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where �1 < a < b < 1; f : [a; b] � R2 7! R is a Carathéodory function andw : R 7! R is continuous and nondecreasing. Using this connection, we haveobtained a method providing an information about the solvability of (0.1) in termsof lower and upper functions. (See [8, Theorems 4.1-4.3].)In this paper we study the special case of (0.1)u00 = f(t; u); u(0) = u(1); u0(0) = u0(1):(0.2)We assume that f ful�ls the Carathéodory conditions on [0; 1]�R ; which meansthat (i) for each x 2 R the function f(:; x) is measurable on [0; 1]; (ii) for almostevery t 2 [0; 1] the function f(t; :) is continuous on R ; (iii) for each compact setK� R the function mK(t) = supx2K jf(t; x)j is Lebesgue integrable on [0; 1]:The problem (0.2) was considered by M. N. Nkashama and J. Santanilla in [6],where a.o. the following three results concerning the existence of nonnegative andnonpositive solutions to the problem (0.2) were established:0.1. Theorem ([6, Theorem 2.5]). Supposelim infx!1 f(t; x) � 0 for a.e. t 2 [0; 1](0.3)with strict inequality on a subset of [0; 1] of positive Lebesgue measure. Furthermore,assume that there exist �+ 2 (0;1) and a function b 2 L [0; 1] such thatb(t) � f(t; x) � �+x for a.e. t 2 [0; 1] and all x � 0:(0.4)Then the problem (0.2) has a nonnegative solution.0.2. Theorem ([6, p. 159]). If inequalities (0.3) and (0.4) are replaced respectivelyby lim infx!�1 f(t; x) � 0 for a.e. t 2 [0; 1](0.5)with strict inequality on a subset of [0; 1] of positive Lebesgue measure andb(t) � f(t; x) � ��2�x for a.e. t 2 [0; 1] and all x � 0(0.6)with �� 2 (0; �]; then the problem (0.2) has a nonpositive solution.0.3. Theorem ([6, Theorem 2.7]) . Suppose that the problem (0.2) has not the trivialsolution and that all assumptions of both Theorem 0.1 and Theorem 0.2 are ful�lled.Then the problem (0.2) has at least two di�erent solutions, one nonnegative and onenonpositive.In Section 2 of this paper, making use of the method of [8], we prove in Theorems2.1, 2.5 and Corollaries 2.9 and 2.10 the existence of nonnegative and nonpositive2



solutions for (0.2) under assumptions weaker than (0.3)-(0.6). In particular, in The-orem 2.1 we use (2.1), (2.2) instead of (0.3), (0.4) and similarly in Corollary 2.9 weuse (2.31), (2.32) instead of (0.5), (0.6). Moreover, Theorem 2.1 and Corollaries 2.7and 2.8 generalize the assertions of [9, Theorem 2.1 and Theorem 2.3]. A comparisonof the conditions used in our existence results with those from Theorems 0.1-0.3 isgiven in Theorems 2.13 and 2.14 (see also Examples 2.4 and 2.12).The results presented in Section 2 can be applied also to periodic boundary valueproblems for nonlinear Du�ng equations of the form (3.1) or (3.2) whose right-handsides have a singularity at x = 0: Starting from the work [4] by Lazer and Soliminisuch problems have been studied by many authors (see e.g. [1], [2], [3], [5], [7] and[11]). Section 3 is devoted to this type of problems. First, we consider the case ofan attractive singularity and in Corollaries 3.1 and 3.3 we extend results from [4]and [5]. Furthermore, we also get one related multiplicity result (Corollary 3.5).Our main result concerning a problem with a repulsive singularity is obtained inCorollary 3.7. Its goal consists, in contrast to the papers mentioned above, in thatour results apply also to a weak singularity. The results of Section 3 are tested onperiodic problems for the model equationsu00 + au� � bu = e(t) and u00 � au� + bu = e(t)with a > 0; � > 0; b 2 R and e 2 L [0; 1] (see Examples 3.4, 3.6, 3.9 and 3.11). Inparticular, it turns out that in the case of repulsive restoring forces our Corollary 3.7covers also the resonance case b = �2 and so it gives the answer to an open questionfrom [1, Example 3.9].1 . PreliminariesThroughout the paper we keep the following notation:As usual, C [0; 1] and C (0;1) are respectively the sets of functions continuous on[0; 1] and (0;1); L [0; 1] stands for the set of functions Lebesgue integrable on [0; 1];L1 [0; 1] is the set of functions essentially bounded on [0; 1]; A C [0; 1] denotes theset of functions absolutely continuous on [0; 1] and BV [0; 1] is the set of functions ofbounded variation on [0; 1]: Furthermore, for x 2 C [0; 1] and y 2 L [0; 1]; we denotekxkC = supt2[0;1] jx(t)j; y = Z 10 y(s)ds and kykL = Z 10 jy(t)jdt:Finally, for a given y 2 L [0; 1]; y+ denotes its nonnegative part (y+(t) = maxfy(t); 0gfor a.e. t 2 [0; 1]) and y� stands for its nonpositive part (y�(t) = maxfy(t); 0g fora.e. t 2 [0; 1]). 3



