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One of such possible applications is shown in Corollary 4.4 which generalizessome results of [3], for other applications see [8] or [9].The main tool of our arguments is a connection between the existence oflower and upper functions for (0.1), (0.2) (called also lower and upper solutionsby some authors) and the Leray-Schauder topological degree of an operatorassociated with (0.1), (0.2).The notions of lower and upper functions of the second order boundaryvalue problems have a long history starting in 1931 when G. Scorza Dragoni[10] used them for the Dirichlet problem. So far there have been a lot ofde�nitions introduced. Classically, we understand lower and upper functionsas C 2 -functions. Di�erential equations with Carath�eodory right hand sides orwith singularities involved their generalization, for example as A C 1-functions,C 1 -functions having left and right second derivatives or W 2:1 -functions. Themajority of existence results was gained under the ordering assumption thata lower function is less than or equal to an upper one. During the last twodecades the extension to non-ordered or reversely ordered lower and upperfunctions was attained. See [1] and the references mentioned there. Here,we introduce a de�nition (cf. De�nition 1.7) of lower and upper functions ofthe problem (0.1), (0.2) which generalizes those of [1], [4], [5], [6] or [7] andconsider the both cases of their ordering as well as the non-ordered one.1 . PreliminariesThroughout the paper we assume:�1 < a < b < 1; w : R 7! R is continuous and nondecreasing and f :[a; b] � R2 7! R ful�ls the Carath�eodory conditions on [a; b] � R2 ; i.e. fhas the following properties: (i) for each x 2 R and y 2 R the functionf(:; x; y) is measurable on [a; b]; (ii) for almost every t 2 [a; b] the functionf(t; :; :) is continuous on R2 ; (iii) for each compact set K� R2 the functionmK(t) = sup (x;y)2K jf(t; x; y)j is Lebesgue integrable on [a; b]:Furthermore, we keep the following notation:L [a; b] is the Banach space of Lebesgue integrable functions on [a; b] equippedwith the usual norm denoted by k:kL : Furthermore, for k 2 N[f0g, C k [a; b] andA C k[a; b] are the Banach spaces of functions having continuous k-th derivati-ves on [a; b] and of functions having absolutely continuous k-th derivatives on2



[a; b]; respectively. As usual, the corresponding norms are de�ned bykxkC k = kXi=0 maxt2[a;b] jx(i)(t)j and kxkA C k = kxkC k + kx(k+1)kL :The symbols C [a; b] or A C [a; b] are used instead of C 0 [a; b] or A C 0[a; b]: More-over, BV [a; b] is the set of functions of bounded variation on [a; b]: For u 2BV [a; b]; using and uac denote its singular and absolutely continuous parts, re-spectively. Furthermore, if u 2 BV [a; b]; then its one-sided derivatives aredenoted by D+u and D�u:Car([a; b]�R 2) is the set of functions satisfying the Carath�eodory conditionson [a; b]� R2 :Finally, for a given Banach space X and its subset M; cl(M) stands for theclosure of M and @M denotes the boundary of M:If 
 is an open bounded subset in C 1 [a; b] and the operator T : cl(
) 7!C 1 [a; b] is compact, then deg(I�T;
) denotes the Leray-Schauder topologicaldegree of I� T with respect to 
; where I stands for the identity operator onC 1 [a; b]: For a de�nition and properties of the degree see e.g. [2].By a solution of (0.1),(0.2) we understand a function u 2 A C 1[a; b] satisfy-ing (0.1) for a.e. t 2 [a; b] and having the property (0.2).The following estimate will be helpful later.1.1. Lemma. Let a function m 2 L [a; b] and sets U (t) � R ; t 2 [a; b]; besuch that m(t) < 0 on a subset of [a; b] of a positive measure,m(t) < f(t; x; y) for a.e. t 2 [a; b] and any (x; y) 2 U (t)� R(1.1)and w(y) � y for all y 2 [�kmkL ; kmkL ]:(1.2)Let u be an arbitrary solution of (0.1), (0.2) such that u(t) 2 U (t) for allt 2 [a; b]: Then ku0kC < kmkL :(1.3)If we suppose m(t) > 0 on a subset of [a; b] of a positive measure andm(t) > f(t; x; y) for a.e. t 2 [a; b] and any (x; y) 2 U (t)� R(1.4)and w(y) � y for all y 2 [�kmkL ; kmkL ](1.5)instead of (1.1) and (1.2), then the estimate (1.3) remains valid, as well.3



Proof. We shall restrict ourselves only to the proof of the former assertion.The latter can be proved by a similar argument.Let u be an arbitrary solution of (0.1), (0.2) such that u(t) 2 U (t) for allt 2 [a; b] and let (1.1) and (1.2) be ful�lled. Thenm(t) < u00(t) for a.e. t 2 [a; b]:(1.6)Certainly, there is t0 2 (a; b) such that u0(t0) = 0: Hence�kmkL � � Z tt0 jm(s)jds < u0(t) for t 2 (t0; b](1.7)and �kmkL � � Z t0t jm(s)jds < �u0(t) for t 2 [a; t0):(1.8)In particular, with respect to (0.2),w(u0(b)) = u0(a) < Z t0a jm(s)jds � kmkL :(1.9)If u0(b) � kmkL held, then by (1.2) we would have w(u0(b)) � w(kmkL) �kmkL ; a contradiction. This together with (1.7) yieldsju0(b)j < kmkL :(1.10)Now, making use of (0.2), (1.2) and (1.7) we obtain for t 2 [a; t0]u0(t) � u0(a)� Z ta jm(s)jds > � Z bt0 jm(s)jds� Z ta jm(s)jds � �kmkL :This together with (1.7) yields�kmkL < u0(t) for all t 2 [a; b]:(1.11)On the other hand, in virtue of (1.9),(1.10) and (1.2) we have for t 2 [t0; b]u0(t) < u0(b) + Z bt jm(s)jds < Z t0a jm(s)jds + Z bt jm(s)jds � kmkL :This together with (1.8) and (1.11) completes the proof of (1.3).4



