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Summary. In the paper we are interested in nonnegative and nonpositive solutions of the bound-
ary value problem u"” = f(t,u), u(0) = u(1), u'(0) = w'(1), where f fulfils the Carathéodory
conditions on [0,1] x R. We generalize the results reached by M. N. Nkashama, J. Santanilla
and L. Sanchez and present estimates for solutions. Besides, we apply our existence theorems
to periodic boundary value problems for nonlinear Duffing equations whose right-hand sides have
a repulsive or attractive singularity at the origin. We extend or generalize existence results by
A. C. Lazer and S. Solimini and other authors. Moreover, we get some multiplicity results and in
the case of a repulsive singularity we also admit a weak singularity, in constrast to the previous
papers on this subject. Our proofs are based on the method of lower and upper functions and
topological degree arguments and the results are tested on examples.
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0. Introduction

In our previous papers [8] and [10] we have established a connection between fairly
general lower and upper functions and the Leray-Schauder topological degree of an
operator associated to the generalized periodic boundary value problem

(0.1) u" = f(tu,u'), u(a) =ud), u(a)=w()),
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where —00 < a < b < o0, f : [a,b] x R? — R is a Carathéodory function and
w : R — R is continuous and nondecreasing. Using this connection, we have
obtained a method providing an information about the solvability of (0.1) in terms
of lower and upper functions. (See [8, Theorems 4.1-4.3].)

In this paper we study the special case of (0.1)
(0.2) u" = f(t,u), u(0)=u(l), «'(0)=1d'(1).

We assume that f fulfils the Carathéodory conditions on [0, 1] x R, which means
that (i) for each z € R the function f(.,x) is measurable on [0,1]; (ii) for almost
every ¢t € [0,1] the function f(¢,.) is continuous on R; (iii) for each compact set
KC R the function my (t) = sup, _ |f(¢, )| is Lebesgue integrable on [0, 1].

The problem (0.2) was considered by M. N. Nkashama and J. Santanilla in [6],
where a.o. the following three results concerning the existence of nonnegative and
nonpositive solutions to the problem (0.2) were established:

0.1. Theorem ([6, Theorem 2.5]). Suppose
(0.3) liminf f(t,z) > 0 for a.e. t€[0,1]

T—r

with strict inequality on a subset of [0, 1] of positive Lebesque measure. Furthermore,
assume that there exist ay € (0,00) and a function b € L]0, 1] such that

(0.4) b(t) < f(t,z) < ayx forae te€[0,1] andall x> 0.

Then the problem (0.2) has a nonnegative solution.
0.2. Theorem ([6, p. 159]). If inequalities (0.3) and (0.4) are replaced respectively

by
(0.5) liminf f(¢,2) >0 for a.e. t€]0,1]

T—r—00
with strict inequality on a subset of [0, 1] of positive Lebesgue measure and
(0.6) b(t) < flt,z) < —aa forae. t€[0,1] and all v <0

with a_ € (0, 7], then the problem (0.2) has a nonpositive solution.

0.3. Theorem ([6, Theorem 2.7]) . Suppose that the problem (0.2) has not the trivial
solution and that all assumptions of both Theorem 0.1 and Theorem 0.2 are fulfilled.
Then the problem (0.2) has at least two different solutions, one nonnegative and one
nonpositive.

In Section 2 of this paper, making use of the method of [8], we prove in Theorems
2.1, 2.5 and Corollaries 2.9 and 2.10 the existence of nonnegative and nonpositive
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solutions for (0.2) under assumptions weaker than (0.3)-(0.6). In particular, in The-
orem 2.1 we use (2.1), (2.2) instead of (0.3), (0.4) and similarly in Corollary 2.9 we
use (2.31), (2.32) instead of (0.5), (0.6). Moreover, Theorem 2.1 and Corollaries 2.7
and 2.8 generalize the assertions of [9, Theorem 2.1 and Theorem 2.3]. A comparison
of the conditions used in our existence results with those from Theorems 0.1-0.3 is
given in Theorems 2.13 and 2.14 (see also Examples 2.4 and 2.12).

The results presented in Section 2 can be applied also to periodic boundary value
problems for nonlinear Duffing equations of the form (3.1) or (3.2) whose right-hand
sides have a singularity at © = 0. Starting from the work [4] by Lazer and Solimini
such problems have been studied by many authors (see e.g. [1], [2], [3], [5], [7] and
[11]). Section 3 is devoted to this type of problems. First, we consider the case of
an attractive singularity and in Corollaries 3.1 and 3.3 we extend results from [4]
and [5]. Furthermore, we also get one related multiplicity result (Corollary 3.5).
Our main result concerning a problem with a repulsive singularity is obtained in
Corollary 3.7. Its goal consists, in contrast to the papers mentioned above, in that
our results apply also to a weak singularity. The results of Section 3 are tested on
periodic problems for the model equations

u" + % —bu=e(t) and u"— % + bu = e(t)
with a > 0, A > 0, b € R and e € L[0, 1] (see Examples 3.4, 3.6, 3.9 and 3.11). In
particular, it turns out that in the case of repulsive restoring forces our Corollary 3.7
covers also the resonance case b = 2 and so it gives the answer to an open question
from [1, Example 3.9].

