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Abstract. Existence principles for the BVP (é(u')) = f(t,u,u’), u(ti+) = Ji(u(t;)), v'(t:+) =
M;(u'(t;)), i = 1,2,...,m, u(0) = u(T), v'(0) = u'(T) are presented. They are based on the
method of lower/upper functions which need not be well-ordered.
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1. Formulation of the problem

LetmeN, 0=ty <t; <--- <ty <tpmy1 =T and D = {t1,ty,...,t,,}. Define Cp
(or Cl)) as the sets of functions u : [0,7] — R,

U[O](t) lf t e [0, tl],
U(t) _ U[l](t) lf t e (tl,tQ],
Ul (t) if t¢ (tm, T],

where up;) is continuous on [t;,%;41] (or continuously differentiable on [t;,%;11]) for
i=0,1,...,m. We put [[ullp = [lulloc + [[t/]|cc, Where [Julloc = sup ess,co 7 |u(?)]-
Then Cp and C}, respectively with the norms ||.||o and ||.||p become Banach spaces.
Further, ACyp is the set of functions u € Cp which are absolutely continuous on each

subinterval (t;,t;41),7=0,1,...,m.
We consider the problem
(1.1) (G(u'(1)) =f(t,u(t),u'(t)) ae. on [0,T],
(1.2) u(ti+) = Ji(u(ty), o'(t+) = M;(u'(t;)), i=1,2,...,m,
(1.3) u(0) = u(T), w'(0) =u'(T),
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where u'(¢;) = u/(t;—) = limy_,, u'(¢) for i = 1,2,...,m + 1, ¥/(0) = u'(0+) =
limy o4 u'(¢), f is an L;-Carathéodory function, functions .J;, M; are continuous on
R and ¢ is an increasing homeomorphism such that ¢(0) = 0 and ¢(R) = R. A
typical example of a proper function ¢ is the p-Laplacian ¢,(y) = |y[’ %y, where
p>1.

A solution of the problem (1.1)—(1.3) is a function u € C}, such that ¢(u') € ACp
and (1.1)—(1.3) hold.

A function o € C}, is called a lower function of (1.1)-(1.3) if ¢(o’) € ACp and

p(o’'(t) > f(t, o
(1.4) o(ti+) = Ji(o(t;)
o(0) =o(T), o'

Similarly, a function ¢ € Cl, with ¢(0’) € ACp is an upper function of (1.1)-(1.3)
if it satisfies the relations (1.4) but with reversed inequalities.

The aim of this paper is to offer existence principles for problem (1.1)—(1.3) in
terms of lower/upper functions. Hence our basic assumption is the existence of
lower /upper functions. We will suppose that either

(t),0'(t)) forae. te][0,T],
), o'(ti+) > M;(o'(t;)), i =1,2,...,m,
0) > o'(T).

Y

(1.5) o1 and oy are respectively lower and upper functions of (1.1)—(1.3)
such that oy <oy on [0,7]

or

(1.6) oy and oy are respectively lower and upper functions of (1.1)—(1.3)
such that oy £ 09 on [0,T], i.e. o1(7) > o3(7) for some 7 € [0, T].

Note that problems with ¢-Laplacians and impulses have not been studied yet.
As concerns problem (1.1), (1.3) (without impulses), there are various results about
its solvability. For example the papers [4] and [19] present some results about the
existence or multiplicity of periodic solutions of the equation

(1.7) (6p(u))" = [(t,u)

under non resonance conditions imposed on f. The paper [10] presents general
existence principles for the vector problem (1.1), (1.3). Using this the authors
provide various existence theorems and illustrative examples. The vector case is
also considered in [9], [11] and [12]. The existence of periodic solutions of the
Liénard type equations with p-Laplacians has been proved in the resonance case
under the Landesman-Lazer conditions in [5] and [6]. Multiplicity results of the
Ambrosetti-Prodi type for this problem (with a real parameter) can be found in [§].