1.2. Remark. If m(t) � 0 were ful�lled a.e. on [a; b]; then in the case thatwe suppose (1.1) and (1.2), the set of solutions u of (0.1), (0.2) such thatu(t) 2 U (t) on [a; b] would be empty. Analogous situation would occur ifm(t) � 0 held a.e. on [a; b] and we supposed (1.4) and (1.5).Furthermore, we can see that provided w(y) � y (i.e. the boundary con-ditions (0.2) reduce to the periodic ones), we get (1.3) under the assumption(1.1) as well as under (1.4).The equation (0.1) may be rewritten as the system of two equations of the�rst order x0 = y; y0 = f(t; x; y):Generalization of the notions of lower and upper functions for systems of di�er-ential equations of the �rst order leads to the following concepts of "coupled"lower and upper functions which will be suitable for our purposes.1.3. De�nition. Functions (�1; �1) 2 A C [a; b]� BV [a; b] are said to be lowerfunctions of the equation (0.1) (on [a; b]), if the singular part �sing1 of �1 isnondecreasing on [a; b] and the following system of di�erential inequalities issatis�ed: �01(t) = �1(t) a.e. on [a; b];(1.12) �01(t) � f(t; �1(t); �1(t)) a.e. on [a; b]:(1.13)1.4. De�nition. Functions (�2; �2) 2 A C [a; b]� BV [a; b] are said to be upperfunctions of the equation (0.1) (on [a; b]), if the singular part �sing2 of �2 isnonincreasing on [a; b] and the following system of di�erential inequalities issatis�ed: �02(t) = �2(t) a.e. on [a; b];(1.14) �02(t) � f(t; �2(t); �2(t)) a.e. on [a; b]:(1.15)1.5. Remark. If (�1; �1) and (�2; �2) are respectively lower and upper func-tions to the given equation, then the monotonicity properties of the singularparts of the functions �i (i = 1; 2) yield the relations�1(t+)� �1(t) � 0 and �2(t+)� �2(t) � 0 for all t 2 [a; b)(1.16) �1(s)� �1(s�) � 0 and �2(s)� �2(s�) � 0 for all s 2 (a; b]:5



1.6. Remark. Obviously, if (�1; �1) are lower functions of the equation (0.1),then �01(t) = �1(t) for any point t of continuity of �1 in (a; b); while the relationsD+�1(t) = �1(t+) and D��1(s) = �1(s�) are satis�ed for any t 2 [a; b) ands 2 (a; b]: Analogous relations are true for upper functions (�2; �2) of (0.1), ofcourse. On the other hand, for a given i 2 f1; 2g; �00i (t) need not be de�ned evenfor any t 2 [a; b] where D+�i(t) = D��i(t) = �0i(t) and thus �00i (t) need not bede�ned for any t 2 [a; b], which generalizes the notion of W 2:1 -lower and -upperfunctions introduced in [1]. Other de�nitions which generalize the notions ofW 2:1 -lower and -upper functions, but not so suitable for our purposes, weregiven by Ch. Fabry and P. Habets in [4]. Recently, it was shown by I. Vrko�cin [11] that our De�nitions 1.3 and 1.4 are equivalent to those from [4].1.7. De�nition. Lower functions (�1; �1) of (0.1) which satisfy�1(a) = �1(b) and �1(a+) � w(�1(b�))(1.17)are called lower functions of the problem (0.1), (0.2).Upper functions (�2; �2) of (0.1) which satisfy�2(a) = �2(b) and �2(a+) � w(�2(b�))(1.18)are called upper functions of the problem (0.1), (0.2).1.8. Remark. If f(t; r1; 0) � 0 a.e. on [a; b] and w(0) � 0; then (r1; 0)are lower functions of (0.1), (0.2) and, similarly, if f(t; r2; 0) � 0 a.e. on[a; b] and w(0) � 0; then (r2; 0) are upper functions of (0.1), (0.2). On theother hand, it is easy to see that if f(t; �(t); �(t)) > 0 a.e. on [a; b] and wful�ls(1.2), then (�; �) could not be lower functions of (0.1), (0.2). Analogously,f(t; �(t); �(t)) < 0 a.e. on [a; b] with (1.5) can be true for no upper functions(�; �) of (0.1), (0.2).Let us denoteL : x 2 A C 1[a; b] 7! (x00 � x; x(a)� x(b); x0(a)) 2 L [a; b] � R2(1.19)and F : x 2 C 1 [a; b] 7! Fx 2 L [a; b] � R2 ;(1.20) where(Fx)(t) = (f(t; x(t); x0(t))� x(t); 0; w(x0(b))) a.e. on [a; b]:6



Then L is a linear bounded operator and the operator F is continuous.After a careful computation we can check that if we put
�0(t; s) = 8>>>><>>>>: (e2a�s�t+et�s) �e2s� e2b�2 (ea� eb)2 if t < s;��e2b�s�t� et�s� (e2s+e2a)� 2 ea+b (et�s� es�t)2 (ea� eb)2 if t > s

(1.21)
and �1(t) = �e2a+b�t +eb+t(eb� ea)2 and �2(t) = �ea+b�t +eteb� ea on [a; b];(1.22)then maxt;s2[a;b] j�0(t; s)j+ sup t;s2[a;b] ���@�0(t; s)@t ��� <1;maxt2[a;b]�j�1(t)j+ j�01(t)j�+ maxt2[a;b]�j�2(t)j+ j�02(t)j� <1and for any (y; r1; r2) 2 L [a; b]�R 2 the unique solution of the linear boundaryvalue problem x00 � x = y(t); x(a)� x(b) = r1; x0(a) = r2is de�ned byx(t) = Z ba �0(t; s)y(s)ds+ �1(t)r1 + �2(t)r2 on [a; b]:Furthermore, the operator L+ de�ned byL+ : (y; r1; r2) 2 L [a; b] � R2 7! L+(y; r1; r2) 2 C 1 [a; b];(1.23)where(L+(y; r1; r2))(t) = Z ba �0(t; s)y(s)ds+ �1(t)r1 + �2(t)r2 on [a; b];is linear and bounded and the operator L+F : C 1 [a; b] 7! C 1 [a; b] is compact.The problem (0.1),(0.2) is equivalent to the operator equation�I� L+F�x = 07



