12)

for i = 1, 2, . . . , m, a ∈ (0,∞), b ∈ (a + q,∞).

Proof. We will argue similarly as in the proof of Lemma 2.1. Suppose that u ∈
C1

D[0, T ] satisfies (1.3), (2.1), (2.10), (2.11) and that J̃i ∈ C(R), i = 1, 2, . . . , m,
satisfy (2.12). Due to (1.3) we can assume that τu ∈ (0, T ], i.e. there is j ∈
{1, 2, . . . , m + 1} such that τu ∈ (tj−1, tj]. We will consider three cases: j = 1,
j = m + 1, 1 < j < m + 1. If j = 1, then (2.1) and (2.11) yield |u(t)| <
a1 = ρ0 + d T on [0, t1]. In particular, |u(t1)| < a1. Since J1 ∈ C(R), we can
find b1(a1) ∈ (a1 + q,∞) such that | J1(x)| < b1(a1) for all x ∈ (−a1, a1) and

consequently, by (2.12), also |J̃1(x)| < b1(a1) for all x ∈ (−a1, a1). Therefore, by

(2.1), |u(t)| < |u(t1+)| + d T = |J̃1(u(t1))| + d T < a2 = b1(a1) + d T on (t1, t2].
Proceeding by induction we get bi(ai) ∈ (ai + q,∞) such that |u(t)| < ai+1 =
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bi(ai) + d T for t ∈ (ti, ti+1] and i = 2, . . . , m. As a result, (2.9) is true with
c = max{ai : i = 1, 2, . . . , m + 1}. Analogously we would proceed in the remaining
cases j = m + 1 or 1 < j < m + 1.

Finally, we will need two estimates for functions u satisfying one of the following
conditions:

u(su) < σ1(su) and u(tu) > σ2(tu) for some su, tu ∈ [0, T ],(2.13)

u ≥ σ1 on [0, T ] and inf
t∈[0,T ]

|u(t)− σ1(t)| = 0,(2.14)

u ≤ σ2 on [0, T ] and inf
t∈[0,T ]

|u(t)− σ2(t)| = 0.(2.15)

2.3. Lemma. Assume that σ1, σ2 ∈ AC1
D[0, T ], Ji, Mi, J̃i, M̃i ∈ C(R), i =

1, 2, . . . ,m, satisfy (1.12), (1.13) and

{
x > σ1(ti) =⇒ J̃i(x) > J̃i(σ1(ti)) = Ji(σ1(ti)),

x < σ2(ti) =⇒ J̃i(x) < J̃i(σ2(ti)) = Ji(σ2(ti)), i = 1, 2, . . . , m
(2.16)

and {
y ≤ σ′1(ti) =⇒ M̃i(y) ≤ Mi(σ

′
1(ti)),

y ≥ σ′2(ti) =⇒ M̃i(y) ≥ Mi(σ
′
2(ti)), i = 1, 2, . . . , m.

(2.17)

Define

B = {u ∈ C1
D[0, T ] : u satisfies (1.3), (2.10), (2.3) and one(2.18)

of the conditions (2.13), (2.14), (2.15)}.

Then each function u ∈ B satisfies

(2.19)





|u′(ξu)| < ρ1 for some ξu ∈ [0, T ], where

ρ1 =
2

t1
(‖σ1‖∞ + ‖σ2‖∞) + ‖σ′1‖∞ + ‖σ′2‖∞ + 1.

Proof. This lemma can be proved by the same arguments as Lemma 2.3 in [11] with

the only difference that we write M̃i(u
′(ti)) in place of Mi(u

′(ti)) and that we use
(2.17) instead of (1.13).
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3. Main results

Our main result consists in a generalization of [11, Theorem 3.1]. Particularly,
we remove the condition (0.2) which was assumed in [11] and prove the following
theorem.

3.1. Theorem. Assume that (1.10)– (1.13) and (0.1) hold and let h ∈ L[0, T ] be
such that

(3.1) |f(t, x, y)| ≤ h(t) for a.e. t ∈ [0, T ] and all (x, y) ∈ R2.