The papers which are devoted to the lower/upper functions method for the prob-
lem (1.1), (1.3) mostly deal with the condition (1.5), i.e. they assume well-ordered
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01/0y. We can refer to the papers [1] and [3] which study the problem (1.1), (1.3)
under the Nagumo type two-sided growth conditions and to the paper [17] where
the second order equation with a ¢-Laplacian is considered provided a functional
right-hand side of this equation fulfils one-sided growth conditions of the Nagumo
type. The significance of the lower/upper functions method is shown in the papers
[7] and [18] where this method is used in the investigation of singular periodic prob-
lems with a ¢-Laplacian. The paper [2] is, to our knowledge, the only one presenting
the lower/upper functions method for the problem (1.7), (1.3) (with a ¢-Laplacian)
under the assumption that oy > o9, i.e. lower/upper functions are in the reverse
order. If ¢ = ¢, the authors get the solvability of (1.7), (1.3) for 1 < p < 2, only.
Therefore the existence principles (Theorems 2.3 and 2.4) which we state here for the
impulsive problem (1.1)—(1.3) and the case (1.6) are new even for the non-impulsive
problem (1.1), (1.3).

We will work with the following assumptions, where the sets A;, B(t) C R,
t € [0, 7], will be determined later, according to whether (1.5) or (1.6) is assumed:

ti)=>J()>J(01( )) for x € A;, 1=1,2 m;
t 3 Y VAR Y

y <ot (01 (t:)),
1.9 1=1,2,...,m;
COIR 5 e v
(1.10) there is h € LL; such that

|f(t,z,y)| < h(t) forae. t€]0,7] and all z,y € R;

there are w : [0, 00) — (0, 00) continuous and h € L; such that
(1.11) —— =ocand [f(t,z,y)] < w(o(ly])) (Jy[+ h(t))

forae tE 0,7, all z € B(t) and |y| > 1,

there are ¢;, d; € R, ¢; <oy(t) <d; on (t_1,t], k=1,2,

(1.12) such that f(t,z,¢;) <0, f(t,z,d;) >0 forae. te (t_1,t]

and all z € B(t), j=1,2,...,m+1, and ¢; > ¢py1,dy < dpya,
Mz(cz) S Ci—l—l; Mz(dl) Z di—l—l; Z = 1,2, Lo,

2. Main results

Below we formulate our main results:

I. EXISTENCE PRINCIPLES FOR WELL-ORDERED CASE

2.1 Theorem. Assume that (1.5), (1.8) with A; = [01(t;),092(t;)], i = 1,2,...,m,
(1.9) and (1.11) with B(t) = [01(t), 04(t)] hold. Then the problem (1.1) — (1.3) has
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a solution u satisfying
(2.1) o <u<oy on [0,T].

2.2 Theorem. Assume that (1.5), (1.8) with A; = [01(t;),092(t;)], i = 1,2,...,m,
(1.9) and (1.12) with B(t) = [o1(t), 02(t)] hold.
Then the problem (1.1) — (1.3) has a solution u satisfying (2.1) and

(22) Cj < U,’(t) < dj fO?" t e (tj—latj]; ] = 1,2, o, m+ 1.

II. EXISTENCE PRINCIPLES FOR NON-ORDERED CASE

2.3 Theorem. Assume that (1.6)
1

1.6), (1.8) with A; = R, i = 1,2,...,m, (1.9) and
(1.10) hold. Then the problem (1

) — (1.3) has a solution u satisfying
(2.3) lu(ty)] < max{|oi(t,)], |o2(ts)|}  for some t, € [0,T].

2.4 Theorem. Assume that (1.6), (1.8) with A; = R, i = 1,2,...,m, (1.9) and
(1.12) with B(t) = R hold. Then the problem (1.1) —(1.3) has a solution u satisfying
(2.2) and (2.3).

Note that Theorems 2.2 and 2.4 impose no growth restrictions on f. For example,
taking f(t,z,y) = y (y**x? +1)— 2>~ +e(t), where e € Cp, k, n € N, we can check
that there are ¢; € (—00,0) d; € (0,00), j = 1,2,...,m + 1, such that ¢; > ¢y,
d1 < dm—i—l; f(t,l',Cj) <0 and f(t,l',dj) >0 for a.e. t € (tj—latj] and all x € R,
j=12,....,m+1.

3. A fixed point operator

We will transform the problem (1.1)-(1.3) into a fixed point problem in Ci,. First,
we borrow some ideas from [10] to get the following two lemmas.

