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Summary. We construct nonconstant lower and upper functions for the periodic boundary value
problem u” = f(t,u), u(0) = u(27), v'(0) = v'(27) and find their estimates. By means of these
results we prove existence criteria for the problems u” £ g(u) = e(t), u(0) = u(27), u'(0) = u'(27),
where lim sup, o, g(z) = oo is allowed and e € L[0, 27] need not be essentially bounded.
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1 . Introduction

In this paper we construct lower and upper functions to the periodic boundary value
problem

(1.1) u" = f(t,u), u(0)=u(2n), u'(0)=u'(27).
By means of these results we prove existence criteria for the problems
u" £ g(u) =e(t), u(0)=u2r), «(0)=1u'(2n),

where limsup,_,o, g(z) = oo is allowed and e € L[0,27] need not be essentially
bounded. We assume that f : [0, 27] xR — R fulfils the Carathéodory conditions on
[0,27] xR, i.e. f has the following properties: (i) for each x € R the function f(., x) is
measurable on [0, 27]; (ii) for almost every ¢ € [0, 27] the function f(¢,.) is continuous
on R; (iii) for each compact set KC R the function mg(t) = sup.ex |f(¢, )| is
Lebesgue integrable on [0, 27].
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For a given subinterval J of R (possibly unbounded) C(.J) denotes the set of
functions continuous on J. Furthermore, L[0, 27| stands for the set of functions
Lebesgue integrable on [0, 27], Ly[0,27] is the set of functions square Lebesgue
integrable on [0, 27| and AC|0, 27| denotes the set of functions absolutely continuous
on [0, 27]. For  bounded on [0, 27|, y € L[0, 27| and z € Ly[0, 27] we denote

1 2

lalle = swp la(®)l, T=5- [ wls)ds,
te[0,27] ™ Jo

2w %
o= [ lo0lde and el = ([ )
0 0

By a solution of (1.1) we mean a function u : [0,27] +— R such that u' €
AC[0,27], u(0) = u(27), v'(0) = v'(27) and

u"(t) = f(t,u(t)) forae. te|0,2n]

1.1. Definition. A function o, € ACJ0, 2] is said to be a lower function of the
problem (1.1) if o} € ACI0, 27],

ol (t) > f(t,o1(t)) fora.e. te 0,27
01(0) = 01(27), 07(0) > o (2m).
Similarly, a function oo € AC[0,27] is said to be an upper functions of the
problem (1.1) if o}, € AC|0, 27},
ay(t) < f(t,o9(t)) fora.e. tel0,27]
02(0) = 0(27), 05(0) < 0y(2).

The lower and upper functions approach we will use here is based on the following
theorem which is contained in [8, Theorems 4.1 and 4.2].

1.2. Theorem. Let oy and oy be respectively a lower and an upper function of the
problem (1.1).

(I)  Suppose 01(t) < o9(t) on [0,2r]. Then there is a solution u of the problem
(1.1) such that oq(t) < u(t) < o9(t) on [0, 27].

(
(IT)  Suppose o1(t) > o2(t) on [0,27] and there is m € L[0, 2r| such that
f(t,x) > m(t) (or f(t,z) <mf(t)) for a.e. t€|0,2n] and all z € R.
Then there is a solution u of the problem (1.1) such that ||u'l|c < ||m|}; and

oo(ty) < ulty) < oy(ty) for some t, € [0,2n].



2 . Construction of lower and upper functions

2.1. Proposition. Assume that there are A € R and b € L|0, 27| such that

(2.1) b=0,

(2.2) f(t,x) <b(t) for a.e.t €10,2r] and all x € [A, B,
where

(2.3) B:A+§mm

Then there exist a lower function o of the problem (1.1) such that
(2.4) A<o(t) < B on [0,2n].

Proof. Define

2
oo(t) = co +/ g(t,s)b(s)ds for t e [0,2nr],
0

where
t(s — 2
Hs=2m) 4 o<i<s<om
27
g(t,s) = s
ﬂ if 0<s<t<2m
27
and
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“o (/()%g(t,s)b(s)ds)dt.