1 . Preliminaries

Throughout the paper we keep the following notation:

As usual, C[0, 1] and C(0, 00) are respectively the sets of functions continuous on
[0,1] and (0, c0), L[0, 1] stands for the set of functions Lebesgue integrable on [0, 1],
L [0,1] is the set of functions essentially bounded on [0,1], AC[0, 1] denotes the
set of functions absolutely continuous on [0, 1] and BV [0, 1] is the set of functions of
bounded variation on [0, 1]. Furthermore, for x € C[0, 1] and y € L[0, 1], we denote

1 1
lolle = sup [e(l. 5= [ yls)ds and [yl = [ loto)ldr
0 0

te(0,1]

Finally, for a given y € L[0, 1], y* denotes its nonnegative part (y*(¢) = max{y(t),0}
for a.e. t € [0,1]) and y~ stands for its nonpositive part (y~(¢t) = max{y(t),0} for
a.e. t €[0,1]).



By a solution of the problem (0.2) we understand a function u : [0,1] — R such
that «' € AC[0,1], u”"(t) = f(t,u(t)) a.e. on [0,1], u(0) = u(1) and u'(0) = u'(1).

We will use the definitions of lower and upper functions from [8] modified to the
problem (0.2).

1.1. Definition. Functions (o, p;) € AC[0, 1] xBV]0, 1] are called lower functions
of the problem (0.2) if the singular part pi™® of p; is nondecreasing on [0, 1],

o (t) =pi(t),  pi(t) = f(t,01(t) ae on t€][0,1]
and

01(0) = 01(1), p1(0+) 2 pr(1-).

Similarly, functions (o9, p2) € ACI0,1] x BV|[0, 1] are called upper functions of
sing

the problem (0.2) if the singular part p3™® of py is nonincreasing on [0, 1],

ay(t) = pa(t),  py(t) < f(t,09(t)) ae. on te€]0,1]
and

02(0) = 0(1),  p2(0+) < po(1-).

Let us formulate the existence theorem which is our main tool in this paper and
which is contained in [8, Theorems 4.1 and 4.2].

1.2. Theorem. Let (01, p1) and (02, p2) be respectively lower and upper functions
of the problem (0.2).

(I) Suppose o1(t) < oa(t) on [0,1]. Then there is a solution u of the problem (0.2)
such that o1(t) < u(t) < o9(t) on [0, 1].

(IT) Suppose o1(t) > o9(t) on [0,1] and

f(t,z) > h(t) forae te€[0,1] andall x€R

or
f(t,z) < h(t) forae te€[0,1] andall x €R

with h € L[0,1]. Then there is a solution u of the problem (0.2) such that

oa(ty) < u(ty) < oy(t,) for some t, €[0,1].

We will need the following two lemmas giving apriori estimates for solutions of
(0.2). The proof of the former would be quite analogous to that of [8, Lemma 1.1].



1.3. Lemma. Let a function h € L[0,1] and sets % (t) C R, t € [0,1], be such that

f(t,z) > h(t) forae te[0,1] andall v e %(t)
or
f(t,z) < h(t) forae te|0,1] andall x € %(1).

Then ||u'||c < ||h]|L holds for any solution u of the problem (0.2) such that u(t) €
% (t) for allt € [0,1].

1.4. Lemma. Let a function o € L[0,1] and a number A € (0,00) be such that
a =0 and

(1.1) f(t,z) > a(t) forae tel0,1] and all x € [A, c0).
Then the relation

ol

(1.2) u(t) - A <2

on [0,1]

holds for any solution wu of the problem (0.2) satisfying

(1.3) u(ty) < A for some t, €[0,1].

1.5. Remark. Notice that for any o € L[0,1] such that @ = 0 we have a* = a~
and thus ||a||L, = 2aT = 2a~.

Proof of Lemma 1.4. We borrow some ideas from [9, Lemma 2.1]. Let u be
a solution of the problem (0.2) and let (1.1) be valid. First, we shall show that its
derivative satisfies the estimate

ol
2

(1.4) /(4)] < on [0, 1].

Let t € [0, 1] be such that u(t) > A and u'(¢) > 0. Then, in virtue of the periodicity
of u and v, there is t; € [0,1] such that «/(¢;) = 0 and u(t) > A on I, where

7 [t, 1] U [0, tl] if t, <t,
RS if 4 >t

In both cases, making use of (1.1) we get

(1.5) u'(t) = — i f(s,u(s))ds < /I a”(s)ds < -



(cf. Remark 1.5). Similarly, if «'(t) < 0, there is ¢t € [0, 1] such that u/(t2) = 0 and
u(t) > A on I, where

[to, 1] if ¢, <t,
.[2 —
[0,t] U [ty, 1] if ty > ¢

Consequently, using again (1.1) and Remark 1.5 we get

(1) = [ S ul)as > - /I o~ (s)ds > 1L,

wherefrom, with respect to (1.5), the validity of (1.4) follows.
Now, assume that wu satisfies, in addition, (1.3) and that u(¢) > A holds for
some t € [0, 1]. We can choose s1, s9, s* € [0,1] in such a way that

51 < s9, u(sy) =u(sy) =A and u(s") = treﬂ[(?)l(] u(t) > A.