and if for some open bounded set 
 � C 1 [a; b] the relationdeg(I� L+F;
) 6= 0(1.24)is true, then the problem (0.1), (0.2) possesses at least one solution in 
:2 . Strict lower and upper functions and topo-logical degreeThe following de�nition is motivated by the similar one used in [1] for theperiodic problem x00 = f(t; x); x(a) = x(b); x0(a) = x0(b):2.1. De�nition. Lower functions (�1; �1) of (0.1), (0.2) such that �1 is nota solution of this problem are called strict lower functions of (0.1), (0.2) ifthere exists " > 0 such that�01(t) � f(t; x; y) for a.e. t 2 [a; b](2.1) and all (x; y) 2 [�1(t); �1(t) + "]� [�1(t)� "; �1(t) + "]:Analogously, upper functions (�2; �2) of (0.1), (0.2) are said to be strictupper functions of (0.1), (0.2) if �2 is not a solution of this problem and thereexists " > 0 such that�02(t) � f(t; x; y) for a.e. t 2 [a; b](2.2) and all (x; y) 2 [�2(t)� "; �2(t)]� [�2(t)� "; �2(t) + "]:In this section we want to prove theorems giving su�cient conditions for(1.24) in terms of strict lower and upper functions of (0.1),(0.2). We shall needthe following two lemmas.2.2. Lemma. Let (�1; �1) and (�2; �2) be respectively strict lower and upperfunctions of the problem (0.1), (0.2) such that�1(t) < �2(t) on [a; b]:(2.3)Then for any solution u of (0.1), (0.2) ful�lling�1(t) � u(t) � �2(t) on [a; b](2.4)we have �1(t) < u(t) < �2(t) on [a; b]: 8



Proof. i) Supposeu(t0)� �2(t0) = maxt2[a;b]�u(t)� �2(t)� = 0 and t0 2 (a; b):(2.5)In particular, u0(t0) � �2(t0�) � 0 � u0(t0) � �2(t0+) and thus, with respectto (1.16), u0(t0) = limt!t0 �2(t) = �2(t0):(2.6)Hence, if " > 0 is such that (2.2) is true, then there is � 2 (0; b� t0] such thatthe relations �2(t) � " � u(t) � �2(t) and �2(t) � " � u0(t) � �2(t) + " aresatis�ed for all t 2 [t0 � �; t0 + �] and consequently, making use of (2.2), (2.6)and the monotonicity of �sing2 ; we get for any t 2 [t0; t0 + �]0 � Z tt0 �f(s; u(s); u0(s))� �02(s)�ds = Z tt0 �u00(t)� �02(s)�ds(2.7) = u0(t)� �ac2 (t)� u0(t0) + �ac2 (t0) = u0(t)� �2(t) + �sing2 (t)� �sing2 (t0)� u0(t)� �2(t):By (1.16), (2.7) and (2.4) we have0 � u(t)� �2(t) = Z tt0 �u0(s)� �2(s)�ds � 0 on [t0; t0 + �];i.e. u(t) = �2(t) on [t0; t0 + �]:Let us put t� = sup n� 2 [t0; b] : u(t) = �2(t) on [t0; � ]o: Then t� � t0+ �;u(t�) = �2(t�) and u0(t�) = �2(t��): Let us assume that t� < b: Then, by(1.16), we have u0(t�) � �2(t�+): If u0(t�) > �2(t�+) were valid, then 0 =u(t0)��2(t0) = u(t�)��2(t�) could not be the maximum value of u(t)��2(t) on[a; b] and this would contradict the assumption (2.5). Thus, u0(t�) = �2(t�+):Repeating the above considerations with t� in place of t0; we would obtainfurther that there is �� 2 (0; b � t�] such that u(t) = �2(t) on [t�; t� + ��];a contradiction with the de�nition of t�: It means that t� = b and u(t) = �2(t)on [t0; b]: Similarly, we could prove that u(t) = �2(t) on [a; t0]; i.e. u(t) = �2(t)on [a; b]: This contradicts our assumption that �2 is not a solution of theproblem (0.1), (0.2) on [a; b]; i.e. u(t) < �2(t) on (a; b):9



ii) Suppose0 = u(b)� �2(b) = u(a)� �2(a) = maxt2[a;b]�u(t)� �2(t)�:(2.8)This is possible only if u0(a) � �2(a+) and u0(b) � �2(b�): On the other hand,by (0.2) and (1.18) we have 0 � u0(a) � �2(a+) � w(u0(b)) � w(�2(b�)) � 0and hence u0(a) = �2(a+):(2.9)Similarly as in part i) of the proof, we can deduce from the relations (2.8) and(2.9) that u(t) � �2(t) on [a; b]: This being impossible by De�nition 2.1, weconclude that u(t) < �2(t) on [a; b]:iii) Similarly we can show that under our assumptions the relation u(t) >�1(t) is true for all t 2 [a; b]; as well.2.3. Lemma. Let (�1; �1) and (�2; �2) be respectively strict lower and upperfunctions of (0.1), (0.2) such that (2.3) is true. Let us putef(t; x; y) = 8<: f(t; �1(t); y)� �1(t) if x < �1(t);f(t; x; y)� x if �1(t) � x � �2(t);f(t; �2(t); y)� �2(t) if �2(t) < x:(2.10)Then ef 2 Car([a; b]� R2) and for any solution u of the problemu00 � u = ef(t; u; u0); (0:2)(2.11)the relations (2.4) are satis�ed.Proof. In view of (2.10), we have ef 2 Car([a; b] � R2): Let u be an arbitrarysolution of the problem (2.11) and letu(t0)� �2(t0) = maxt2[a;b]�u(t)� �2(t)� > 0:(2.12)By (0.2) and (1.18) it su�ces to consider the cases t0 2 (a; b) and t0 = a:If t0 2 (a; b); then similarly as in the proof of Lemma 2.2 we obtain thatlimt!t0 �2(t) = �2(t0) = u0(t0): If t0 = a; then like in the second part of theproof of Lemma 2.2 we get u0(a) = �2(a+): In particular, in both cases, if10