As g is the Green function of the problem v" = 0, v(0) = v(27), v'(0) = v'(27), we
have

Cyp =

(2.5) oy (t) =b(t) a.e. on [0,27]
and
(2.6) 00(0) = 0o(27), 03(0) = op(27)

Multiplying the relation (2.5) by oy, integrating it over [0, 27] and using the Holder
inequality we get

logllz < N1bll1llovo]lc

Further, as 5 = 0, the Sobolev inequality (see [5, Proposition 1.3]) yields

™
o413 < /% bl
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and so

m
Jobl < /% Il

wherefrom using again the Sobolev inequality we get
T
loolle < & lIolls.
Thus, the function o given by
(2.7) o(t) = %||b||1 + A+ o(t) for te0,2n]

satisfies (2.4). Furthermore, according to (2.1),(2.2) and (2.6), (2.7) we have

(2.8) a"(t) = o4 (t) =b(t) > f(t,o(t)) fora.e. te|0,2n]

and

(2.9) o(0) =o(2m), o'(0) =o'(2m),

i.e. o is the lower function of (1.1). O

The following assertion is dual to Proposition 2.1 and its proof can be omitted.

2.2. Proposition. Assume that there are A € R and b € L|0, 27| such that

b=0
and
f(t,x) > a+b(t) forae te|0,2n] andall x € [A, B]

where B is given by (2.3). Then there exist an upper function o of the problem (1.1)
with the property (2.4). O

3 . Applications to Lazer-Solimini singular prob-
lems

In this section we will consider possibly singular problems of the attractive type

(3.1) u" + g(u) = e(t), u(0)=u(2r), u'(0)=u'(27)
and of the repulsive type

(3.2) u" = g(u)=e(t), u(0)=u2m), u'(0)=n71'(27),
where



(3.3) g € C(0,00) and e € L[0,27]

and it is allowed that limsup,_,(, g(z) = oo.

The problem (3.1) has been studied by Lazer and Solimini in [6] for e € CJ[0, 27]
and ¢ positive. In [9, Corollary 3.3], their existence result has been extended to
e € L0, 2n] essentially bounded from above. Here, we bring conditions for the
existence of solutions to (3.1) without boundedness of e.

3.1. Theorem. Assume (3.3) and let there exist Ai, Ay € (0,00) such that

(3.4) g(x) >e€ forall x €Ay, By,
(3.5) g(x) <€ forall x € [Ay, By,
where

7
(36) Bl—AlzBQ—A2:§||€—€||1
and A2 Z Bl.

Then the problem (3.1) has a solution w such that A; < u(t) < By on [0, 27].

Proof. Define for a.e. t € [0, 27],

st = - { ) e T30

Then f satisfies the Carathéodory conditions on [0, 27] x R. Furthermore, by (3.4)
and (3.6), f satisfies (2.1)-(2.3) with b(t) = e(t) — € a.e. on [0,27] and [A, B] =
[A1, B:]. Hence, by Proposition 2.1 there exists a lower function oy of (1.1) such that
o1(t) € [Ay, By for all t € [0, 27]. Similarly, (3.5), (3.6) and Proposition 2.2 yield the
existence of an upper function oy of (1.1) such that o9(t) € [As, Bs] on [0, 27]. Now,
since Ay > By, we have o1 (t) < 02(t) on [0, 27] and the assertion (I) of Theorem 1.2
gives the existence of a desired solution u to (1.1) which is also a solution to (3.1),
of course. O

Classical Lazer and Solimini’s considerations [6] of the repulsive problem (3.2)
have been extended by several authors (see e.g. [1], [2], [3], [4], [7] and [11]). Here
we present a related result, where e need not be essentially bounded.

3.2. Theorem. Assume (3.3),

1

(3.7 lim [ g(e)de = oo,
z—=0+ [
and
(3.8) g. == inf g(z) > —o0.
z€(0,00)



Furthermore, let there exist Ay, Ay € (0,00) such that

(3.9) g(zx) <
(3.10) g(x) =

N

—e forall x €[A, By,
—e for all x € [Ay, By,

where (3.6) is true and A; > Bs.
Then the problem (3.2) has a positive solution.