By a solution of the problem (0.2) we understand a function u : [0; 1] 7! R suchthat u0 2 A C [0; 1]; u00(t) = f(t; u(t)) a.e. on [0; 1]; u(0) = u(1) and u0(0) = u0(1):We will use the de�nitions of lower and upper functions from [8] modi�ed to theproblem (0.2).1.1. De�nition. Functions (�1; �1) 2 A C [0; 1]�BV [0; 1] are called lower functionsof the problem (0.2) if the singular part �sing1 of �1 is nondecreasing on [0; 1];�01(t) = �1(t); �01(t) � f(t; �1(t)) a.e. on t 2 [0; 1]and �1(0) = �1(1); �1(0+) � �1(1�):Similarly, functions (�2; �2) 2 A C [0; 1] � BV [0; 1] are called upper functions ofthe problem (0.2) if the singular part �sing2 of �2 is nonincreasing on [0; 1];�02(t) = �2(t); �02(t) � f(t; �2(t)) a.e. on t 2 [0; 1]and �2(0) = �2(1); �2(0+) � �2(1�):Let us formulate the existence theorem which is our main tool in this paper andwhich is contained in [8, Theorems 4.1 and 4.2].1.2. Theorem. Let (�1; �1) and (�2; �2) be respectively lower and upper functionsof the problem (0.2).(I) Suppose �1(t) � �2(t) on [0; 1]: Then there is a solution u of the problem (0.2)such that �1(t) � u(t) � �2(t) on [0; 1]:(II) Suppose �1(t) � �2(t) on [0; 1] andf(t; x) � h(t) for a.e. t 2 [0; 1] and all x 2 Ror f(t; x) � h(t) for a.e. t 2 [0; 1] and all x 2 Rwith h 2 L [0; 1]: Then there is a solution u of the problem (0.2) such that�2(tu) � u(tu) � �1(tu) for some tu 2 [0; 1]:We will need the following two lemmas giving apriori estimates for solutions of(0.2). The proof of the former would be quite analogous to that of [8, Lemma 1.1].4



1.3. Lemma. Let a function h 2 L [0; 1] and sets U (t) � R ; t 2 [0; 1]; be such thatf(t; x) � h(t) for a.e. t 2 [0; 1] and all x 2 U (t)or f(t; x) � h(t) for a.e. t 2 [0; 1] and all x 2 U (t):Then ku0kC � khkL holds for any solution u of the problem (0.2) such that u(t) 2U (t) for all t 2 [0; 1]:1.4. Lemma. Let a function � 2 L [0; 1] and a number A 2 (0;1) be such that� = 0 and f(t; x) � �(t) for a.e. t 2 [0; 1] and all x 2 [A;1):(1.1)Then the relation u(t)� A � k�kL4 on [0; 1](1.2)holds for any solution u of the problem (0.2) satisfyingu(tu) < A for some tu 2 [0; 1]:(1.3)1.5. Remark. Notice that for any � 2 L [0; 1] such that � = 0 we have �+ = ��and thus k�kL = 2�+ = 2��:Proof of Lemma 1.4. We borrow some ideas from [9, Lemma 2.1]. Let u bea solution of the problem (0.2) and let (1.1) be valid. First, we shall show that itsderivative satis�es the estimateju0(t)j � k�kL2 on [0; 1]:(1.4)Let t 2 [0; 1] be such that u(t) > A and u0(t) > 0: Then, in virtue of the periodicityof u and u0; there is t1 2 [0; 1] such that u0(t1) = 0 and u(t) � A on I1; whereI1 = ( [t; 1] [ [0; t1] if t1 < t;[t; t1] if t1 � t:In both cases, making use of (1.1) we getu0(t) = � ZI1 f(s; u(s))ds � ZI1 ��(s)ds � k�kL2(1.5) 5



(cf. Remark 1.5). Similarly, if u0(t) < 0; there is t2 2 [0; 1] such that u0(t2) = 0 andu(t) � A on I2; where I2 = ( [t2; t] if t2 � t;[0; t] [ [t2; 1] if t2 > t:Consequently, using again (1.1) and Remark 1.5 we getu0(t) = ZI1 f(s; u(s))ds � � ZI1 ��(s)ds � �k�kL2 ;wherefrom, with respect to (1.5), the validity of (1.4) follows.Now, assume that u satis�es, in addition, (1.3) and that u(t) > A holds forsome t 2 [0; 1]: We can choose s1; s2; s� 2 [0; 1] in such a way thats1 < s2; u(s1) = u(s2) = A and u(s�) = maxt2[0;1] u(t) > A:Consequently, (1.4) yields2 (u(s�)� A) = �u(s�)� u(s1)�+ �u(s�)� u(s2)�+ �u(1)� u(0)�� ZI ju0(s)jds � k�kL2 ;where I = [s1; s2] if s� 2 (s1; s2) and I = [0; 1] n [s1; s2] if s� > s2 or s� < s1: Thiscompletes the proof of (1.2).2 . Nonnegative and nonpositive solutions2.1. Theorem. Suppose that there exist r1 2 R ; A1 2 [r1;1) and �1 2 L [0; 1] suchthat f(t; r1) � 0 for a.e. t 2 [0; 1](2.1)and �1 � 0 and f(t; x) � �1(t) for a.e. t 2 [0; 1] and all x 2 [A1; B1];(2.2)where B1 � A1 � k�1 � �1kL4 :Then the problem (0.2) has a solution u satisfyingr1 � u(t) � B1 on [0; 1]:(2.3) 6