" > 0 is such that (2.2) is satis�ed, then there is � 2 (0; b � t0] such thatu0(t) 2 [�2(t) � "; �2(t) + "] and u(t) > �2(t) on [t0; t0 + �]: Hence, owing to(2.10) we haveu00(t)� �02(t) = f(t; �2(t); u0(t)) + u(t)� �2(t)� �02(t)> f(t; �2(t); u0(t))� �02(t) � 0 a.e. on [t0; t0 + �]and like in (2.7) for t 2 (t0; t0 + �] we obtain0 < Z tt0 �u00(s)� �02(s)�ds � u0(t)� �2(t):Consequently,0 < Z tt0 �u0(s)� �2(s)�ds � �u(t)� �2(t)�� �u(t0)� �2(t0)� on (t0; t0 + �]:As this contradicts the assumption (2.12), it follows that u(t) � �2(t) on [a; b]:Similarly we could show that �1(t) � u(t) on [a; b]:2.4. Theorem. Let (�1; �1) and (�2; �2) be respectively strict lower and upperfunctions of (0.1), (0.2) satisfying (2.3). Further, let us assume that either(1.1) and (1.2) or (1.4) and (1.5) are satis�ed with m 2 L [a; b] and U (t) =[�1(t); �2(t)] for t 2 [a; b]: Let us denote
1 = nx 2 C 1 [a; b] : �1(t) < x(t) < �2(t) and kx0kC < kmkL on [a; b]o(2.13)and let the operators L+ and F be given by (1.23) and (1.20), respectively.Then deg(I� L+F;
1) = 1:Proof. Assume (1.1) and (1.2) and for some c 2 (0;1) putg(t; x; y) = 8<: f(t; x;�c) if y < �c;f(t; x; y) if jyj � c;f(t; x; c) if y > cand 11



ew(y) = 8<: w(�c) if y < �c;w(y) if jyj � c;w(c) if y > c:Let ef be given by (2.10), where we put g instead of f and choose c > kmkLsuch that (�1; �1) and (�2; �2) are strict lower and upper functions ofu00 = g(t; u; u0); u(a)� u(b) = 0; u0(a) = ew(u0(b)):(2.14)Now consider the parameter system of boundary value problemsu00 � u = � ef(t; u; u0); u(a)� u(b) = 0; u0(a) = �ew(u0(b)); � 2 [0; 1]:(2.15)De�ning for x 2 C 1 [a; b] and for a.e. t 2 [a; b](eFx)(t) = ( ef(t; x(t); x0(t)); 0; ew(x0(b)));we get a continuous operator eF : C 1 [a; b] 7! L [a; b]�R2 and the system (2.15)can be rewritten as the parameter system of operator equationsu � �L+eFu = 0; � 2 [0; 1]:For � 2 [0; 1]; a function u 2 C 1 [a; b] is a solution to (2.15) if and only if itsatis�es the relationu(t) = � Z ba �0(t; s) ef(s; u(s); u0(s))ds+ �2(t) ew(u0(b))! on [a; b];where �0 and �2 are de�ned by (1.21) and (1.22). Therefore there is r 2 (0;1)such that 
1 � K (r) = nx 2 C 1 [a; b] : kxkC 1 < roand for any � 2 [0; 1] any solution u to (2.15) belongs to K (r): Thus, theoperator I� �L+eF is a homotopy on K (r)� [0; 1] anddeg �I� L+eF; K (r)� = deg �I; K (r)� = 1:Now, let � = 1 and let u be an arbitrary solution of the corresponding problem(2.15). We can apply Lemma 2.3 and get (2.4). Hence u is a solution of (2.14).12



Since g(t; x; y) > m(t) for a.e. t 2 [a; b] and all (x; y) 2 [�1(t); �2(t)] � R ;�1(t) � u(t) � �2(t) on [a; b] and ew(y) = w(y) for y 2 [�kmkL ; kmkL ]; wecan use Lemma 1.1 and get ku0kC < kmkL < c: It follows that u is a solutionof (0.1), (0.2). Consequently, we can make use of Lemma 2.2 to show that�1(t) < u(t) < �2(t) on [a; b]:To summarize, for � = 1 and for any solution u of (2.15) we have u 2 
1:Since eF = F on cl(
1); this means thatdeg �I� L+F; 
1�= deg �I� L+eF; 
1� = deg �I� L+eF; K (r)� = 1:The case that (1.4) and (1.5) are satis�ed instead of (1.1) and (1.2) couldbe treated in a similar way.Now, we prove an analogous theorem provided �1; �2 are ordered in theopposite way, i.e. �2(t) < �1(t) for all t 2 [a; b]:(2.16)2.5. Theorem. Let (�1; �1) and (�2; �2) be respectively strict lower and upperfunctions of (0.1),(0.2) satisfying (2.16). Further, let us assume that either(1.1) and (1.2) or (1.4) and (1.5) are satis�ed with m 2 L [a; b] and U (t) � R :Let A 2 R be such that k�1kC + k�2kC + (b� a)kmkL � A and let
2 = nx 2 C 1 [a; b] : kxkC < A; kx0kC < kmkLand there exists tx 2 [a; b] such that �2(tx) < x(tx) < �1(tx)o:Then deg(I� L+F;
2) = �1:(2.17)Proof. Put eA = A+ (b� a): Assume (1.1) and (1.2) and consider an auxiliaryequation u00 = g(t; u; u0);(2.18) 13