Then the problem (1.1)– (1.3) has a solution u satisfying one of the conditions
(2.13)– (2.15).

Proof. • Step 1. We construct a proper auxiliary problem.

Let σ1 and σ2 be respectively lower and upper functions of (1.1)–(1.3) and let
ρ1 be associated with them as in (2.19). Put

h̃(t) = 2 h(t) + 1 for a.e. t ∈ [0, T ] and ρ̃ = ρ1 +
m∑

i=1

(|Mi(σ
′
1(ti))|+ |Mi(σ

′
2(ti))|

)
.

By Lemma 2.1, find d ∈ (ρ̃,∞) satisfying (2.1). Furthermore, put ρ0 = ‖σ1‖∞ +
‖σ2‖∞ + 1 and

(3.2) q =
T

m

m∑
i=1

max{ max
|y|≤d+1

|Mi(y)|, d + 1}

and, by Lemma 2.2, find c ∈ (ρ0 + q,∞) fulfilling (2.9). In particular, we have

(3.3) c > ‖σ1‖∞ + ‖σ2‖∞ + q + 1, d > ‖σ′1‖∞ + ‖σ′2‖∞ + 1.

Finally, for a.e. t ∈ [0, T ] and all x, y ∈ R and i = 1, 2, . . . , m, define functions

(3.4) f̃(t, x, y) =





f(t, x, y)− h(t)− 1 if x ≤ −c− 1,

f(t, x, y) + (x + c) (h(t) + 1) if − c− 1 < x < −c,

f(t, x, y) if − c ≤ x ≤ c,

f(t, x, y) + (x− c) (h(t) + 1) if c < x < c + 1,

f(t, x, y) + h(t) + 1 if x ≥ c + 1,
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J̃i(x) =





x + q if x ≤ −c− 1,

Ji(−c) (c + 1 + x)− (x + q) (x + c) if − c− 1 < x < −c,

Ji(x) if − c ≤ x ≤ c,

Ji(c) (c + 1− x) + (x− q) (x− c) if c < x < c + 1,

x− q if x ≥ c + 1,

(3.5)

M̃i(y) =





y if y ≤ −d− 1,

Mi(−d) (d + 1 + y)− y (y + d) if − d− 1 < y < −d,

Mi(y) if − d ≤ y ≤ d,

Mi(d) (d + 1− y) + y (y − d) if d < y < d + 1,

y if y ≥ d + 1

(3.6)

and consider the auxiliary problem

(3.7) u′′ = f̃(t, u, u′), (2.10), (2.3), (1.3).

Due to (1.10), f̃ ∈ Car([0, T ]×R) and J̃i, M̃i ∈ C(R) for i = 1, 2, . . . , m. According
to (3.3)–(3.6) the functions σ1 and σ2 are respectively lower and upper functions
of (3.7). By (3.1) we have

|f̃(t, x, y)| ≤ h̃(t) for a.e. t ∈ [0, T ] and all (x, y) ∈ R2(3.8)

and {
f̃(t, x, y) < 0 for a.e. t ∈ [0, T ] and all (x, y) ∈ (−∞,−c− 1]× R,

f̃(t, x, y) > 0 for a.e. t ∈ [0, T ] and all (x, y) ∈ [c + 1,∞)× R.
(3.9)

• Step 2. We show that J̃i and M̃i satisfy the assumptions of Lemmas 2.1− 2.3 .
Choose an arbitrary i ∈ {1, 2, . . . , m}.

(i) Condition (2.5). Let a ∈ (0,∞), b ∈ (a,∞) and M∗
i = sup{|Mi(y)| : |y| <

a} < b. Then, by (3.6), we have sup{|M̃i(y)| : |y| < a} ≤ max{a, M∗
i } < b.

(ii) Condition (2.12). Let a ∈ (0,∞), b ∈ (a+ q,∞) and J∗i = sup{| Ji(x)| : |x| <
a} < b. Then, by (3.5), we have sup{|J̃i(x)| : |x| < a} ≤ max{a + q, J∗i } < b.