Consequently, (1.4) yields

2(u(s*)— A s*) —u(s1)) + (u(s*) — u(s2)) + (u(1) — u(0))
I
2

) = (u
gﬁmmwshﬂ,

where I = [sq, s9] if s* € (s1,52) and I = [0,1] \ [s1, s9] if s* > 59 or s* < sy. This
completes the proof of (1.2). O

2 . Nonnegative and nonpositive solutions

2.1. Theorem. Suppose that there exist r; € R, Ay € [r1,00) and $, € L|0, 1] such
that

(2.1)  f(t,r) <0 fora.e. te]0,1]
and
(22) B >0 and f(t,x) > Bi(t) fora.e. t€0,1] and all x € [A}, By,

where

oo 18 =Bl
1 1 Z 4 .

Then the problem (0.2) has a solution wu satisfying

(2.3) r <u(t)< By on [0,1].



Proof. (i) First, assume
(2.4) B, > 0.

For a.e. t € [0,1] let us put

~ . f(t,ib') if xSBl’
(2:5) ft,o) = { f(t,B)) if z> B,

and consider the auxiliary problem

(2.6) u' = f(t,u), u(0)=u(l), «(0)=1d'(1).

In view of (2.1) the constants (r1,0) are lower functions of (2.6). If we put

1 T t T
— Ay + 2|yl — ds d dsdr f 0,1],
oa(t) = Ay + 2] Bl t/0/0ﬂ1(3)5T+/0/0ﬂ1(8)57 or t€0,1]
then

oy(t) = Bi(t) ae. on [0,1], 09(0) =o09(1) and o)(1) — 05(0) = B;.

Since A; < 09(t) on [0,1], we get by (2.2) and (2.5) that o (t) < f(t,04(t)) a.e.
on [0,1], which means that (o9,0)) are upper functions to (2.6) and the asser-
tion (I) of Theorem 1.2 yields the existence of a solution u of (2.6) for which the
estimate

r < u(t) < oy(t) on [0,1]

is true. According to (2.4) there exists ¢ty € [0,1] such that u(ty) < A;. Indeed,
otherwise we would get a contradiction

1
0:/ u"(t)dt > B, > 0.
0

Since

ft,x) > f(t,z) — By > Bi(t) — By forae. t€[0,1] andall x> A,

we see that f fulfils (1.1) with & = 3, — B, and A = A; and so we can apply
Lemma 1.4 to u and the problem (2.6) and get

U,(t) — A1 S M S B1 — A1 on [0, 1]



Therefore w satisfies (2.3) and it is a solution of (0.2), as well.

(i) Now, let B, = 0. Consider the sequence of auxiliary problems

(2.7) ' = faltyu), u(0) =u(l), W'(0)=1u(1),

where
[ f(t,2) if v <Ay,
1 z— A )
Fut,e) =4 T2 +ﬁ(ag—Ali1) if v el B,
1 B, — A )
\ f(t,Bl)+ﬁ(—Bl_Al+1) if &> B.

For n € N we have

~ 1 1
fu(t, ) > Bi(t) + oPY for a.e. t€0,1] and all z € [4; + —, 0).
n n

Now, the first part of the proof guarantees for each n € N the existence of a solution
u, of (2.7) which satisfies

1
(2.8) r < u,(t) < Bi+— on [0,1].
n

According to (2.8), the Arzeld-Ascoli Theorem and the Lebesgue Dominated Con-
vergence Theorem, the sequence {u,}°°, contains a subsequence C!-converging to
a solution u of the problem (2.6). Since wu fulfils (2.3), it is a solution of (0.2). O

2.2. Remark. In Theorem 2.1 it is sufficient to suppose that f satisfies the Cara-
théodory conditions on [0,1] x [r1,00) instead of on [0,1] x R, because we can
replace f by its truncation

R B f(t, ) for = <ry,
ft, ) = { f(t, x) for ©>nr

in the proof.
2.3. Remark. Notice that in the case that 3,(t) = 0 a.e. on [0,1] we can put

B; = A; and (2.2) reduces to the condition ensuring the existence of constant upper
functions (A4, 0).