whereg(t; x; y) = 8>>>>><>>>>>: f(t; x; y) + jm(t)j if x � eA+ 1;f(t; x; y) + (x� eA)jm(t)j if eA < x < eA + 1;f(t; x; y) if � eA � x � eA;f(t; x; y) + ( eA+ x)[f(t; x; y) + jm(t)j] if � eA� 1 < x < � eA;�jm(t)j if x � � eA� 1:We have g 2 Car([a; b]� R2) and(2.19) g(t; x; y) > �(jm(t)j+ 1)for a.e. t 2 [a; b] and all (x; y) 2 [�( eA + 2); ( eA+ 2)]� R :The couples of functions (�1; �1) and (�2; �2) are respectively strict lower andupper functions to the problem (2.18), (0.2). Furthermore, in virtue of theassumption (1.1), also (�3; �3) = (�( eA + 2); 0) and (�4; �4) = ( eA + 2; 0) arerespectively strict lower and upper functions to the problem (2.18), (0.2) whichare "well-ordered", i.e. �3(t) < �4(t) on [a; b]: Let us de�ne sets
 = nx 2 C 1 [a; b] : kxkC < eA + 2; kx0kC < kmkL + 1o;�1 = nx 2 
 : �1(t) < x(t) on [a; b]oand �2 = nx 2 
 : x(t) < �2(t) on [a; b]o;and an operatorG : x 2 C 1 [a; b] 7! Gx 2 L [a; b] � R2 ;where (Gx)(t) = (g(t; x(t); x0(t)); 0; w(x0(b))) a.e. on [a; b]:Owing to Theorem 2.4 we havedeg(I� L+G;
) = deg(I� L+G;�1) = deg(I� L+G;�2) = 1:Let us denote � = 
 n cl(�1 [�2): Then� = nx 2 
 : there is tx 2 [a; b] such that �2(tx) < x(tx) < �1(tx)o14



and by the additivity of the degree we havedeg(I� L+G;�)= deg(I� L+G;
)� deg(I� L+G;�1)� deg(I� L+G;�2) = �1:Let u be a solution to (2.18), (0.2) and let u 2 �: Then there is tu 2 (a; b)such that �2(tu) � u(tu) � �1(tu): Consequently, for any t 2 [a; b] we haveju(t)j = ���u(tu) + Z ttu u0(s)ds��� � k�1kC + k�2kC + (b� a)ku0kC ;(2.20)wherefrom by (2.19) and Lemma 1.1 the relation kukC < eA follows. Thereforeu is a solution of (0.1), (0.2) and using Lemma 1.1 and (2.20) once more we getku0kC < kmkL and kukC < A; i.e. u 2 
2: Consequently, the excision propertyof the degree yields deg(I� L+G;
2) = �1;wherefrom, since G = F on cl(
2); we obtain (2.17).In the case that (1.4) and (1.5) are satis�ed instead of (1.1) and (1.2) wecan argue similarly.The casethere are r and s 2 [a; b] such that �1(r) < �2(r) and �2(s) < �1(s)(2.21)is treated by the following theorem.2.6. Theorem. Let (�1; �1) and (�2; �2) be respectively strict lower and upperfunctions of (0.1), (0.2) satisfying (2.21). Further, let us assume that either(1.1) and (1.2) or (1.4) and (1.5) are satis�ed with m 2 L [a; b] and U (t) � R :Let A 2 R be such that k�1kC + k�2kC + (b� a)kmkL � A and let
3 = nx 2 C 1 [a; b] : kxkC < A; kx0kC < kmkL and there existrx; sx 2 [a; b] such that �1(rx) > x(rx) and �2(sx) < x(sx)o:Then deg(I� L+F;
3) = �1:15



Proof. Let g;G; eA;�1;�2 and 
 have the same meaning as in the proof ofTheorem 2.5. Taking into account that in the case (2.21), 
 n cl(�1 [ �2)is the set of all x 2 
 for which there exist rx and sx 2 [a; b] such that�1(rx) > x(rx) and �2(sx) < x(sx); it is easy to see that the proof of thistheorem can be completed by an argument analogous to that used in the proofof Theorem 2.5.3 . Lower and upper functions and topologicaldegreeIn this section we give proper modi�cations of the results described in theprevious section to the case of lower and upper functions which need not bestrict.3.1. Lemma. Let the assumptions of Theorem 2.4 be ful�lled but with (�1; �1)and (�2; �2) not necessarily strict. For a.e. t 2 [a; b] and any � 2 [0; 1] let usput !1(t; �) = sup z2R; j�1(t)�zj�� jf(t; �1(t); �1(t))� f(t; �1(t); z)j;(3.1) !2(t; �) = sup z2R; j�2(t)�zj�� jf(t; �2(t); �2(t))� f(t; �2(t); z)j(3.2)Furthermore, let us de�ne
h(t; x; y) = 8>>>><>>>>: f(t; �1(t); y) ��1(t)� !1(t; �1(t)� x�1(t)� x+ 1) if x < �1(t);f(t; x; y) �x if x 2 [�1(t); �2(t)];f(t; �2(t); y) ��2(t) + !2(t; x� �2(t)x� �2(t) + 1) if x > �2(t)

(3.3)
and ew(y) = 8><>: w(�kmkL) + y + kmkL for y < �kmkL ;w(y) for jyj � kmkL ;w(kmkL) + y � kmkL for y > kmkL :Then h 2 Car([a; b]� R2) and for any solution u of the problemu00 � u = h(t; u; u0); u(a) = u(b); u0(a) = ew(u0(b))(3.4)the relations (2.4) and (1.3) are true. 16