(iii) Condition (2.16). Due to (1.12), (3.3) and (3.5), we see that (2.16) holds if
|x| ≤ c. Assume that x > c. Then x > max{σ1(ti), σ2(ti)} which means
that the second condtion in (2.16) need not be considered in this case. Since

|σ1(ti)| < c, we have J̃i(σ1(ti)) = Ji(σ1(ti)). Furthermore, due to (3.3), x−q >

‖σ1‖∞ + ‖σ2‖∞ + 1. If x ≥ c + 1, then J̃i(x) = x− q > σ1(ti+) = Ji(σ1(ti)).

Finally, if x ∈ (c, c+1), then J̃i(x) = Ji(c) (c+1−x)+(x−q) (x−c) > Ji(σ1(ti))
because Ji(c) > Ji(σ1(ti)) by (1.12). For x < (∞,−c) we can argue similarly.
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(iv) Condition (2.17). Due to (1.13), (3.3) and (3.6), we see that (2.17) holds for
|y| < d. Assume that y > d. Then y > max{σ′1(ti), σ′2(ti)} which means
that the first condition in (2.17) need not be considered in this case. Since

d > ρ̃ > Mi(σ
′
2(ti)), we have M̃i(y) = y > Mi(σ

′
2(ti)) if y > d + 1 and

M̃i(y) = Mi(d) (d + 1− y) + y (y− d) > Mi(σ
′
2(ti)) if y ∈ (d, d + 1). Hence the

second condition in (2.17) is satisfied for y ∈ (d,∞). Similarly we can verify
the first condition in (2.17) for y ∈ (−∞,−d).

• Step 3. We construct a well-ordered pair of lower/upper functions for (3.7) .
Put

A∗ = q +
m∑

i=1

max
|x|≤c+1

|J̃i(x)|(3.10)

and 



σ4(0) = A∗ + m q,

σ4(t) = A∗ + (m− i) q + m q
T

t for t ∈ (ti, ti+1], i = 0, 1, . . . ,m,

σ3(t) = −σ4(t) for t ∈ [0, T ].

(3.11)

Then σ3, σ4 ∈ AC1
D[0, T ] and, by (3.5) and (3.10),

(3.12) σ3(t) < −A∗ < −c− 1, σ4(t) > A∗ > c + 1 for t ∈ [0, T ].

In view of (3.2),

(3.13) σ′3(t) = −mq

T
≤ −(d + 1) and σ′4(t) =

mq

T
≥ d + 1 for t ∈ [0, T ].

Now, we prove that σ4 is an upper function of (3.7):

By (3.9) and (3.12), we have 0 = σ′′4(t) < f̃(t, σ4(t), σ
′
4(t)) for a.e. t ∈ [0, T ].

Furthermore, by (3.5),

σ4(ti+) = A∗ + (m− i) q +
mq

T
ti = σ4(ti)− q = J̃i(σ4(ti)).

By virtue of (3.2) and (3.6), we get

σ′4(ti+) =
mq

T
= σ′4(ti) = M̃i(σ

′
4(ti)) for i = 1, 2, . . . , m.

Finally, σ4(0) = A∗ + mq = σ4(T ) and σ′4(0) = m q
T

= σ′4(T ), i.e. σ4 is an upper
function of (3.7). Since σ3 = −σ4, we can see that σ3 is a lower function of (3.7).
Clearly,

(3.14) σ3 < σ4 on [0, T ] and σ3(τ+) < σ4(τ+) for τ ∈ D .
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Having G from (1.15), define an operator F̃ : C1
D[0, T ] 7→ C1

D[0, T ] by

(F̃u)(t) = u(0) + u′(0)− u′(T ) +

∫ T

0

G(t, s) f̃(s, u(s), u′(s)) ds(3.15)

−
m∑

i=1

∂G

∂s
(t, ti)(J̃i(u(ti))− u(ti))

+
m∑

i=1

G(t, ti)(M̃i(u
′(ti))− u′(ti)), t ∈ [0, T ].