3.1 Lemma. For each { € Cp and d € R, the function
T
Uy :R= R, Uy4a) = d+/ ¢ ' (a+L(t) dt
0

has exactly one zero point a(f,d) in R.

Proof. Choose ¢ € Cp and d € R. Since ¥, 4 is continuous, increasing on R and
U, 4(R) =R, there is a unique real number a(¢, d) such that

(3.1) Uy g(all, d)) = 0. 0
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3.2 Lemma. The mapping a : Cp x R — R defined by (3.1) is continuous and
maps bounded sets into bounded sets. !

Proof. (i) Assume that A C Cp x R and 7 € (0,00) are such that |||/ + |d| < v
for each (¢,d) € A and that there is a sequence {a({,,d,)}>°, C a(A) such
that lim, o a(ly,d,) = o0 or lim, o a(l,,d,) = —oo. Let the former possibil-
ity occur. Then, by (3.1), we have 0 = lim,_,, Yy, 4, (a(ly, dy)) > lim, oo (=7 +
Tot (a(ﬂn, d,) — 7)) = o0, a contradiction. The latter possibility can be argued
similarly.

(ii) Let limy, oo (4y, dy) = (bo,dp) in Cp x R. By (i) the sequence {a(l,,d,)}>,
is bounded and hence we can choose a subsequence such that lim,, , a(l, ,dg,) =
ap € R. By (3.1), we get

T
0 = ‘Ilzkn’dkn (a'(gkrﬂ dkn)) = dkn + / ¢_1 (a'(gkrﬂ dkn) + gkn (t)) dt’
0

which, for n — oo, yields

T
0:d0+/ ¢~ (ao + 4o(t)) dt.
0

Thus, with respect to Lemma 3.1, we have ag = a({y, dy) = limy, o a(ly, dy,). O

3.3 Lemma. The operator N : Cl, — Cp given by

3:2) WE)O= [ o). 2/() ds+ 30 [V (1) =6 (1) (s, 7700

is absolutely continuous. ?

Proof. The continuity of N follows from the continuity of all the mappings involved
in the right-hand side of (3.2). Furthermore, let # C C}, be bounded. We need to

show that the closure N'(H) of N (H) in Cp is compact. To this aim, let ||z||p <
v < oo for each x € H. Then there are ¢ € (0,00) and h € Ly such that

m

3 [6(Mi(' (1)) — ¢(«/(8)] < ¢ and | f(t,a(), 2 (£)] < h(t) ae. on [0,T]

=1

for all z € H. Therefore

(3.3) IV (2)]|loo < J|P|lL + ¢ for each z € H.

!The norm of (¢,d) € Cp x R is defined by ||| + |d|.
2As usual, xus stands for the characteristic function of the set M C R.
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Put (N (2))(t) = fotf(s,x(s),x’(s)) ds. Then, for ¢, t, € [0,T], we have

[(Ni(2))(t2) = Ni(2)) ()] < \/t2h(8) ds|,

wherefrom, by (3.3), we deduce that the functions in N (#) are uniformly bounded
and equicontinuous on [0, 7. Hence, making use of the Arzela-Ascoli Theorem in C
(the space of functions continuous on [0,7] with the norm ||.||), we get that each
sequence in N7 (#H) contains a subsequence convergent with respect to the norm ||. || .
This shows that N;(#H) is compact in Cp. We know that the operator No = N — N
is continuous. By (3.3), it maps bounded sets into bounded sets. Moreover, its

values are contained in an m-dimensional subspace of Cp. Thus, Ny(#H) is compact
in (CD . Ol

3.4 Theorem. Let a: Cp x R — R and N : C, — Cp be respectively defined by
(3.1) and (3.2). Furthermore define J : CL — CL by

m

B4 (@)=Y [alt) - o) xg, 11(0)

=1

33 F@0 = [ 67 (W@, (@) + W) ds
+ 2(0) + 2'(0) — 2 (T) + (T (2))(2).

Then F : Cl — Cl, is an absolutely continuous operator. Moreover, u is a solution
of the problem (1.1) — (1.3) if and only if F(u) = u.