2.4. Example. With respect to Remark 2.2, Theorem 2.1 yields the existence of
a nonnegative solution w to the problem

o
S u+1

sin(Sat) +e®), w(0)=u(1), w(0)=u(1)

2.9 "
29)  w .

for any e € L0, 1] such that

t) <0 a.e. 0,1 d e>——.

e(t) <0ae. on [0,1] and € 5

Notice that the right hand side of the differential equation in (2.9) does not satisfy
the condition (0.3) of Theorem 0.1. On the other hand, the problem

(2.10) u' =atuf +e(t), u(0)=u(l), u'(0)=1u(1)

with e(t) < 0 a.e. on [0, 1] and a, k € (0, 00) provides an example when the assump-
tions of Theorem 2.1 are fulfilled, while for £ > 1 the condition (0.4) of Theorem
0.1 fails to be satisfied.

In addition to the existence results, Theorem 2.1 enables us to get an estimate
for the guaranteed solution. Indeed, in the case of (2.9) we have

—e* 2—3me 2 —3me
“cu < (7 =) on 0,1)
1+e* 2+ 3me 6
where
e* = sup ess e(t).
te(0,1]
In particular, for e(t) = —% we get
0.118 < ! < (t)<3—|—1<316 [0, 1]
: — : 0 :
sr—1- =T ag b

Similarly, a solution u of (2.10) can be estimated as follows:

a V a

If we put a =1, k=2 and e(t) = —%, we get

on [0,1].

DO | @

1
(2.11) 0.71 < u(t) < V2 + 5 <192 on [0,1]

1
<
\/E_



2.5. Theorem. Suppose that there exist ro € R, Ay € [ry,00) and (s € L[0, 1] such
that

(2.12) B2 <0 and f(t,z) < Bo(t) for a.e. t€[0,1] and all z € [As, By)
and
(2.13) ft,x) > —m*(x — 1) for a.e. t €0,1] and all x € [ry, By,

where

(2.14) By — Ay > %m—;

and

(2.15) mo(t) > max{ sup f(t,z),02(t)} for a.e. t€]0,1].

T€[r2,As]
Then the problem (0.2) has a solution wu satisfying
(2.16) ry <wu(t) < By on [0,1].
Proof. First suppose

(2.17) By < 0.
For a.e. t € [0,1] put
f(t,re) —m2(x — 1)  if @ <y,
(2.18) Flt,z) =< f(t,x) if 7y <a<B,,
f(t, Bg) if z> Bg,

and consider the auxiliary problem

(2.19) u" = f(t,u), u(0)=uwu(l), «'(0)=1d'(1).

We can see that

f(t,z) > =By for a.e. t€[0,1] and all x € R.

Furthermore, the assumption (2.13) implies that f(¢,r2) > 0, and (2.12) yields

(2.20) f(t,x) < Bo(t) forae. t€0,1] and all z € [Ag, 00).

Thus, if we put

1 T t T
O'l(t) = A2 + 2||ﬂ2||]L — t/o /0 ﬂg(S)dS dr +/0 /0 /BQ(S)dS dr
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for ¢ € [0,1], we obtain similarly as in the proof of Theorem 2.1 that the couples
(r2,0) and (oq, 07) are respectively upper and lower functions to (2.19) and o < oy(¢)
holds on [0, 1]. By the assertion (II) of Theorem 1.2 with h(t) = —7®Bs, there exists
a solution u of (2.19). We shall show that u satisfies (2.16).

In virtue of (2.13) and (2.18) we have

(2.21) ft,2) +7*(x —1ry) >0 forae. te€0,1] and all x € R.
We can check that if we put

sin(m(s —t))
2m
sin(w(t — s))
2m

for 0 <t<s<1,
g(t,s) =
for 0<s<t<1,

then g is the Green function of the problem

y'+ 7y =0, y0)=y(1), ¥ (0)=y(1)

and ¢(t,s) > 0 on [0,1] x [0, 1]. Furthermore, the function z(t) = u(t) —ry fulfils
the relations

2'(t) + m22(t) = f(t,u(t)) + 7 (u(t) — 1)
a.e. on [0,1], z(0) = z(1), 2/(0) = 2'(1)

and so, according to (2.21), we have

z(t) = /0 g(t, s) [f(s,u(s)) + 72 (u(s) — TQ)]dS >0 on [0,1],
(2.22) u(t) >ry on [0,1].

Now, assume u(t) > As on [0,1]. Then, by (2.20), u”(t) < B2(t) for a.e. t € [0,1]
and thus, according to (2.17), we get

1
0:/ u" (t)dt < By <0,
0

a contradiction. It means that there is ¢ty € [0, 1] such that

(2.23) u(ty) < As.

11



According to (2.15) and (2.18) we have

f(t,r) <my(t) <mg(t) forae te€[0,1] and all z € [ry,00).

Since (2.22) holds, we can apply Lemma 1.3 with h = mj and %(t) = [ry,00) to
the problem (2.19) and obtain

(2.24) lu'lle < [[mg e =m3 .

Owing to (2.23) we can argue similarly as in the proof of Lemma 1.4. Assume that
u(t) > As holds for some ¢ € [0, 1] and choose sy, s9, s* € [0,1] in such a way that

s1 < s, u(s1) =u(sy) =Ay and wu(s") = trél[gof] u(t) > As.