Proof. (i) First, assume �1 > 0:(2.4)For a.e. t 2 [0; 1] let us putef(t; x) = ( f(t; x) if x � B1;f(t; B1) if x > B1;(2.5)and consider the auxiliary problemu00 = ef(t; u); u(0) = u(1); u0(0) = u0(1):(2.6)In view of (2.1) the constants (r1; 0) are lower functions of (2.6). If we put�2(t) = A1 + 2k�1kL � t Z 10 Z �0 �1(s)ds d� + Z t0 Z �0 �1(s)ds d� for t 2 [0; 1];then �002(t) = �1(t) a.e. on [0; 1]; �2(0) = �2(1) and �02(1)� �02(0) = �1:Since A1 � �2(t) on [0; 1]; we get by (2.2) and (2.5) that �002(t) � ef(t; �2(t)) a.e.on [0; 1]; which means that (�2; �02) are upper functions to (2.6) and the asser-tion (I) of Theorem 1.2 yields the existence of a solution u of (2.6) for which theestimate r1 � u(t) � �2(t) on [0; 1]is true. According to (2.4) there exists t0 2 [0; 1] such that u(t0) < A1: Indeed,otherwise we would get a contradiction0 = Z 10 u00(t)dt � �1 > 0:Since ef(t; x) > ef(t; x)� �1 � �1(t)� �1 for a.e. t 2 [0; 1] and all x � A1;we see that ef ful�ls (1.1) with � = �1 � �1 and A = A1 and so we can applyLemma 1.4 to u and the problem (2.6) and getu(t)� A1 � k�1 � �1kL4 � B1 � A1 on [0; 1]:7



Therefore u satis�es (2.3) and it is a solution of (0.2), as well.(ii) Now, let �1 = 0: Consider the sequence of auxiliary problemsu00 = efn(t; u); u(0) = u(1); u0(0) = u0(1);(2.7)where efn(t; x) = 8>>>>><>>>>>: f(t; x) if x < A1;f(t; x) +1n� x� A1x� A1 + 1� if x 2 [A1; B1];f(t; B1)+1n� B1 � A1B1 � A1 + 1� if x > B1:For n 2 N we haveefn(t; x) � �1(t) + 12n2 for a.e. t 2 [0; 1] and all x 2 [A1 + 1n;1):Now, the �rst part of the proof guarantees for each n 2 N the existence of a solutionun of (2.7) which satis�esr1 � un(t) � B1 + 1n on [0; 1]:(2.8)According to (2.8), the Arzelá-Ascoli Theorem and the Lebesgue Dominated Con-vergence Theorem, the sequence fung1n=1 contains a subsequence C 1 -converging toa solution u of the problem (2.6). Since u ful�ls (2.3), it is a solution of (0.2).2.2. Remark. In Theorem 2.1 it is su�cient to suppose that f satis�es the Cara-théodory conditions on [0; 1] � [r1;1) instead of on [0; 1] � R ; because we canreplace f by its truncationbf(t; x) = ( f(t; r1) for x < r1;f(t; x) for x � r1in the proof.2.3. Remark. Notice that in the case that �1(t) = 0 a.e. on [0; 1] we can putB1 = A1 and (2.2) reduces to the condition ensuring the existence of constant upperfunctions (A1; 0): 8



2.4. Example. With respect to Remark 2.2, Theorem 2.1 yields the existence ofa nonnegative solution u to the problemu00 = uu+ 1 sin(32�t) + e(t); u(0) = u(1); u0(0) = u0(1)(2.9)for any e 2 L [0; 1] such thate(t) � 0 a.e. on [0; 1] and e > � 23� :Notice that the right hand side of the di�erential equation in (2.9) does not satisfythe condition (0.3) of Theorem 0.1. On the other hand, the problemu00 = a t uk + e(t); u(0) = u(1); u0(0) = u0(1)(2.10)with e(t) � 0 a.e. on [0; 1] and a; k 2 (0;1) provides an example when the assump-tions of Theorem 2.1 are ful�lled, while for k > 1 the condition (0.4) of Theorem0.1 fails to be satis�ed.In addition to the existence results, Theorem 2.1 enables us to get an estimatefor the guaranteed solution. Indeed, in the case of (2.9) we have�e�1 + e� � u(t) � �2� 3�e2 + 3�e + 2� 3�e6� � on [0; 1];where e� = sup esst2[0;1] e(t):In particular, for e(t) � � 13� we get0:118 < 13� � 1 � u(t) � 3 + 12 � < 3:16 on [0; 1]:Similarly, a solution u of (2.10) can be estimated as follows:kr�e�a � u(t) � kr�2ea � e2 on [0; 1]:If we put a = 1; k = 2 and e(t) = � 12t ; we get0:71 < 1p2 � u(t) � p2 + 12 < 1:92 on [0; 1]:(2.11) 9