By Proposition 1.6, F̃ is completely continuous and u is a solution of (3.7) whenever

F̃u = u.

• Step 4. We prove the first a priori estimate for solutions of (3.7).
Define

Ω0 = {u ∈ C1
D[0, T ] : ‖u′‖∞ < C∗, σ3 < u < σ4 on [0, T ],(3.16)

σ3(τ+) < u(τ+) < σ4(τ+) for τ ∈ D},
where

C∗ = 1 + ‖h̃‖1 +
‖σ3‖∞ + ‖σ4‖∞

∆
(3.17)

and ∆ is defined in (1.27). We are going to prove that for each solution u of (3.7)
the estimate

(3.18) u ∈ cl(Ω0) =⇒ u ∈ Ω0

is true. To this aim, suppose that u is a solution of (3.7) and u ∈ cl(Ω0), i.e.
‖u′‖∞ ≤ C∗ and

(3.19) σ3 ≤ u ≤ σ4 on [0, T ].

By the Mean Value Theorem, there are ξi ∈ (ti, ti+1), i = 1, 2, . . . , m, such that
|u′(ξi)| ≤ (‖σ3‖∞ + ‖σ4‖∞)/∆. Hence, by (3.8), we get

(3.20) ‖u′‖∞ < C∗,

where C∗ is defined in (3.17). It remains to show that σ3 < u < σ4 on [0, T ] and
σ3(τ+) < u(τ+) < σ4(τ+) for τ ∈ D . Assume the contrary. Then there exists
k ∈ {3, 4} such that

u(ξ) = σk(ξ) for some ξ ∈ [0, T ](3.21)

or

u(ti+) = σk(ti+) for some ti ∈ D .(3.22)

Case A. Let (3.21) hold for k = 4.
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(i) If ξ = 0, then u(0) = σ4(0) = σ4(T ) = u(T ) = A∗ + q m which gives, in view
of (1.3), (3.13) and (3.19),

u′(0) = u′(T ) =
mq

T
= σ′4(t) for t ∈ [0, T ].

Further, due to (3.9) and (3.12), we can find δ > 0 such that u > c + 1 on
[0, δ] and

u′(t)− u′(0) =

∫ t

0

f̃(s, u(s), u′(s)) ds > 0 for t ∈ [0, δ].

Hence u′(t) > u′(0) = σ′4(t) on (0, δ] which implies that u > σ4 on (0, δ],
contrary to (3.19).

(ii) If ξ ∈ (ti, ti+1) for some ti ∈ D, then u′(ξ) = σ′4(ξ) = m q
T

= σ′4(t) for
t ∈ [0, T ] and we reach a contradiction as above.

(iii) If ξ = ti ∈ D, then u(ti) = σ4(ti) and, by (3.5) and (3.12),

u(ti+) = σ4(ti+) = σ4(ti)− q > c + 1− q > ‖σ1‖∞ + ‖σ2‖∞.

By virtue of (3.19) we have u′(ti+) ≤ σ′4(ti+) and u′(ti) ≥ σ′4(ti). Now, since
the last inequality together with (3.6) and (3.13) yield u′(ti+) ≥ σ′4(ti+), we
get u′(ti+) = σ′4(ti+) = m q

T
= σ′4(t) for t ∈ [0, T ]. Similarly as above, this

leads again to a contradiction.

Case B. Let (3.22) hold for k = 4, i.e. u(ti+) = σ4(ti+). By (3.5) and (3.12),

J̃i(u(ti)) = σ4(ti+) = σ4(ti)− q > A∗− q, wherefrom, with respect to (3.10), we get

u(ti) > c + 1 and hence J̃i(u(ti)) = u(ti) − q. Therefore u(ti) = σ4(ti) and we can
continue as in Case A (iii).

If (3.21) or (3.22) hold for k = 3, then we use analogical arguments as in Case
A or Case B.