Using (2.24) and (2.14) we get
1 N
U,(S*) — A2 S im; S B2 - AQ,

i.e. w fulfils (2.16), which also means that u solves (0.2).
If 3, = 0, we can follow the second part of the proof of Theorem 2.1 with

( f(t,72) if x <y,
_ f(t, ) if © € [ry, Ay),
fults ) = 9 ft,7) — sy if &€ [Ay, By,
| [t Be) — sy if @ > B -

2.6. Remark. Theorem 2.5 applies also to the case (2(t) = 0 a.e. on [0, 1]. How-
ever, then the interval [As, By] need not reduce to the degenerate one (cf. (2.14)
and (2.15)). Nevertheless, by a slight modification of the proof of Theorem 2.5 we
obtain the following two existence results which extend [9, Theorem 2.3].

2.7. Corollary. Suppose that there exist 7o € R, Ay € [rg,00) and my € L0, 1]

such that
(2.25) f(t, A2) <0 for a.e. te€]0,1],
(2.26) f(t,x) < mg(t) forae te€l0,1] and all x € [ry, By

and (2.13) are satisfied, where By is such that (2.14) is true. Then the problem (0.2)
has a solution u fulfilling (2.16).

12



Proof. We can use the arguments as in the first part of the proof of Theorem 2.5
with the only difference that now oy(t) = A, on [0, 1]. Moreover, since the assertion
(IT) of Theorem 1.2 guarantees the existence of a solution u of (2.19) with

(2.27) ry < u(ty) < Ay for some ¢y € [0, 1],

we need neither assume (2.17) nor derive (2.23). O

2.8. Corollary. Suppose that there exist ro € R, Ay € [ry,00) and k € [0,2) such
that (2.25) and

(2.28) f(t,x) > —k(x —ry) forae te|0,1] and all x € [ry, By

are valid, where

2 k
. > — — Ty ———.
(229) B2_A22—k T22—k

Then the problem (0.2) has a solution u fulfilling (2.16).

Proof. In the same way as in the proofs of Theorem 2.5 and Corollary 2.7 we get
a solution wu of (2.19) satisfying (2.22) and (2.27). According to (2.18) and (2.28)
we have

u"(t) = flt,u(t)) > —k (u(t) — rs) for ae. te[0,1].
Furthermore, Lemma 1.3 with h(t) = —k (u(t) — r2), Z(t) = [r2, 00) gives

[u'llc <k (@ —ry).

Since in virtue of (2.22) and (2.27) we have also

1 s 1
u < / (u(to) + ‘ / |’LLI(7')|dT‘)dS < Ay + 5 |u||c,
0 to

the relation

, 2k
(2.30) [u'llc < 5k (A2 — 12)

immediately follows. Thus, similarly as we deduced in the first part of the proof of
Theorem 2.5 from (2.14) and (2.24) the validity of (2.16), we can now show that
also (2.29) and (2.30) imply (2.16). O

Replacing x by —x in Theorem 2.5 we get the dual assertion:
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2.9. Corollary. Suppose that there exist 19 € R, Ay € [rg,00) and [y € L0, 1]
such that

(2.31)  Bo>0and f(t,x) > Bo(t) for a.e. t€[0,1] and all x € [~By, —Aj]
and
(2.32)  f(t,2) < =7 (x +1y) for a.e. t€[0,1] and all x € [—By, —1y),

where

32 - A2 Z 5 m2_
and
mo(t) =min{ inf  f(t,x), Ba(t)} for a.e. t€[0,1].

ze[—Az,—r2]
Then the problem (0.2) possesses a solution wu such that

—B; <u(t) < —ry on [0,1].

Combining Theorem 2.1 and Corollary 2.9 we immediately obtain

2.10. Corollary. Suppose that all assumptions of both Theorem 2.1 and Corollary
2.9 with 1 > 0 and ro > 0 are fulfilled and that either (0.2) has not the trivial
solution or 1y +re > 0. Then the problem (0.2) has at least two different solutions,
one of them nonnegative and one nonpositive. ]

2.11. Remark. Dual assertions to Theorem 2.1 and Corollary 2.10 can be obtained
by substituting —x instead of z, as well.

In Theorem 2.5 it suffices to suppose that f fulfils the Carathéodory conditions
on [0, 1] X [ra, 00) instead of on [0, 1] x R. A similar restriction of the Carathéodory
conditions for f can be assumed in all the other existence theorems in this section
and their dual versions.

2.12. Example. In Example 2.4 we have shown that the problem
1

2.33 u=tu? — —, w(0)=u(l), «(0)=1u(1

(2.33) Wi (0) = u(1), w'(0)=w'(1)

has a solution w which satisfies (2.11). Further, we can check that all assumptions
of Corollary 2.9 are fulfilled. We can put ry = % and Ay = /2. Then Corollary 2.9

implies the existence of a solution v of (2.33) with an estimate

3 1
—1.79< —V2 - S <p(t) < ——= < =0.71 on [0,1].
g < () < 7 [0, 1]

On the other hand, we cannot get the existence of u and v from Theorem 0.3
because the right hand side of (2.33) fulfils neither (0.4) nor (0.6).
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We will close this section by showing that Theorems 0.1-0.3 due to M. N. Nka-
shama and J. Santanilla are contained in our Theorem 2.1 and Corollaries 2.9 and
2.10, respectively.