2.5. Theorem. Suppose that there exist r2 2 R ; A2 2 [r2;1) and �2 2 L [0; 1] suchthat �2 � 0 and f(t; x) � �2(t) for a.e. t 2 [0; 1] and all x 2 [A2; B2](2.12)and f(t; x) � ��2(x� r2) for a.e. t 2 [0; 1] and all x 2 [r2; B2];(2.13)where B2 � A2 � 12 m+2(2.14)and m2(t) � maxf supx2[r2;A2] f(t; x); �2(t)g for a.e. t 2 [0; 1]:(2.15)Then the problem (0.2) has a solution u satisfyingr2 � u(t) � B2 on [0; 1]:(2.16)Proof. First suppose �2 < 0:(2.17)For a.e. t 2 [0; 1] putef(t; x) = 8><>: f(t; r2)� �2(x� r2) if x < r2;f(t; x) if r2 � x � B2;f(t; B2) if x > B2;(2.18)and consider the auxiliary problemu00 = ef(t; u); u(0) = u(1); u0(0) = u0(1):(2.19)We can see thatef(t; x) � ��2B2 for a.e. t 2 [0; 1] and all x 2 R :Furthermore, the assumption (2.13) implies that ef(t; r2) � 0; and (2.12) yieldsef(t; x) � �2(t) for a.e. t 2 [0; 1] and all x 2 [A2;1):(2.20)Thus, if we put�1(t) = A2 + 2k�2kL � t Z 10 Z �0 �2(s)ds d� + Z t0 Z �0 �2(s)ds d�10



for t 2 [0; 1]; we obtain similarly as in the proof of Theorem 2.1 that the couples(r2; 0) and (�1; �01) are respectively upper and lower functions to (2.19) and r2 < �1(t)holds on [0; 1]: By the assertion (II) of Theorem 1.2 with h(t) � ��2B2; there existsa solution u of (2.19). We shall show that u satis�es (2.16).In virtue of (2.13) and (2.18) we haveef(t; x) + �2(x� r2) � 0 for a.e. t 2 [0; 1] and all x 2 R :(2.21)We can check that if we putg(t; s) = 8>><>>: sin(�(s� t))2� for 0 � t � s � 1;sin(�(t� s))2� for 0 � s � t � 1;then g is the Green function of the problemy00 + �2y = 0; y(0) = y(1); y0(0) = y0(1)and g(t; s) � 0 on [0; 1]� [0; 1]: Furthermore, the function z(t) = u(t)� r2 ful�lsthe relations z00(t) + �2z(t) = ef(t; u(t)) + �2(u(t)� r2)a.e. on [0; 1]; z(0) = z(1); z0(0) = z0(1)and so, according to (2.21), we havez(t) = Z 10 g(t; s)� ef(s; u(s)) + �2(u(s)� r2)�ds � 0 on [0; 1];i.e. u(t) � r2 on [0; 1]:(2.22)Now, assume u(t) � A2 on [0; 1]: Then, by (2.20), u00(t) � �2(t) for a.e. t 2 [0; 1]and thus, according to (2.17), we get0 = Z 10 u00(t)dt � �2 < 0;a contradiction. It means that there is t0 2 [0; 1] such thatu(t0) < A2:(2.23) 11



According to (2.15) and (2.18) we haveef(t; x) � m2(t) � m+2 (t) for a.e. t 2 [0; 1] and all x 2 [r2;1):Since (2.22) holds, we can apply Lemma 1.3 with h = m+2 and U (t) � [r2;1) tothe problem (2.19) and obtainku0kC � km+2 kL = m+2 :(2.24)Owing to (2.23) we can argue similarly as in the proof of Lemma 1.4. Assume thatu(t) > A2 holds for some t 2 [0; 1] and choose s1; s2; s� 2 [0; 1] in such a way thats1 < s2; u(s1) = u(s2) = A2 and u(s�) = maxt2[0;1] u(t) > A2:Using (2.24) and (2.14) we getu(s�)� A2 � 12 m+2 � B2 � A2;i.e. u ful�ls (2.16), which also means that u solves (0.2).If �2 = 0; we can follow the second part of the proof of Theorem 2.1 withefn(t; x) = 8>>>>><>>>>>: f(t; r2) if x < r2;f(t; x) if x 2 [r2; A2);f(t; x)� x�A2n(x�A2+1) if x 2 [A2; B2];f(t; B2)� B2�A2n(B2�A2+1) if x > B2:2.6. Remark. Theorem 2.5 applies also to the case �2(t) = 0 a.e. on [0; 1]: How-ever, then the interval [A2; B2] need not reduce to the degenerate one (cf. (2.14)and (2.15)). Nevertheless, by a slight modi�cation of the proof of Theorem 2.5 weobtain the following two existence results which extend [9, Theorem 2.3].2.7. Corollary. Suppose that there exist r2 2 R ; A2 2 [r2;1) and m2 2 L [0; 1]such that f(t; A2) � 0 for a.e. t 2 [0; 1];(2.25) f(t; x) � m2(t) for a.e. t 2 [0; 1] and all x 2 [r2; B2](2.26)and (2.13) are satis�ed, where B2 is such that (2.14) is true. Then the problem (0.2)has a solution u ful�lling (2.16). 12