Proof. The functions !i : [a; b]� [0; 1] 7! R+ (i = 1; 2) given by (3.1) and (3.2)are nondecreasing in the second variable and belong to the class Car([a; b] �[0; 1]): Hence h 2 Car([a; b] � R2) as well. Let u be an arbitrary solution of(3.4) and suppose u(t0)� �2(t0) = maxt2[a;b]�u(t)� �2(t)� > 0:In virtue of (0.2) and (1.18) it su�ces to consider the cases a < t0 < b andt0 = a: As in the proof of Lemma 2.3 we haveu0(t0) = limt!t0 �2(t) = �2(t0)in the former case and u0(a) = �2(a+) in the latter. Making use of the con-tinuity of �2; u and u0 we conclude that in both cases there are � > 0 and� 2 (0; 1) such that for all t 2 [t0; t0 + �] we havej�2(t)� u0(t)j < � < u(t)� �2(t)u(t)� �2(t) + 1 < u(t)� �2(t)and, with respect to (3.2),jf(t; �2(t); �2(t))� f(t; �2(t); u0(t))j� !2(t; j�2(t)� u0(t)j) � !2(t; u(t)� �2(t)u(t)� �2(t) + 1):Consequently, by means of (1.15), for any t 2 [t0; t0 + �] we getu00(t)� �02(t)= u(t) + f(t; �2(t); u0(t)) + !2(t; u(t)� �2(t)u(t)� �2(t) + 1)� �2(t)� �02(t)> � + f(t; �2(t); �2(t))� �02(t) > 0:Like in the proof of Lemma 2.3 this yields a contradiction with the assumptionthat u(t0) � �2(t0) is the maximal value of u(t) � �2(t) on [a; b]: Thus, therelation u(t) � �2(t) is true on [a; b]: Similarly we can show that �1(t) � u(t)on [a; b] as well, i.e. u satis�es (2.4). Therefore u is a solution of (0.1) on [a; b]:Moreover, ew satis�es (1.2) or (1.5) for all y 2 R : Hence by Lemma 1.1 we get(1.3). 17



3.2. Lemma. Let the assumptions of Lemma 3.1 be ful�lled. Then for any� > 0 the couples (�1� �; �1) and (�2 + �; �2) are respectively strict lower andupper functions to the problem (3.4).Proof. Let (�1; �1) and (�2; �2) be respectively lower and upper functions tothe problem (0.1), (0.2) such that (2.3) is true. Let an arbitrary � > 0 begiven and let us de�ne e�2(t) = �2(t) + � on [a; b]:Obviously, the couple (e�2; �2) satis�es the boundary conditions (1.18). Further,making use of (1.15) and (3.2), we get for a.e. t 2 [a; b]e�2(t) + h(t; e�2(t); �2(t)) = �+ f(t; �2(t); �2(t)) + !2(t; ��+ 1)> f(t; �2(t); �2(t)) � �02(t):This means that (e�2; �2) are upper functions to (3.4) and e�2 is not a solutionof (3.4).Now, let us put " = �2�2+1 . Since " < �2 ; for any t 2 [a; b] and any couple(x; y) 2 R2 such thatjx� e�2(t)j < " and jy � �2(t)j < "(3.5)we obtain x� �2(t) > �2 and jy � �2(t)j < x� �2(t)x� �2(t) + 1 and hence also!2(t; jy � �2(t)j) � !2(t; x� �2(t)x� �2(t) + 1):Consequently, for a.e. t 2 [a; b] and all (x; y) 2 R2 ful�lling (3.5) we cancomputex + h(t; x; y)� x� �2(t) + !2(t; x� �2(t)x� �2(t) + 1)� !2(t; jy � �2(t)j) + f(t; �2(t); �2(t))> f(t; �2(t); �2(t)) � �02(t);i.e. the functions (e�2; �2) are strict upper functions to the problem (3.4).Analogously we could show that for any � > 0 the functions (�1 � �; �1) arestrict lower functions of (3.4). 18



3.3. Theorem. Let the assumptions of Theorem 2.4 be ful�lled, but with(�1; �1) and (�2; �2) not necessarily strict. Then either the problem (0.1), (0.2)has a solution which belongs to @
1 ordeg(I� L+F;
1) = 1:(3.6)Proof. Let (�1; �1) and (�2; �2) be respectively lower and upper functions tothe problem (0.1), (0.2) ful�lling the relation (2.3). Let us choose an arbitrary� > 0: By Lemma 3.2 the couples (�1� �; �1) and (�2+ �; �2) are respectivelystrict lower and upper functions to the modi�ed problem (3.4). It means thatby Theorem 2.4 deg(I� L+H;
�) = 1;where H : x 2 C 1 [a; b] 7! Hx 2 L [a; b] � R2 ;(Hx)(t) = (h(t; x(t); x0(t)); 0; ew(x0(b))) a.e. in [a; b];
� = nx 2 C 1 [a; b] : �1(t)� � < x(t) < �2(t) + � on [a; b] and kx0kC < kemkLoand either em(t) = m(t)���!1(t; 1) or em(t) = m(t)+�+!2(t; 1) (according towhether we assume (1.1), (1.2) or (1.4), (1.5)). On the other hand, by Lemma3.1 the problem (3.4) does not possess any solution in 
� n cl(
1): Moreover,H = F on cl(
1) and so if the problem (0.1), (0.2) has no solution belongingto @
1; the modi�ed problem (3.4) has no solution belonging to @
1; either.Therefore, by the excision property of the degree we have (3.6).In the case that �1 and �2 ful�l the relation (2.16) or (2.21), making use ofTheorem 3.3 we can modify the proofs of Theorems 2.5 and 2.6 in such a waythat we get the following assertions.3.4. Theorem. Let the assumptions of Theorem 2.5 be ful�lled, but with(�1; �1) and (�2; �2) not necessarily strict. Then either the problem (0.1), (0.2)has a solution which belongs to @
2 ordeg(I� L+F;
2) = �1:Proof. Let (�1; �1) and (�2; �2) be respectively lower and upper functions tothe problem (0.1), (0.2) and let m; A; eA; g; G; (�3; �3), (�4; �4), 
; �1; �2 and� have the same meaning as in the proof of Theorem 2.5. The couples (�1; �1)19