Proof. For x € C}) and t € [0, T], we have

(3.6) (F(@)'(t) = ¢ (a(N (), (T (2))(T)) + N (2))(1)).

Since the mappings a, N and J included in (3.5) and (3.6) are continuous, it follows
that F is continuous in C}.

Choose an arbitrary bounded set H C Cl. We will show that then the set
F(H) is compact in C},. Let a sequence {v,} C F(H) be given. It suffices to
show that it contains a subsequence convergent in Cly. Let {x,} C H be such that
vp, = F(x,) for n € N. By Lemma 3.3, there is a subsequence {wj,} such that
{N(x,)} is convergent in Cp. According to (3.3) and (3.4), there exists v € (0, 00)
such that [|N(2)||le + |(T(2))(T)] < v for all x € H. Hence, by Lemma 3.2, the se-
quence {a(N(zy, ), (T (zx,))(T))} C R is bounded and we can choose a subsequence
{x¢,} C {w,} such that {a(N(zy,), (T (z¢,))(T)) + N (z¢,)} is convergent in Cp.
Consequently, {(F(zy,))'} and {F(z,,)} are convergent in Cp, as well. Finally, by a
direct computation we check that (1.1)—(1.3) is equivalent to the problem u = F(u).
For more details, see our preprint [15]. O



Second Order Periodic Problem with ¢-Laplacian and Impulses 7

4. Proofs of the main results

Sketch of the proof of Theorem 2.1. We can modify the arguments and con-
structions of [13], where the case ¢(y) =y is considered. By virtue of Theorem 3.4,
the problem (1.1)—(1.3) has a solution if and only if the operator F which is defined
by (3.5) has a fixed point. To prove it we argue as follows: (i) we construct an aux-
iliary operator F and prove that its Leray-Schauder topological degree is nonzero
and consequently F has a fixed point u; (ii) using the method of a priori estimates
we show that u is a fixed point of F satisfying (2.1). Since the realization of these
ideas is quite close to the arguments of [13], we skip it. Detailed computation can
be found in our preprint [15].

Proof of Theorem 2.2. STEP 1. Define

c; for y <ygy,
(4.1) Bily) =< vy for ¢; <y <dj, j=12....m+1;
d; for y>d,

= o B y — Biy)

(4'2) f(t,x,y)—f(t, 75](y))+ |y_5j(y)|+1
fora.e. t € (t;_1,t], z,y eR, j=1,2,...,m+1;

and

= ria y — B (y) o i m
(4.3)  M;(y) = Mi(Bi(y)) + PRI for y € R, 1,2,...,m.
Now, consider the auxiliary problem
(4.4) ($(u' (1)) =F(t, u(t), /(1)) ae. on [0,T];
(4.5) u(ti+) = Ji(u(ty)), u'(ti+) = ]\Z(u'(ti)), 1=1,2,...,m,
(4.6) w(0) = u(T), Au(u'(0)) = u'(T).

We see that fand ]\Z have the same properties as f and M;. In particular, fsatisﬁes
(1.11) with w(s) = 1, M; fulfils (1.9) and o, /09 are lower /upper functions for (4.4)—
(4.6). Since we work with (4.6) instead of (1.3), we have to replace the expression
z(0) +2'(0) — 2'(T) in (3.5) by 2(0) + B1(2'(0)) — 2'(T'). Then we get the existence
of a solution u of (4.4)-(4.6) satisfying (2.1) in the same way as in the proof of
Theorem 2.1 for (1.1)—(1.3).

STEP 2. Having the solution u of (4.4)—(4.6), it remains to show that (2.2) is true.
(i) Let j € {1,2,...,m+ 1} and £ € [t;_1,t;) be such that
(4.7) sup{u'(t) : t € [0,T]} = u'({+) > d;.
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Then there is § > 0 such that (§,§ +9) C (¢j_1,t;) and ' > d; on (§,§ +6).
By (1.12),

u (t)

(p(u'(2))) = f(t,u(t),d;) + o) — e 0 fora.e. t € (&E&+9),
Le. ¢(u'(t)) > ¢(u'(£+)) and so u'(t) > u (f—i—) for each ¢t € (£, £+ 6)), which

contradicts (4.7).