Proof. We can use the arguments as in the �rst part of the proof of Theorem 2.5with the only di�erence that now �1(t) � A2 on [0; 1]: Moreover, since the assertion(II) of Theorem 1.2 guarantees the existence of a solution u of (2.19) withr2 � u(t0) � A2 for some t0 2 [0; 1];(2.27)we need neither assume (2.17) nor derive (2.23).2.8. Corollary. Suppose that there exist r2 2 R ; A2 2 [r2;1) and k 2 [0; 2) suchthat (2.25) andf(t; x) � �k (x� r2) for a.e. t 2 [0; 1] and all x 2 [r2; B2](2.28)are valid, where B2 � A2 22� k � r2 k2� k :(2.29)Then the problem (0.2) has a solution u ful�lling (2.16).Proof. In the same way as in the proofs of Theorem 2.5 and Corollary 2.7 we geta solution u of (2.19) satisfying (2.22) and (2.27). According to (2.18) and (2.28)we have u00(t) = ef(t; u(t)) � �k (u(t)� r2) for a.e. t 2 [0; 1]:Furthermore, Lemma 1.3 with h(t) = �k (u(t)� r2); U (t) � [r2;1) givesku0kC � k (u� r2):Since in virtue of (2.22) and (2.27) we have alsou � Z 10 �u(t0) + �� Z st0 ju0(�)jd� ���ds � A2 + 12 ku0kC ;the relation ku0kC � 2 k2� k (A2 � r2)(2.30)immediately follows. Thus, similarly as we deduced in the �rst part of the proof ofTheorem 2.5 from (2.14) and (2.24) the validity of (2.16), we can now show thatalso (2.29) and (2.30) imply (2.16).Replacing x by �x in Theorem 2.5 we get the dual assertion:13



2.9. Corollary. Suppose that there exist r2 2 R ; A2 2 [r2;1) and �2 2 L [0; 1]such that�2 � 0 and f(t; x) � �2(t) for a.e. t 2 [0; 1] and all x 2 [�B2;�A2](2.31)and f(t; x) � ��2(x + r2) for a.e. t 2 [0; 1] and all x 2 [�B2;�r2];(2.32)where B2 � A2 � 12 m�2and m2(t) = minf infx2[�A2;�r2] f(t; x); �2(t)g for a.e. t 2 [0; 1]:Then the problem (0.2) possesses a solution u such that�B2 � u(t) � �r2 on [0; 1]:Combining Theorem 2.1 and Corollary 2.9 we immediately obtain2.10. Corollary. Suppose that all assumptions of both Theorem 2.1 and Corollary2.9 with r1 � 0 and r2 � 0 are ful�lled and that either (0.2) has not the trivialsolution or r1 + r2 > 0: Then the problem (0.2) has at least two di�erent solutions,one of them nonnegative and one nonpositive.2.11. Remark. Dual assertions to Theorem 2.1 and Corollary 2.10 can be obtainedby substituting �x instead of x; as well.In Theorem 2.5 it su�ces to suppose that f ful�ls the Carathéodory conditionson [0; 1]� [r2;1) instead of on [0; 1]� R : A similar restriction of the Carathéodoryconditions for f can be assumed in all the other existence theorems in this sectionand their dual versions.2.12. Example. In Example 2.4 we have shown that the problemu00 = tu2 � 12pt ; u(0) = u(1); u0(0) = u0(1)(2.33)has a solution u which satis�es (2.11). Further, we can check that all assumptionsof Corollary 2.9 are ful�lled. We can put r2 = 1p2 and A2 = p2: Then Corollary 2.9implies the existence of a solution v of (2.33) with an estimate�1:79 < �p2� 38 � v(t) � � 1p2 < �0:71 on [0; 1]:On the other hand, we cannot get the existence of u and v from Theorem 0.3because the right hand side of (2.33) ful�ls neither (0.4) nor (0.6).14



We will close this section by showing that Theorems 0.1-0.3 due to M. N. Nka-shama and J. Santanilla are contained in our Theorem 2.1 and Corollaries 2.9 and2.10, respectively.Let � denote the Lebesgue measure.2.13. Theorem. Supposelim infx!1 f(t; x) � 0 for a.e. t 2 [0; 1];(2.34) �(ft 2 [0; 1] : lim infx!1 f(t; x) > 0g) > 0(2.35)and b(t) � f(t; x) for a.e. t 2 [0; 1] and all x 2 [0;1)(2.36)with some b 2 L [0; 1]:Then there exist A1 2 (0;1) and �1 2 L [0; 1] such that�1 > 0 and f(t; x) � �1(t) for a.e. t 2 [0; 1] and all x 2 [A1;1):2.14. Theorem. Supposelim infx!�1 f(t; x) � 0 for a.e. t 2 [0; 1];�(ft 2 [0; 1] : lim infx!�1 f(t; x) > 0g) > 0and b(t) � f(t; x) for a.e. t 2 [0; 1] and all x 2 (�1; 0]with some b 2 L [0; 1]:Then there exist A2 2 (0;1) and �2 2 L [0; 1] such that�2 > 0 and f(t; x) � �2(t) for a.e. t 2 [0; 1] and all x 2 (�1;�A2]:Because of the duality of these theorems we restrict ourselves to the proof ofTheorem 2.13.Proof of Theorem 2.13. Due to (2.35), there exists " > 0 such that�" = �(Q") > 0;where Q" = ft 2 [0; 1] : lim infx!1 f(t; x) > "g:For n 2 N and a.e. t 2 [0; 1] we can de�ne(t; n) = infx�n f(t; x)(2.37)and 15