Proof. Denote

B
K=l + ool B=Bi+20k and K =Klel+ [ lg)|ds.
A»
It follows from (3.7) that limsup,_ ,o, g(x) = oo and there exists ¢ € (0, A3) such
that

(3.11) /A2 g(z)de > K* and g(e) > 0.

Define

N (x) if xz>¢,
g(x)—{z(g) if x<e,

and
f(t,x) =e(t) +g(z) fora.e.t€[0,2n] and all z € R.

Now, we can argue as in the proof of Theorem 3.1 and get a lower function o; and
an upper function oy of (1.1) such that oy () > o9(t) on [0, 27]. The assertion (II) of
Theorem 1.2 (with m(t) = g« +e(t) a.e. on [0, 27]) implies that (1.1) has a solution
v such that u(t,) € [Ay, By for some t, € [0,27] and ||v/||c < K. It remains to
show that u(t) > ¢ holds on [0, 27].

Let ty and ¢; € [0, 27] be such that

tp) = mi t d t1) = t).
u(to) té’[%f%r]“( ) and u(ty) t?[o‘j‘%r]“( )
Clearly, As < u(t;) < B. With respect to the periodic boundary conditions we have
u'(ty) = u'(t1) = 0. Now, multiplying the differential relation u”(t) = e(t) + g(u(t))
by u/(t) and integrating over [ty,t1], we get

0— /t ! (bl (t)dt = /t Ce(td () dt + /t () (1) dt,

u(t1) t1
/ G(r)de = —/ e (1)dt < K|lel]s.

(to) to



Further,

Az B
[ g < Kl + [ fgle)lds =k

(to) Az

which, with respect to (3.11), is possible only if u(ty) > e. Thus, w is a solution to
(3.2). O

3.3. Example. Let g(z) = == on (0,00). If v > 0, then Theorem 3.1 ensures the

x
existence of a positive solution to (3.1) for any e € L0, 27] such that

(3.12) €>0 and —e|le—elL <1

T
3
The function e(t) = ¢ + \/—— — < with ¢ € R is not essentially bounded from above
on [0, 27]. However, it satisfies (3.12) if

D<e< (D)

We should mention that provided e € CJ|0,2n] or e is essentially bounded from
above, the condition € > 0 is sufficient for the existence of a solution to (3.1) (cf.
[6] or [9], respectively.

3.4. Example. Let e € L[0, 27] be essentially unbounded from below and let

1+ sin(%)

—arctan(z), z € (0,00).
T

g(z) =

Then g verifies the assumptions (3.3), (3.7) and (3.8) of Theorem 3.2. Let us sup-
pose that @ = —5. Then the equation g(z) = 5 has exactly 5 roots in the interval
[0.125, 00). In particular, we have (see Figures 1 and 2)

1 ~ 0.126804, x5 ~ 0.141071, z3 ~ 0.167853, x4 ~ 0.200541, x5 ~ 0.244461,
g(x) >bon (xg,x3)U (z4,25) and g(x) <bon (xy,x2)U (z3,24) U (25,00).

Therefore, by Theorem 3.2, if

3
lle — €|l < —(x5 — z4) = 0.0419392,
e
the problem
1 4 sin(=
(313) = 26 an() e), u(0) = u@r), w(0) = o (2r)
U
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has a solution u; such that u,(t*) € [x4, x5 + dy] for some t* € [0, 27], where d; =
x5 — x4 (see Figure 3).
Similarly, by Theorems 3.1 and 3.2, if

3
le —€llL < 2—(3:5 — x4) =~ 0.0209699,
m

the problem (3.13) has at least 2 different solutions u; and wus, where u(t*) €
(x5 — da, x5 + dy) for some t* € [0, 27] and uy(t) € (x4 — do, x4+ dy) for all ¢t € [0, 27],
where dy = £ (x5 — x4) (see Figure 4).

Finally, if

3
le — €|l < ;(3:2 —11) ~ 0.0136238,

the problem (3.13) has at least 3 different solutions uy, us and us, where u;(t*) €
[x5 — d3, x5 + d3] for some t* € [0, 27|, ua(t) € [w4 — d3, x4 + ds] for all ¢t € [0, 27] and
u3(t) € [x1,xq] for all ¢t € [0, 27], where d3 = z2 — x1 (see Figure 5).
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