• Step 5. We prove the second a priori estimate for solutions of (3.7).
Define sets

Ω1 = {u ∈ Ω0 : u(t) > σ1(t) for t ∈ [0, T ], u(τ+) > σ1(τ+) for τ ∈ D},
Ω2 = {u ∈ Ω0 : u(t) < σ2(t) for t ∈ [0, T ], u(τ+) < σ2(τ+) for τ ∈ D}

and Ω̃ = Ω0 \ cl(Ω1 ∪ Ω2). Then, by (0.1), Ω1 ∩ Ω2 = ∅ and

(3.23) Ω̃ = {u ∈ Ω0 : u satisfies (2.13)}.
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Furthermore, with respect to (1.26), (3.16) and (3.11) we have Ω0 = Ω(σ3, σ4, C
∗),

Ω1 = Ω(σ1, σ4, C
∗) and Ω2 = Ω(σ3, σ2, C

∗).
Consider c from Step 1. We are going to prove that the estimates

(3.24) u ∈ cl(Ω̃) =⇒ ‖u‖∞ < c, ‖u′‖∞ < d

are valid for each solution u of (3.7). So, assume that u is a solution of (3.7) and

u ∈ cl(Ω̃). Then, due to (3.18), u fulfils one of the conditions (2.13), (2.14), (2.15)
and so, by (2.18), u ∈ B. Since we have already proved that (2.16) and (2.17)
hold, we can use Lemma 2.3 and get ξu ∈ [0, T ] such that (2.19) is true. Further,

since M̃i, i = 1, 2, . . . ,m, fulfil (2.5) and since (1.3), (2.3) and (3.8) are valid, we
can apply Lemma 2.1 to show that u satisfies the estimate (2.1). Finally, by [11,
Lemma 2.4], u satisfies (2.11) with ρ0 defined in Step 1. Moreover, let us recall

that J̃i, i = 1, 2, . . . , m, verify the condition (2.12). Hence, by Lemma 2.2, we have
(2.9), i.e. each solution u of (3.7) satisfies (3.24).

• Step 6. We prove the existence of a solution to the problem (1.1)– (1.3) .

Consider the operator F̃ defined by (3.15). We distinguish two cases: either F̃

has a fixed point in ∂Ω̃ or it has no fixed point in ∂Ω̃.
Assume that F̃ u = u for some u ∈ ∂Ω̃. Then u is a solution of (3.7) and, with

respect to (3.24), we have ‖u‖∞ < c, ‖u′‖∞ < d, which means, by (3.4)–(3.6), that
u is a solution of (1.1)–(1.3). Furthermore, due to (3.18), u satisfies (2.14) or (2.15).

Now, assume that F̃ u 6= u for all u ∈ ∂Ω̃. Then F̃u 6= u for all u ∈ ∂Ω0 ∪
∂Ω1 ∪ ∂Ω2. If we replace f, h, Ji, Mi, i = 1, 2, . . . , m, α, β and γ respectively
by f̃ , h̃, J̃i, M̃i, i = 1, 2, . . . , m, σ3, σ4 and C∗ in Proposition 1.7, we see that
the assumptions (1.22)–(1.25) and (1.27) are satisfied. Thus, by Proposition 1.7, we
obtain that

(3.25) deg(I− F̃, Ω(σ3, σ4, C
∗)) = deg(I− F̃, Ω0) = 1.

Similarly, we can apply Proposition 1.7 to show that

deg(I− F̃, Ω(σ1, σ4, C
∗)) = deg(I− F̃, Ω1) = 1(3.26)

and

deg(I− F̃, Ω(σ3, σ2, C
∗)) = deg(I− F̃, Ω2) = 1.(3.27)

Using the additivity property of the Leray-Schauder topological degree we derive
from (3.25)–(3.27) that

deg(I− F̃, Ω̃) = deg(I− F̃, Ω0)− deg(I− F̃, Ω1)− deg(I− F̃, Ω2) = −1.

Therefore, F̃ has a fixed point u ∈ Ω̃. By (3.24) we have ‖u‖∞ < c and ‖u′‖∞ < d.
This together with (3.4)–(3.6) and (3.23) yields that u is a solution to (1.1)–(1.3)
fulfilling (2.13).
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