Let p denote the Lebesgue measure.

2.13. Theorem. Suppose

(2.34) h;gglff(t’ x) >0 forae te]|0,1],

(2.35) p({t € 0,1]: limrgiogff(t,x) >0})>0

and

(2.36) b(t) < f(t,x) for a.e. t€0,1] and all x € [0,00)

with some b € L0, 1].
Then there exist Ay € (0,00) and (, € L[0, 1] such that

B >0 and f(t,x) > Bi(t) for a.e. t€[0,1] and all x € [A},0).

2.14. Theorem. Suppose

liminf f(t,2) > 0 for a.e. t€]0,1],

T—r—00
p({t €10,1] : liminf f(¢t,xz) > 0}) > 0
T—r—00
and
b(t) < f(t,z) for a.e. t€]0,1] and all x € (—o0,0]
with some b € L0, 1].
Then there exist Ay € (0,00) and [y € L]0, 1] such that

B2>0 and f(t,x) > Bo(t) for ae. t€[0,1] and all x € (—oo, —As].

Because of the duality of these theorems we restrict ourselves to the proof of
Theorem 2.13.

Proof of Theorem 2.13. Due to (2.35), there exists £ > 0 such that

He = M(Qs) > 07
where

Q. ={tel0,1]: linl)inff(t,x) > e}
For n € N and a.e. ¢t € [0, 1] we can define
(2.37) v(t,n) = inf f(t,x)

z>n

and

15



D, ={t€[0,1]:v(t,n) > e}.
We have

D, C Dy forall n€N and Q.C | D,

n=1
Furthermore, there exists n; € N such that

(2.38) w(Dy,) > % for all n > n.

Choose my € N and ¢ > 0 in such a way that

(2.39) sup ‘ / a
J)<6é

and for m,n € N denote

1
={te|0,1]:v(t > —— 1
e 1) tn) > )
Then
(2.40) Snm C Spt1,m  forall n,m e N.

Due to (2.34), for every m € N we have

(2.41) ,J,([o, 1]\ [_j sn,m) —0.

Further, according to (2.40) and (2.41), for a chosen my there is ny € N such that
ny > n; and

(2.42) (Sam) > ([0, 1]) — 6 =15,
Put A; = ny and

€ it te D,,,
ﬂl(t) = _mL2 if te STZQ,MQ \Dn27
b(t)  if £ €[0,1]\ Snymy-
Now, from (2.38), (2.39) and (2.42) we conclude that

_ 1
51:/ 5dt—/ —dt+/ b(t) dt
D, S ma [0,1]\Sng, 5

n3 ng,my \Dny

. 1
z“———/ b(t) dt
2 my [0,11\Sy,1ms

16

> 0.




Finally, according to (2.37) we have
f(t,x) > Bi(t) fora.e. t€]0,1] and all z € [A4;,00)

and this completes the proof of the theorem. O

2.15. Remark. The assertion of Theorem 2.13 remains valid also in the case that
it is not necessarily the Lebesgue measure, but it can be an arbitrary nonnegative
measure on [0, 1].

If the function f(t, z) is only supposed to be v x A-measurable on [0, 1] xR, where
v is a nonnegative measure on [0, 1] and A is the Lebesgue measure, the functions

v(t,n) and liminf f(¢,2)

T—r00

need not be measurable. In this case we should replace the assumption (2.35) by
(2.43) Vour({t € [0,1] : liminf f(¢,2) > 0}) > 0,
T—00

where v,,; stands for the outer measure corresponding to v. Theorem 2.13 can be
then reformulated in the following assertion. Its proof would be analogous to that
of Theorem 2.13. Only in the definition of (¢, n) the essential infimum should be
used instead of infimum.

2.16. Proposition. Suppose (2.34), (2.36), (2.43) and the v X A-measurability of f
on [0, 1] xR, where v is a nonnegative measure and X is the Lebesgue measure. Then
the statement of Theorem 2.13 remains valid, with the exception that the inequality
f(t,x) > Bi(t) is valid for a.e. (t,x) € [0,1] x [0,00) only. O

3 . Applications to Lazer-Solimini singular prob-
lems

In this section we want to extend the results of Lazer and Solimini [4] concerning
the existence of solutions to singular periodic boundary value problems

(3.1) u'+g(u) =e(t), u(0)=u(l), u'(0)=u(1)
and
(3.2) u" —g(u) =e(t), u(0)=u(l), «(0)=n1u'(1).