Dn = ft 2 [0; 1] : (t; n) > "g:We have Dn � Dn+1 for all n 2 N and Q" � 1[n=1Dn:Furthermore, there exists n1 2 N such that�(Dn) > �"2 for all n � n1:(2.38)Choose m2 2 N and � > 0 in such a way thatsupJ�[0;1];�(J)<� ��� ZJ b(s)ds��� + 1m2 < �" "2(2.39)and for m;n 2 N denoteSn;m = ft 2 [0; 1] : (t; n) � � 1mg:Then Sn;m � Sn+1;m for all n;m 2 N :(2.40)Due to (2.34), for every m 2 N we have��[0; 1] n 1[n=1Sn;m� = 0:(2.41)Further, according to (2.40) and (2.41), for a chosen m2 there is n2 2 N such thatn2 � n1 and �(Sn2;m2) > �([0; 1])� � = 1� �:(2.42)Put A1 = n2 and �1(t) = 8><>: " if t 2 Dn2;� 1m2 if t 2 Sn2;m2 nDn2 ;b(t) if t 2 [0; 1] n Sn2;m2 :Now, from (2.38), (2.39) and (2.42) we conclude that�1 = ZDn2 "dt� ZSn2;m2nDn2 1m2 dt+ Z[0;1]nSn2;m2 b(t) dt� �""2 � 1m2 � ����� Z[0;1]nSn2;m2 b(t) dt����� > 0:16



Finally, according to (2.37) we havef(t; x) � �1(t) for a.e. t 2 [0; 1] and all x 2 [A1;1)and this completes the proof of the theorem.2.15. Remark. The assertion of Theorem 2.13 remains valid also in the case that� is not necessarily the Lebesgue measure, but it can be an arbitrary nonnegativemeasure on [0; 1]:If the function f(t; x) is only supposed to be ���-measurable on [0; 1]�R ; where� is a nonnegative measure on [0; 1] and � is the Lebesgue measure, the functions(t; n) and lim infx!1 f(t; x)need not be measurable. In this case we should replace the assumption (2.35) by�out(ft 2 [0; 1] : lim infx!1 f(t; x) > 0g) > 0;(2.43)where �out stands for the outer measure corresponding to �: Theorem 2.13 can bethen reformulated in the following assertion. Its proof would be analogous to thatof Theorem 2.13. Only in the de�nition of (t; n) the essential in�mum should beused instead of in�mum.2.16. Proposition. Suppose (2.34), (2.36), (2.43) and the ���-measurability of fon [0; 1]�R ; where � is a nonnegative measure and � is the Lebesgue measure. Thenthe statement of Theorem 2.13 remains valid, with the exception that the inequalityf(t; x) � �1(t) is valid for a.e. (t; x) 2 [0; 1]� [0;1) only.3 . Applications to Lazer-Solimini singular prob-lemsIn this section we want to extend the results of Lazer and Solimini [4] concerningthe existence of solutions to singular periodic boundary value problemsu00 + g(u) = e(t); u(0) = u(1); u0(0) = u0(1)(3.1)and u00 � g(u) = e(t); u(0) = u(1); u0(0) = u0(1):(3.2) 17



Under the hypotheses g 2 C (0;1);g(x) > 0 on (0;1);(3.3) g(0+) := limx!0+ g(x) =1(3.4)and g(1) := limx!1 g(x) = 0;(3.5)Lazer and Solimini proved in [4, Theorem 2.1] that the problem (3.1) has a positivesolution for a given e 2 C [0; 1] if and only if it satis�es the condition e > 0:Having in mind Remarks 2.2 and 2.11, we can apply all existence theorems fromSection 2 to the problems (3.1) and (3.2) provided r1 and r2 are strictly positive.First, as direct consequences of Theorem 2.1, we get the following two corollarieswhich contain the above result from [4].3.1. Corollary. Suppose that g 2 C (0;1) and e 2 L [0; 1] are such thatg(1) <1;(3.6) g(x) > g(1) for all x > 0(3.7)and there exists r1 2 (0;1) such that e(t) � g(r1) for a.e. t 2 [0; 1]:(3.8)Then the condition e > g(1) is necessary and su�cient for the existence ofa positive solution to (3.1).Proof. First, suppose e > g(1) and for a.e. t 2 [0; 1] and any x 2 R putf(t; x) = e(t)�( g(x) if x � r1;g(r1) if x < r1:Then, in virtue of (3.8), f satis�es the assumption (2.1) of Theorem 2.1. Further-more, according to (3.6), there is A1 � r1 such that (2.2) with �1(t) = e(t) � e isalso satis�ed. By Theorem 2.1 this proves the existence of the desired solution.On the other hand, if u is a positive solution to (3.1), then integrating thedi�erential equation in (3.1) and making use of (3.7), we gete = Z 10 g(u(s))ds > g(1):3.2. Remark. In particular, if g(1) = �1; then the problem (3.1) has a solutionfor any e 2 L [0; 1] for which (3.8) is true.18