(ii) Assume that
(4.8) sup{u'(t) : t €[0,T]} = u'(t;) > d; for some t; € D.

If j=m+1,ie u'(T) > dys1, then, by (1.12), we have also v/(T") > d;. Since
(4.1) and (4.6) imply u'(7") < d;, we get a contradiction.

If 7 <m+1, then

—~ u'(t) — d;
M;(u'(t5)) = M;(dy) + m > Mj(d;) = dja,

so u'(tj+) > dj;1. By part (i) we know that «'(¢f) — d;;; cannot achieve a
positive maximum inside (¢;,%;+1). Consequently, we have u'(tj+1) > dj1.
Repeating this procedure we get v'(T") > d,,+1 and a contradiction as before.

We have proved that v/(t) < d; on (t;_1,t;], 5 = 1,2,...,m + 1. The remaining
inequalities in (2.2) can be derived analogously. Finally, since u fulfils (2.2), u is a
solution of (1.1)—(1.3).

Sketch of the proof of Theorem 2.3. We borrow ideas of [14], where non-
ordered lower/upper functions to periodic impulsive problem without ¢-Laplacian
(¢(y) = y) have been studied. Here, we define the operator F by (3.5). Then,
according to F, we construct auxiliary operators and compute their Leray-Schauder
degrees by a similar procedure as in [14]. For this we need a priori estimates of
solutions of corresponding auxiliary problems. Now we consider problems with ¢-
Laplacians but the basic evaluation of estimates of ¢(u') are similar to those of v’
in [14] and hence we omit their computation here. For details see our preprint [16].

Proof of Theorem 2.4. First, we will prove the following a priori estimate:

CramM. There exist a; € (0,00), j = 1,2,...,m+ 1, such that for each function
u € C} satisfying (1.2), (1.3), (2.2) and (2.3), the estimates

(4.9) lu(t)| < a; for te(tji_1,t], j=1,2,...,m+1

are valid.
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Indeed, let u satisfy the assumptions of CLAIM and let
po = max{||o1]|ec, [|02]|ec} and 7, = max{|c|, |di|}, i =1,2,...,m+ 1.

(i) If t, € [0,1], then |u(t)] < vty + po for t € [0,¢1]. Put a? = ¢, + po and
b = max{|J;(z)| : = € [—a},al]}. Then |u(t)] < 72 (ta — t1) + b) for t € (1, t2).
Further, put a3 = v (to — ;) + b} and b3 = max{|J2(z)| : = € [—a),ad]}. Then
lu(t)| < 73 (t3 — t2) + b3 for ¢ € (ty, t3]. By induction we get that |u(t)] < a? for ¢ €
(tio1, ti], where @l = vipq (tig1 — ;) + max{|Ji(z)| : € [-a,al]}, i =1,2,...,m.
(i) If t, € (tj,tj41] for some j € {1,2,...,m}, we get similarly as in (i) that
lu(t)] < aj for t € (t;1,t], i = 1,2,...,m+ 1, where a},, = vj41 (tj41 — t5) + po,
a{+1 = Yi+1 (tH-l _ti) —|—max{|JZ(x)| RS [—af, g]}: i=12,...,-15+1,...,m,
a} =Yt + Gy
Setting

a; :max{po,ag,a},...,a;”} for j=1,2,...,m+1,
we complete the proof of CLAIM.

Now, take ; by (4.1) and for a; of CLAIM put

—a; for z < —aj,
aj(r) = z  for —a; <z <ay,
a; for x > a;
and

~ (o). B y — Biy)
f(taxay)_f(t7 J( )75](y))+ |y_5j(y)|+1

fora.e. t € (t;_1,t], all z,yeR, j=1,2,..., m+1.

Finally, define ]sz by (4.3). We see that all assumptions of Theorem 2.3 are satisfied
for the problem (4.4)—(4.6) and consequently it has a solution u satisfying (2.3). As
in the proof of Theorem 2.2, Step 2, we get that w fulfils (2.2). Hence u satisfies
(1.2), (1.3) and, by CrLAIM, also (4.8). Therefore, u is a solution of (1.1)—(1.3).
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