and (�2; �2) are respectively lower and upper functions to the problem (2.18),(0.2) which need not be strict now. By Theorem 2.4 we have againdeg(I� L+G;
) = 1:Let u be a solution of (0.1), (0.2) such that u 2 @
2: Then u is also a solutionto (2.18), (0.2). Moreover, as in the proof of Theorem 2.5, making use of (2.20)and of Lemma 1.1 we can show thatkukC < A and ku0kC < kmkL :(3.7)Thus, there exist i 2 f1; 2g and tu 2 [a; b] such thatu(tu) = �i(tu);(3.8)i.e. u 2 @�i.On the other hand, let u be a solution of (2.18), (0.2) such that u 2@�1 [ @�2: By Lemma 2.2 we have �( eA + 2) < u(t) < eA + 2 on [a; b]:Furthermore, by (2.19) and Lemma 1.1 we get ku0kC < kmkL + 1: As in theproof of Theorem 2.5 this implies by (2.20) that kukC < eA; i.e. u is a solutionof (0.1), (0.2). Now, using (2.20) and Lemma 1.1 once more we obtain again(3.7) and (3.8), i.e. u 2 @
2:To summarize, (0.1), (0.2) possesses a solution belonging to @
2 if and onlyif (2.18), (0.2) possesses a solution belonging to @�1 [ @�2:Consequently, if the problem (0.1), (0.2) possesses no solution u such thatu 2 @
2; then making use of Theorem 3.3 we getdeg(I� L+G;�1) = 1 and deg(I� L+G;�2) = 1:Finally, by the same argument as in the proof of Theorem 2.5 we can showthat any solution u 2 � of the problem (2.18), (0.2) belongs to 
2. Thereforedeg(I� L+G;
2)= deg(I� L+G;
)� deg(I� L+G;�1)� deg(I� L+G;�2) = �1and taking into account that F = G on cl(
2); we complete the proof.3.5. Theorem. Let the assumptions of Theorem 2.6 be ful�lled, but with(�1; �1) and (�2; �2) not necessarily strict. Then either the problem (0.1), (0.2)has a solution which belongs to @
3 ordeg(I� L+F;
3) = �1:Proof follows from Theorem 3.3 by a modi�cation of the proof of Theorem2.6 similar to that used in the proof of Theorem 3.4.20



4 . Existence theoremsTheorems 3.3 - 3.5 give directly existence results for our problem (0.1), (0.2).Similarly as in [7] (cf. Theorem 6) it is possible to show the existence ofa solution to this problem even in the cases that the strict inequalities (2.3)and (2.16) are replaced by the non-strict ones.4.1. Theorem. Let the assumptions of Theorem 2.4 be satis�ed but with (�1; �1)and (�2; �2) not necessarily strict and instead of (2.3) let us assume�1(t) � �2(t) on [a; b]:(4.1)Then the problem (0.1), (0.2) possesses a solution u such that u 2 cl(
1) (with
1 given by (2.13).Proof. Consider an auxiliary problemu00 = ef(t; u; u0); (0:2);(4.2)where ef is for a.e. t 2 [a; b] and any y 2 R given byef(t; x; y) = � f(t; x; y) if x � �2(t);f(t; �2(t); y) if x > �2(t):Clearly, (�1; �1) are lower functions to (4.2). Now, let an arbitrary k 2 N begiven. The functions (�2 + 1k ; �2) are then upper functions to (4.2) and byTheorem 3.3 the problem (4.2) possesses a solution xk such thatxk(t) 2 [�1(t); �2(t) + 1k ] on [a; b] and kx0kkC � kmkL :Using the Arzel�a-Ascoli theorem and the Lebesgue Dominated ConvergenceTheorem for the sequence fxkg we get a solution x 2 cl(
1) of (0.1), (0.2) asa C 1 -limit of a proper subsequence of fxkg:4.2. Theorem. Let the assumptions of Theorem 2.5 be satis�ed but with (�1; �1)and (�2; �2) not necessarily strict and instead of (2.16) let us assume�2(t) � �1(t) on [a; b]:(4.3)Then the problem (0.1), (0.2) possesses a solution u such that u 2 cl(
2) (with
2 given in Theorem 2.5). 21



Proof. For any k 2 N ; a.e. t 2 [a; b] and any x; y 2 R putgk(t; x; y) = k�f(t; �2(t); y)� f(t; x; y)��x� (�2(t)� 1k)�and efk(t; x; y) = 8>><>>: f(t; x; y) if x < �2(t)� 2k ;f(t; �2(t); y) + gk(t; x; y) if x 2 [�2 � 2k ; �2(t)� 1k);f(t; �2(t); y) if x 2 [�2 � 1k ; �2(t));f(t; x; y) if x � �2(t):The couples (�1; �1) and (�2 � 1k ; �2) are then respectively lower and upperfunctions to u00 = efk(t; u; u0); (0:2)(4.4)and satisfy (2.16). It is easy to verify that for any k 2 N the function efksatis�es the assumptions for f of Theorem 2.5 with the same m 2 L [a; b]:Thus by Theorem 3.4 for any k 2 N there are a solution xk to the problem(4.4) and a point sk 2 [a; b] such thatkxkkC � A+ 1k ; kx0kkC � kmkL and �2(sk)� 1k � xk(sk) � �1(sk);where A has the same meaning as in Theorem 2.5. Using the compactnessof the interval [a; b] and the Arzel�a-Ascoli theorem we get the existence ofa subsequence fxk`g in fxkg; s� 2 [a; b] and x 2 C 1 [a; b] such thatlim`!1 kxk` � xkC 1 = 0 and lim`!1 sk` = s�:Obviously, x 2 cl(
2) and by virtue of the Lebesgue Dominated ConvergenceTheorem, x is a solution of (0.1), (0.2).4.3. Theorem. Let the assumptions of Theorem 2.6 be satis�ed but with (�1; �1)and (�2; �2) not necessarily strict. Then the problem (0.1), (0.2) possesses a so-lution u such that u 2 cl(
3) (with 
3 given in Theorem 2.6).Proof. If �1 and �2 satisfy neither (4.1) nor (4.2), they ful�l (2.21) and henceby Theorem 3.5 we have a solution u 2 cl(
3) to (0.1), (0.2).22