3.3. Corollary. Suppose that g 2 C (0;1) and e 2 L [0; 1] satisfy (3.8) ande� lim supx!1 g(x) > 0:Then the problem (3.1) has a positive solution.Proof follows the �rst part of the proof of Corollary 3.1.3.4. Example. Consider the problemu00 + au� � bu = e(t); u(0) = u(1); u0(0) = u0(1)(3.9)with a > 0; � > 0 and b � 0: By Corollary 3.3, if b > 0; then the problem (3.9) hasa positive solution for any e 2 L [0; 1] such thate� = sup esst2[0;1] e(t) <1;while in the case b = 0; the additional assumption e > 0 is needed. Notice thatif b = 0; then the condition e > 0 is also necessary for the existence of a positivesolution to (3.9).Furthermore, as in Examples 2.4 and 2.12, using Theorem 2.1 we can deriveestimates for the guaranteed positive solution u of (3.9). In particular, in the caseb = 0 we get � ae�� 1� � u(t) � �ae� 1� + ke� ekL4 on [0; 1]:The following immediate consequence of Theorem 1.2 enables us to consider theproblem (3.9) also when b < 0:3.5. Corollary. Suppose that there exist positive numbers r1 < r2 < r3 < r4 anda function h 2 L [0; 1] such that f ful�ls the Carathéodory conditions on [0; 1] �[r1;1) and f(t; r1) < 0 and f(t; r4) � 0 for a.e. t 2 [0; 1];(3.10) f(t; r2) � 0 and f(t; r3) � 0 for a.e. t 2 [0; 1](3.11)and f(t; x) � h(t) for a.e. t 2 [0; 1] and all x 2 [r1;1):Then the problem (0.2) has at least two positive solutions u and v satisfyingr1 � u(t) � r2 on [0; 1] and r3 � v(tv) � r4 for some tv 2 [0; 1]:(3.12) 19



Proof. Let us denote ef(t; x) = ( f(t; r1) for x < r1;f(t; x) for x � r1:Then Theorem 1.2 implies the existence of solutions u and v of the problemu00 = ef(t; u); u(0) = u(1); u0(0) = u0(1)(3.13)satisfying (3.12). Let mint2[0;1] v(t) = v(t0) < r1: In view of the periodic conditionsin (3.13), we can suppose t0 2 [0; 1) and v0(t0) = 0: There exists t1 2 (t0; 1) suchthat v0(t1) � 0 and v(t) � r1 for all t 2 [t0; t1]: Then, by (3.10),0 > f(t; r1)(t1 � t0) = Z t1t0 ef(t; v(t))dt = v0(t1)� v0(t0) � 0;a contradiction. Thus r1 � u(t) and r1 � v(t) on [0; 1] and u; v are positive solutionsto (0.2).3.6. Example. Assume that � > 0; a > 0; b < 0 and e 2 L1 [0; 1] and denoteK = minx>0 � ax� � bx� and e� = inf esst2[0;1] e(t):(3.14)Then K = � jbj�a� ��+1 (�+ 1) aand by Corollary 3.5, the problem (3.9) has at least two di�erent positive solutionsprovided the condition e� > K holds.If e� = K; we get at least one positive solution for (3.9). Let us note that ife� = sup esst2[0;1] e(t) < K; then the problem (3.9) has no positive solution becausein such a case we havee(t)� ax� + bx < 0 for a.e. t 2 [0; 1] and all x > 0:Theorem 6.1 and Corollary 6.1 of [5], which concern the case of continuous eand involve the stronger condition (3.4) instead of our condition (3.8), indicate thatthe above Corollaries 3.1 and 3.3 may be already known. However, the authorsbelieve that the next assertion, which is a direct corollary of Theorem 2.5 and whichconcerns the problem (3.2) having a repulsive singularity at the origin, is new.20



3.7. Corollary. Suppose that g 2 C (0;1); e 2 L [0; 1];e + lim supx!1 g(x) < 0(3.15)and there is " > 0 such thate(t) + g(x) + �2x � " for a.e. t 2 [0; 1] and all x > 0:(3.16)Then the problem (3.2) has a positive solution.Proof. Denote f(t; x) = g(x) + e(t): According to (3.16), f satis�es (2.13) withr2 = "�2 and B2 > 0 arbitrarily large. Furthermore, in view of (3.15), we can �ndA2 � r2 such that f satis�es (2.12) with �2(t) = e(t)� e:3.8. Remark. Provided g 2 C (0;1) satis�es (3.3), (3.4), (3.5),Z 10 g(x)dx =1(3.17)(i.e. it has a strong singularity at x = 0) and e 2 C [0; 1]; Lazer and Solimini provedin [4, Theorem 3.12] that the condition e < 0 is necessary and su�cient for theexistence of a positive solution to (3.2). This result has been extended by severalauthors, cf. e.g. [1], [2], [3], [5], [7] and [11], however all these papers concern thecase of a strong singularity at the origin. Notice that Corollary 3.7 applies to (3.2)even if the assumption (3.17) is omitted.3.9. Example. Consider the problemu00 � au� + bu = e(t); u(0) = u(1); u0(0) = u0(1)(3.18)with � > 0; a > 0 and b � 0: If e 2 C [0; 1]; b = 0 and � � 1 (i.e. the functiong(x) = ax� � bx; x > 0;has a strong singularity at x = 0), then by [4, Theorem 3.12] the problem (3.18)has a positive solution if and only if the condition e < 0 is satis�ed, while in thecase � 2 (0; 1) this condition need not ensure the existence of a positive solution to(3.18) (cf. [4, Theorem 4.1]). Further, if e 2 C [0; 1] and � � 1; then by the resultdue to del Pino, Manásevich and Montero (cf. [1, Theorem 1.1]), the problem (3.18)has a positive solution whenever the conditionb 6= (k�)2 for all k 2 N21