Under the hypotheses g € C(0, c0),

(3.3) g(z) >0 on (0,00),
(3.4) g(0+) := xl_i)r&g(:c = 00
and

(3.5) g(00) = lim g(x) =0,

Lazer and Solimini proved in [4, Theorem 2.1] that the problem (3.1) has a positive
solution for a given e € C[0,1] if and only if it satisfies the condition € > 0.

Having in mind Remarks 2.2 and 2.11, we can apply all existence theorems from
Section 2 to the problems (3.1) and (3.2) provided r; and 7y are strictly positive.
First, as direct consequences of Theorem 2.1, we get the following two corollaries
which contain the above result from [4].

3.1. Corollary. Suppose that g € C(0,00) and e € L[0,1] are such that

(3.6)  g(oo) < oo,

(3.7) g(x) > g(oo) forall x>0

and

(3.8) there exists 11 € (0,00) such that e(t) < g(ry) for a.e. te€]0,1].

Then the condition € > g(oo) is necessary and sufficient for the existence of
a positive solution to (3.1).

Proof. First, suppose € > g(o0) and for a.e. ¢t € [0,1] and any x € R put

g(x) it ©>r,

flt,z) = e(?) —{

g(ry) if = <ry.

Then, in virtue of (3.8), f satisfies the assumption (2.1) of Theorem 2.1. Further-
more, according to (3.6), there is A; > 7 such that (2.2) with 8,(¢) = e(t) — € is
also satisfied. By Theorem 2.1 this proves the existence of the desired solution.

On the other hand, if w is a positive solution to (3.1), then integrating the
differential equation in (3.1) and making use of (3.7), we get

e / g(u(s))ds > g(co). -

3.2. Remark. In particular, if g(co) = —o0, then the problem (3.1) has a solution
for any e € L0, 1] for which (3.8) is true.
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3.3. Corollary. Suppose that g € C(0,00) and e € L[0, 1] satisfy (3.8) and

€ — limsup g(z) > 0.

T—r 00
Then the problem (3.1) has a positive solution.

Proof follows the first part of the proof of Corollary 3.1. U

3.4. Example. Consider the problem

(3.9) W+ b= e(t), u(0) = u(l), W'(0)=u(1)

u
with @ > 0, A > 0 and b > 0. By Corollary 3.3, if b > 0, then the problem (3.9) has
a positive solution for any e € L[0, 1] such that

e” =sup ess e(t) < oo,
t€[0,1]

while in the case b = 0, the additional assumption € > 0 is needed. Notice that
if b = 0, then the condition € > 0 is also necessary for the existence of a positive
solution to (3.9).

Furthermore, as in Examples 2.4 and 2.12, using Theorem 2.1 we can derive
estimates for the guaranteed positive solution u of (3.9). In particular, in the case
b= 0 we get

(£ <02 (@) <15 o

The following immediate consequence of Theorem 1.2 enables us to consider the
problem (3.9) also when b < 0.

3.5. Corollary. Suppose that there exist positive numbers ri < ro < r3 < ry and
a function h € L[0,1] such that f fulfils the Carathéodory conditions on [0, 1] x
[r1,00) and

(3.10) f(t,r1) <0 and f(t,ry)) <0 forae. te]l0,1],
(3.11) f(t,re) >0 and f(t,rs) >0 for a.e. te€]0,1]
and

f(t,z) < h(t) forae te[0,1] and all x € [ry,00).
Then the problem (0.2) has at least two positive solutions w and v satisfying

(3.12) ry<u(t) <ry on [0,1] and r3<wv(t,) <ry forsome t,€|0,1].
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Proof. Let us denote

~ B f(t, ) for = < ry,
ftz) = { f(t, ) for = >r;.

Then Theorem 1.2 implies the existence of solutions u and v of the problem

(3.13) u" = f(t,u), u(0)=u(l), «'(0)=1u'(1)

satisfying (3.12). Let mingcjo17v(t) = v(to) < r1. In view of the periodic conditions
in (3.13), we can suppose %y € [0,1) and v'(ty) = 0. There exists t; € (¢y,1) such
that v'(¢1) > 0 and v(t) < ry for all ¢ € [to, t1]. Then, by (3.10),

t1

0> f(t,r)(t1 — to) = ft,v()dt =v'(t) — v'(tg) > 0,

to

a contradiction. Thus r < u(t) and r; < v(t) on [0,1] and u, v are positive solutions
to (0.2). O

3.6. Example. Assume that A > 0,a>0,b< 0 and e € L,[0,1] and denote

(3.14) K = min (% - b:c) and e, = inf ess e(t).
2>0 \x t€[0,1]

Then

K = (%)A/\H()\—Fl)a

and by Corollary 3.5, the problem (3.9) has at least two different positive solutions
provided the condition e, > K holds.