4.4. Corollary. Let z1; z2 2 C [a; b];m1 = maxt2[a;b] z1(t) < m2 = mint2[a;b] z2(t)(4.5)and let for a.e. t 2 [a; b] and all x; y 2 Rf(t; x; y) < 0 if x 2 (z1(t); z2(t))(4.6)and f(t; x; y) > 0 if x < z1(t) or x > z2(t):(4.7)Further, let (1.1) be satis�ed with m 2 L [a; b] and U (t) = [z1(t); z2(t)]; t 2[a; b]: Then(i) there are at least two di�erent solutions u and v to the periodic boundaryvalue problem u00 = f(t; u; u0); u(a) = u(b); u0(a) = u0(b)(4.8)such that v(tv) � m1 for some tv 2 [a; b](4.9)and maxfm2; v(t)g � u(t) on [a; b];(4.10)(ii) if we suppose in addition that for any compact K � [m2;1)� R thereis a nonnegative function hk 2 L [a; b] such that(4.11) f(t; x1; y1)� f(t; x2; y2) > �hk(t)jy1 � y2jfor a.e. t 2 [a; b] and all (x1; y1); (x2; y2) 2 K such that x1 > x2;then u is the only solution of (4.8) bounded below by m2:Proof. (i) Without any loss of generality we may assume that m(t) � 0 a.e.on [a; b]; i.e. we havef(t; x; y) � m(t) for a.e. t 2 [a; b] and all (x; y) 2 R2 :Furthermore, by (4.5) there are r1; r2; such thatr1 < mint2[a;b] z1(t) � m1 < m2 � maxt2[a;b] z2(t) < r2:23



According to (4.6) the couples (m1; 0) and (m2; 0) are lower functions of (4.8)and by (4.7) the couples (r1; 0) and (r2; 0) are upper functions of (4.8). Hence,by Theorems 4.1 and 4.2 there are solutions v and v1 of (4.8) such thatr1 < v(tv) < m1 for some tv 2 (a; b) and m2 � v1(t) � r2 for all t 2 [a; b]:Suppose that v and v1 are not ordered on [a; b]; i.e. there is sv such thatv1(sv) < v(sv); and set�1(t) = maxfv(t); v1(t)g for t 2 [a; b]:(4.12)Then �1 2 A C [a; b]; �01 2 BV [a; b]; �1 is not a solution of (4.8) but the functions(�1; �01) are lower functions of (4.8). According to (4.7) we can �nd a numberr� > k�1kC such that (r�; 0) are upper functions of (4.8). This implies theexistence of a solution u of (4.8) satisfying �1(t) � u(t) � r� on [a; b]: Providedv and v1 are ordered, we set u = v1:(ii) Suppose (4.11) and let u1 6= u be a solution of (4.8) such that m2 �u1(t) on [a; b]: Set z(t) = u1(t) � u(t) and choose a compact K such that(u(t); u0(t)) 2 K and (u1(t); u01(t)) 2 K for all t 2 [a; b]: We can assume thatmaxt2[a;b] z(t) = z(t0) > 0 and z0(t0) = 0 for some t0 2 [a; b): Then there existst� > t0 such that z0(t�) � 0 and z(t) > 0 on [t0; t�]: Now, (4.11) impliesz00(t) > �hk(t)jz0(t)j = ��hk(t) sgn(z0(t))�z0(t) for a.e. t 2 [t0; t�]:Thus, �z0(t) exp �Z tt0 �hk(s) sgn(z0(s))�ds��0 > 0 on [t0; t�]and z0(t�) exp�Z t�t0 �hk(s) sgn(z0(s))�ds� > z0(t0) = 0;a contradiction.4.5. Remark. Provided zi is a constant function for some i 2 f1; 2g; it isa solution of (4.8). In this case we can set v(t) = zi(t): If z1 is not constant,then there exists sv 2 [a; b] such that v(sv) > z1(sv): Similarly, if z2 is notconstant, we get u(tu) < z2(tu) for some tu 2 [a; b]: These observations followfrom the fact that any solution of (4.8) cannot have all its values outside(z1(t); z2(t)): 24



4.6. Remark. In the case that f(t; x; y) � g(t; x) the assertion (i) of Corol-lary 4.4 is ful�lled under the assumptions (4.5), (4.6) and (4.7). Thus ourCorollary 4.4 generalizes Theorem 4.7 from [3]. Further, the assertion (ii) ofCorollary 4.4 is true provided g is increasing in x on [m2;1) for a.e. t 2 [a; b]:4.7. Remark. The lower and upper functions method which is described inthis section (cf. Theorems 4.1 - 4.3 and Corollary 4.4) can be used for sin-gular boundary value problems, as well. For multiplicity results for periodicboundary value problems which were obtained by this method, see [8].4.8. Remark. Conditions ensuring the existence of constant lower and upperfunctions of the problem (0.1), (0.2) were mentioned in Remark 1.8. In theproof of Corollary 4.4 we constructed nonconstant lower functions whose �rstcomponent was the maximum of two solutions of the problem (4.8) (cf. (4.12)).In general, it is not easy to �nd conditions which guarantee the existence ofnonconstant lower and upper functions. One of the possibilities is shown in [9]where they are constructed as solutions of linear boundary value problems forgeneralized linear di�erential equations.References[1] C. De Coster, P. Habets: Lower and upper solutions in the theory of ODE boundaryvalue problems: Classical and recent results, in: Nonlinear Analysis and BoundaryValue Problems for Ordinary Di�erential Equations (CISM Courses and Lectures vol371, Springer-Verlag, Wien 1996), pp. 1-78.[2] J. Cronin: Fixed Points and Topological Degree in Nonlinear Analysis, AMS, 1964.[3] S. Gaete, R. F. Man�asevich: Existence of a Pair of Periodic Solutions of an O.D.E.Generalizing a Problem in Nonlinear Elasticity, via Variational Methods, J. Math.Anal. Appl. 134 (1988), 257-271.[4] Ch. Fabry and P. Habets: Lower and Upper Solutions for Second-Order BoundaryValue Problems with Nonlinear Boundary Conditions, Nonlinear Analysis, TMA 10(1986), 985-1007.[5] I. Kiguradze: On Some Singular Boundary Value Problems for Nonlinear OrdinaryDi�erential Equations of the Second Order (in Russian), Di�erencial'nye Uravnenija 4(1968), 1753-1773.[6] I. Rach�unkov�a: Lower and Upper Solutions and Topological Degree, J, Math. Anal.Appl., to appear.[7] I. Rach�unkov�a: Multiplicity Results for Periodic Boundary Value Problems in the Cara-th�eodory Case, Faculty of Science, Palack�y Univ. Olomouc, Preprint 22 (1998), 1-23.25
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