is satis�ed. It is worth mentioning that the resonance case of b = �2 is coveredneither by [1, Theorem 1.1] nor by [7, Theorem 1.2] even for the strong singularity� � 1:In comparison to these results, it should be pointed out that Corollary 3.7 appliesalso to the cases � 2 (0; 1) and b = �2: In particular, for the problem (3.18) withe 2 L [0; 1]; we get the existence of a positive solution in the following cases:b = 0; e < 0 and e� > ���2�a� ��+1 (�+ 1) aor b 2 (0; �2] and e� > ���2 � b�a � ��+1 (�+ 1) a:In particular, if b = �2; then the problem (3.2) has a positive solution for anye 2 L [0; 1] such that e� > 0: This result gives the answer to the open question from[1, Remark 1.2].Finally, let us consider the problem (3.18) with b < 0: By a slight modi�cationof the proof of Theorem 2.5 we get an assertion which can be applied to this case.3.10. Corollary. Suppose that there exist r2 2 [0;1); r1 2 (r2;1) and h 2 L [0; 1]such that f ful�ls the Carathéodory conditions on [0; 1] � [r2;1); f(t; x) � h(t)for a.e. t 2 [0; 1] and all x > 0; f(t; r1) � 0 a.e. on [0; 1]; f(t; x) � ��2(x� r2) fora.e. t 2 [0; 1] and all x � r2:Then the problem (0.2) has a solution u such that r2 � u(t) on [0; 1] andu(tu) � r1 for some tu 2 [0; 1]:Proof. Put ef(t; x) = ( f(t; r2)� �2(x� r2) for x < r2;f(t; x) for x � r2and consider the problem (3.13). As the couples (r2; 0) and (r1; 0) are respectivelyupper and lower functions to (3.13), by the assertion (II) of Theorem 1.2 there existsa solution u to (3.13) with r2 � u(tu) � r1 for some tu 2 [0; 1]: Following the proofof Theorem 2.5 we get that u(t) � r2 on [0; 1]; which completes the proof.3.11. Example. By the assertion (I) of Theorem 1.2, the problem (3.18) with� > 0; a > 0; b < 0 and e 2 L1 [0; 1] such thate� = sup esst2[0;1] e(t) � �K = �� jbj�a� ��+1 (�+ 1) a22



has a positive solution u: If, moreover, e� < �K ande� = inf esst2[0;1] e(t) > �� jbj+ �2�a � ��+1 (�+ 1) a;then by Corollary 3.10 the problem (3.18) has also another positive solution v whichcertainly does not coincide with u on [0; 1]: (Notice that forinf esst2[0;1] e(t) > �K;(3.18) cannot have any positive solution.)References[1] M. del Pino, R. Manásevich and A. Montero. T -periodic solutions for some secondorder di�erential equations with singularities. Proc. Royal Soc. Edinburgh 120A (1992), 231-243.[2] A. Fonda, R. Manásevich and F. Zanolin. Subharmonic solutions for some second-orderdi�erential equations with singularities. SIAM J. Math. Anal. 24 (1993), 1294-1311.[3] P. Habets and L. Sanchez. Periodic solutions of some Liénard equations with singularities.Proc. Amer. Math. Soc. 109 (1990), 1035-1044.[4] A. C. Lazer and S. Solimini. On periodic solutions of nonlinear di�erential equations withsingularities. Proc. Amer. Math. Soc. 99 (1987), 109-114.[5] J. Mawhin. Topological degree and boundary value problems for nonlinear di�erential equa-tions. M. Furi (ed.) et al., Topological methods for ordinary di�erential equations. Lecturesgiven at the 1st session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held inMontecatini Terme, Italy, June 24 - July 2, 1991. Berlin: Springer-Verlag, Lect. Notes Math.1537, 74-142 (1993).[6] M. N. Nkashama and J. Santanilla. Existence of multiple solutions for some nonlinearboundary value problems. J. Di�er. Equations 84 (1990), 148-164.[7] P. Omari and W. Ye. Necessary and su�cient conditions for the existence of periodic solu-tions of second order ordinary di�erential equations with singular nonlinearities. Di�erentialand Integral Equations 8 (1995), 1843-1858.[8] I. Rach�unková and M. Tvrdý. Nonlinear systems of di�erential inequalities and solvabilityof certain nonlinear second order boundary value problems. J. Inequal. Appl., to appear.[9] L. Sanchez. Positive solutions for a class of semilinear two-point boundary value problems.Bull. Austral. Math. Soc. 45 (1992), 439-451.[10] I. Vrkoè. Comparison of two de�nitions of lower and upper functions of nonlinear secondorder di�erential equations. J. Inequal. Appl., to appear.[11] M. Zhang. A relationship between the periodic and the Dirichlet BVP's of singular di�erentialequations. Proc. Royal Soc. Edinburgh 128A (1998), 1099-1114.23
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