If e, = K, we get at least one positive solution for (3.9). Let us note that if
e* = sup ess,cp ) €(t) < K, then the problem (3.9) has no positive solution because
in such a case we have

e(t)—i/\+bx<0 for a.e. t€0,1] and all = > 0.
T

Theorem 6.1 and Corollary 6.1 of [5], which concern the case of continuous e
and involve the stronger condition (3.4) instead of our condition (3.8), indicate that
the above Corollaries 3.1 and 3.3 may be already known. However, the authors
believe that the next assertion, which is a direct corollary of Theorem 2.5 and which
concerns the problem (3.2) having a repulsive singularity at the origin, is new.
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3.7. Corollary. Suppose that g € C(0,00), e € L[0, 1],

(3.15) €+ limsup g(x) <0

T—00

and there 1s ¢ >0 such that
(3.16) e(t) + g(x) +72x > ¢ forae te[0,1] and all x> 0.

Then the problem (3.2) has a positive solution.

Proof. Denote f(t,z) = g(x) + e(t). According to (3.16), f satisfies (2.13) with
ry = < and By > 0 arbitrarily large. Furthermore, in view of (3.15), we can find
Ay > 19 such that f satisfies (2.12) with (35(t) = e(t) — e. O

3.8. Remark. Provided g € C(0,00) satisfies (3.3), (3.4), (3.5),

(3.17) /0 g(xz)dr = 00

(i.e. it has a strong singularity at x = 0) and e € C|0, 1], Lazer and Solimini proved
in [4, Theorem 3.12] that the condition @ < 0 is necessary and sufficient for the
existence of a positive solution to (3.2). This result has been extended by several
authors, cf. e.g. [1], [2], [3], [5], [7] and [11], however all these papers concern the
case of a strong singularity at the origin. Notice that Corollary 3.7 applies to (3.2)
even if the assumption (3.17) is omitted.

3.9. Example. Consider the problem
a
(3.18) u" — pris bu =-e(t), u(0)=u(l), «'(0)=1u'(1)

with A > 0,a>0and b>0.Ife € C[0,1], b=0and A > 1 (i.e. the function

has a strong singularity at = 0), then by [4, Theorem 3.12] the problem (3.18)
has a positive solution if and only if the condition € < 0 is satisfied, while in the
case A € (0,1) this condition need not ensure the existence of a positive solution to
(3.18) (cf. [4, Theorem 4.1]). Further, if e € C[0,1] and A > 1, then by the result
due to del Pino, Manésevich and Montero (cf. [1, Theorem 1.1]), the problem (3.18)
has a positive solution whenever the condition

b# (kr)* forall k€N
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is satisfied. It is worth mentioning that the resonance case of b = 7% is covered

neither by [1, Theorem 1.1] nor by [7, Theorem 1.2] even for the strong singularity
A> 1.

In comparison to these results, it should be pointed out that Corollary 3.7 applies
also to the cases A € (0,1) and b = 2. In particular, for the problem (3.18) with
e € L[0, 1], we get the existence of a positive solution in the following cases:

2, A
b=0, e<0 and e*>—<%)“1()\+1)a
or
7T2—b A

be (0,7%] and e*>—< )Hl (A+1)a.

Aa

In particular, if b = 72, then the problem (3.2) has a positive solution for any
e € L[0, 1] such that e, > 0. This result gives the answer to the open question from
[1, Remark 1.2].

Finally, let us consider the problem (3.18) with b < 0. By a slight modification
of the proof of Theorem 2.5 we get an assertion which can be applied to this case.

3.10. Corollary. Suppose that there exist ro € [0,00), 11 € (rg,00) and h € L]0, 1]
such that [ fulfils the Carathéodory conditions on [0,1] X [re,00), f(t,x) > h(t)
for a.e. t €[0,1] and all x > 0, f(t,r1) <0 a.e. on[0,1], f(t,z) > —7%(x —rq) for
a.e. t €[0,1] and all x > r9.

Then the problem (0.2) has a solution w such that ro < u(t) on [0,1] and
u(ty) < ry for some t, € [0,1].

Proof. Put

Ft.z) = { f(t,r) — 72 (x —re)  for x <o,
f(t, x) for = >y

and consider the problem (3.13). As the couples (r2,0) and (ry,0) are respectively
upper and lower functions to (3.13), by the assertion (II) of Theorem 1.2 there exists
a solution w to (3.13) with ro < wu(t,) < r for some ¢, € [0, 1]. Following the proof
of Theorem 2.5 we get that u(t) > o on [0, 1], which completes the proof. O

3.11. Example. By the assertion (I) of Theorem 1.2, the problem (3.18) with
A>0,a>0,b<0ande € Lyl0,1] such that

1o

A
21
Aa) A+ 1)a

e =supesse(t) < —K = —(
te(0,1]
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has a positive solution wu. If, moreover, e* < —K and

e, = inf esse(t) > —
t€[0,1]

(|b|—i—7r2

A
T> A+ 1)a,

then by Corollary 3.10 the problem (3.18) has also another positive solution v which
certainly does not coincide with u on [0, 1]. (Notice that for

inf ess e(t) > —K,
t€[0,1]

(3.18) cannot have any positive solution.)
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